Search tips
Search criteria

Results 26-50 (706)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
26.  Annual acknowledgement of manuscript reviewers 
Contributing reviewers
The editors of BMC Molecular Biology would like to thank all of our reviewers who have contributed to the journal in Volume 12 (2012).
PMCID: PMC3614431
27.  Identification of differences in microRNA transcriptomes between porcine oxidative and glycolytic skeletal muscles 
MicroRNAs (miRNAs) are a type of non-coding small RNA ~22 nucleotides in length that regulate the expression of protein coding genes at the post-transcriptional level. Glycolytic and oxidative myofibers, the two main types of skeletal muscles, play important roles in metabolic health as well as in meat quality and production in the pig industry. Previous expression profile studies of different skeletal muscle types have focused on these aspects of mRNA and proteins; nonetheless, an explanation of the miRNA transcriptome differences between these two distinct muscles types is long overdue.
Herein, we present a comprehensive analysis of miRNA expression profiling between the porcine longissimus doris muscle (LDM) and psoas major muscle (PMM) using a deep sequencing approach. We generated a total of 16.62 M (LDM) and 18.46 M (PMM) counts, which produced 15.22 M and 17.52 M mappable sequences, respectively, and identified 114 conserved miRNAs and 89 novel miRNA*s. Of 668 unique miRNAs, 349 (52.25%) were co-expressed, of which 173 showed significant differences (P < 0.01) between the two muscle types. Muscle-specific miR-1-3p showed high expression levels in both libraries (LDM, 32.01%; PMM, 20.15%), and miRNAs that potentially affect metabolic pathways (such as the miR-133 and -23) showed significant differences between the two libraries, indicating that the two skeletal muscle types shared mainly muscle-specific miRNAs but expressed at distinct levels according to their metabolic needs. In addition, an analysis of the Gene Ontology (GO) terms and KEGG pathway associated with the predicted target genes of the differentially expressed miRNAs revealed that the target protein coding genes of highly expressed miRNAs are mainly involved in skeletal muscle structural development, regeneration, cell cycle progression, and the regulation of cell motility.
Our study indicates that miRNAs play essential roles in the phenotypic variations observed in different muscle fiber types.
PMCID: PMC3599761  PMID: 23419046
microRNA; Deep sequencing; Longissimus doris muscle; Psoas major muscle; Pig
28.  Single cell transcriptomic analysis of prostate cancer cells 
The ability to interrogate circulating tumor cells (CTC) and disseminated tumor cells (DTC) is restricted by the small number detected and isolated (typically <10). To determine if a commercially available technology could provide a transcriptomic profile of a single prostate cancer (PCa) cell, we clonally selected and cultured a single passage of cell cycle synchronized C4-2B PCa cells. Ten sets of single, 5-, or 10-cells were isolated using a micromanipulator under direct visualization with an inverted microscope. Additionally, two groups of 10 individual DTC, each isolated from bone marrow of 2 patients with metastatic PCa were obtained. RNA was amplified using the WT-Ovation™ One-Direct Amplification System. The amplified material was hybridized on a 44K Whole Human Gene Expression Microarray. A high stringency threshold, a mean Alexa Fluor® 3 signal intensity above 300, was used for gene detection. Relative expression levels were validated for select genes using real-time PCR (RT-qPCR).
Using this approach, 22,410, 20,423, and 17,009 probes were positive on the arrays from 10-cell pools, 5-cell pools, and single-cells, respectively. The sensitivity and specificity of gene detection on the single-cell analyses were 0.739 and 0.972 respectively when compared to 10-cell pools, and 0.814 and 0.979 respectively when compared to 5-cell pools, demonstrating a low false positive rate. Among 10,000 randomly selected pairs of genes, the Pearson correlation coefficient was 0.875 between the single-cell and 5-cell pools and 0.783 between the single-cell and 10-cell pools. As expected, abundant transcripts in the 5- and 10-cell samples were detected by RT-qPCR in the single-cell isolates, while lower abundance messages were not. Using the same stringency, 16,039 probes were positive on the patient single-cell arrays. Cluster analysis showed that all 10 DTC grouped together within each patient.
A transcriptomic profile can be reliably obtained from a single cell using commercially available technology. As expected, fewer amplified genes are detected from a single-cell sample than from pooled-cell samples, however this method can be used to reliably obtain a transcriptomic profile from DTC isolated from the bone marrow of patients with PCa.
PMCID: PMC3599075  PMID: 23414343
Prostate cancer; Single-cell; Transcriptome; Disseminated tumor cells
29.  Identification of a set of miRNAs differentially expressed in transiently TIA-depleted HeLa cells by genome-wide profiling 
T-cell intracellular antigen (TIA) proteins function as regulators of cell homeostasis. These proteins control gene expression globally at multiple levels in response to dynamic regulatory changes and environmental stresses. Herein we identified a micro(mi)RNA signature associated to transiently TIA-depleted HeLa cells and analyzed the potential role of miRNAs combining genome-wide analysis data on mRNA and miRNA profiles.
Using high-throughput miRNA expression profiling, transient depletion of TIA-proteins in HeLa cells was observed to promote significant and reproducible changes affecting to a pool of up-regulated miRNAs involving miR-30b-3p, miR125a-3p, miR-193a-5p, miR-197-3p, miR-203a, miR-210, miR-371-5p, miR-373-5p, miR-483-5p, miR-492, miR-498, miR-503-5p, miR-572, miR-586, miR-612, miR-615-3p, miR-623, miR-625-5p, miR-629-5p, miR-638, miR-658, miR-663a, miR-671-5p, miR-769-3p and miR-744-5p. Some up-regulated and unchanged miRNAs were validated and previous results confirmed by reverse transcription and real time PCR. By target prediction of the miRNAs and combined analysis of the genome-wide expression profiles identified in TIA-depleted HeLa cells, we detected connections between up-regulated miRNAs and potential target genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) database analysis suggest that target genes are related with biological processes associated to the regulation of DNA-dependent transcription, signal transduction and multicellular organismal development as well as with the enrichment of pathways involved in cancer, focal adhesion, regulation of actin cytoskeleton, endocytosis and MAPK and Wnt signaling pathways, respectively. When the collection of experimentally defined differentially expressed genes in TIA-depleted HeLa cells was intersected with potential target genes only 7 out of 68 (10%) up- and 71 out of 328 (22%) down-regulated genes were shared. GO and KEGG database analyses showed that the enrichment categories of biological processes and cellular pathways were related with innate immune response, signal transduction, response to interleukin-1, glomerular basement membrane development as well as neuroactive ligand-receptor interaction, endocytosis, lysosomes and apoptosis, respectively.
All this considered, these observations suggest that individual miRNAs could act as potential mediators of the epigenetic switch linking transcriptomic dynamics and cell phenotypes mediated by TIA proteins.
PMCID: PMC3600012  PMID: 23387986
TIA1; TIAR; miRNAs; Gene regulatory networks
30.  UtroUp is a novel six zinc finger artificial transcription factor that recognises 18 base pairs of the utrophin promoter and efficiently drives utrophin upregulation 
Duchenne muscular dystrophy (DMD) is the most common X-linked muscle degenerative disease and it is due to the absence of the cytoskeletal protein dystrophin. Currently there is no effective treatment for DMD. Among the different strategies for achieving a functional recovery of the dystrophic muscle, the upregulation of the dystrophin-related gene utrophin is becoming more and more feasible.
We have previously shown that the zinc finger-based artificial transcriptional factor “Jazz” corrects the dystrophic pathology in mdx mice by upregulating utrophin gene expression. Here we describe a novel artificial transcription factor, named “UtroUp”, engineered to further improve the DNA-binding specificity. UtroUp has been designed to recognise an extended DNA target sequence on both the human and mouse utrophin gene promoters. The UtroUp DNA-binding domain contains six zinc finger motifs in tandem, which is able to recognise an 18-base-pair DNA target sequence that statistically is present only once in the human genome. To achieve a higher transcriptional activation, we coupled the UtroUp DNA-binding domain with the innovative transcriptional activation domain, which was derived from the multivalent adaptor protein Che-1/AATF. We show that the artificial transcription factor UtroUp, due to its six zinc finger tandem motif, possesses a low dissociation constant that is consistent with a strong affinity/specificity toward its DNA-binding site. When expressed in mammalian cell lines, UtroUp promotes utrophin transcription and efficiently accesses active chromatin promoting accumulation of the acetylated form of histone H3 in the utrophin promoter locus.
This novel artificial molecule may represent an improved platform for the development of future applications in DMD treatment.
PMCID: PMC3576267  PMID: 23363418
DMD; Dystrophin; Utrophin; Zinc finger; Artificial transcription factor; Activation domain; Che-1/AATF
31.  The ICP22 protein selectively modifies the transcription of different kinetic classes of pseudorabies virus genes 
Pseudorabies virus (PRV), an alpha-herpesvirus of swine, is a widely used model organism in investigations of the molecular pathomechanisms of the herpesviruses. This work is the continuation of our earlier studies, in which we investigated the effect of the abrogation of gene function on the viral transcriptome by knocking out PRV genes playing roles in the coordination of global gene expression of the virus. In this study, we deleted the us1 gene encoding the ICP22, an important viral regulatory protein, and analyzed the changes in the expression of other PRV genes.
A multi-timepoint real-time RT-PCR technique was applied to evaluate the impact of deletion of the PRV us1 gene on the overall transcription kinetics of viral genes. The mutation proved to exert a differential effect on the distinct kinetic classes of PRV genes at the various stages of lytic infection. In the us1 gene-deleted virus, all the kinetic classes of the genes were significantly down-regulated in the first hour of infection. After 2 to 6 h of infection, the late genes were severely suppressed, whereas the early genes were unaffected. In the late stage of infection, the early genes were selectively up-regulated. In the mutant virus, the transcription of the ie180 gene, the major coordinator of PRV gene expression, correlated closely with the transcription of other viral genes, a situation which was not found in the wild-type (wt) virus. A 4-h delay was observed in the commencement of DNA replication in the mutant virus as compared with the wt virus. The rate of transcription from a gene normalized to the relative copy number of the viral genome was observed to decline drastically following the initiation of DNA replication in both the wt and mutant backgrounds. Finally, the switch between the expressions of the early and late genes was demonstrated not to be controlled by DNA replication, as is widely believed, since the switch preceded the DNA replication.
Our results show a strong dependence of PRV gene expression on the presence of functional us1 gene. ICP22 is shown to exert a differential effect on the distinct kinetic classes of PRV genes and to disrupt the close correlation between the transcription kinetics of ie180 and other PRV transcripts. Furthermore, DNA replication exerts a severe constraint on the viral transcription.
PMCID: PMC3599583  PMID: 23360468
Herpesvirus; Pseudorabies virus; Real-time PCR; ICP22; us1 gene
32.  Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis 
In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established.
Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof1/+; mnkp6/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks.
mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF with the known components of the DNA damage pathway.
PMCID: PMC3566930  PMID: 23347679
Mof; Mitosis; Syncytial embryos; Drosophila melanogaster; Chk2; Anaphase bridges
33.  Alternative splicing of the neurofibromatosis type 1 pre-mRNA is regulated by the muscleblind-like proteins and the CUG-BP and ELAV-like factors 
BMC Molecular Biology  2012;13:35.
Alternative splicing is often subjected to complex regulatory control that involves many protein factors and cis-acting RNA sequence elements. One major challenge is to identify all of the protein players and define how they control alternative expression of a particular exon in a combinatorial manner. The Muscleblind-like (MBNL) and CUG-BP and ELAV-Like family (CELF) proteins are splicing regulatory proteins, which function as antagonists in the regulation of several alternative exons. Currently only a limited number of common targets of MBNL and CELF are known that are antagonistically regulated by these two groups of proteins.
Recently, we identified neurofibromatosis type 1 (NF1) exon 23a as a novel target of negative regulation by CELF proteins. Here we report that MBNL family members are positive regulators of this exon. Overexpression of MBNL proteins promote exon 23a inclusion in a low MBNL-expressing cell line, and simultaneous siRNA-mediated knockdown of MBNL1 and MBNL2 family members in a high MBNL-expressing cell line promotes exon 23a skipping. Importantly, these two groups of proteins antagonize each other in regulating inclusion of exon 23a. Furthermore, we analyzed the binding sites of these proteins in the intronic sequences upstream of exon 23a by UV cross-linking assays. We show that in vitro, in addition to the previously identified preferred binding sequence UGCUGU, the MBNL proteins need the neighboring sequences for optimal binding.
This study along with our previous work that demonstrated roles for Hu, CELF, and TIA-1 and TIAR proteins in the regulation of NF1 exon 23a establish that this exon is under tight, complex control.
PMCID: PMC3558374  PMID: 23227900
Muscleblind-like (MBNL) proteins; CUG-BP and ELAV-like family (CELF proteins); Alternative splicing; Neurofibromatosis type I (NF1); Splicing regulation; Complex control
34.  Directional telomeric silencing and lack of canonical B1 elements in two silencer Autonomously Replicating Sequences in S. cerevisiae 
BMC Molecular Biology  2012;13:34.
Autonomously Replicating Sequences (ARS) in S. cerevisiae serve as origins of DNA replication or as components of cis-acting silencers, which impose positional repression at the mating type loci and at the telomeres. Both types of ARS can act as replicators or silencers, however it is not clear how these quite diverse functions are executed. It is believed that all ARS contain a core module of an essential ARS Consensus Sequence (ACS) and a non-essential B1 element.
We have tested how the B1 elements contribute to the silencer and replicator function of ARS. We report that the ACS-B1 orientation of ARS has a profound effect on the levels of gene silencing at telomeres. We also report that the destruction of the canonical B1 elements in two silencer ARS (ARS317 and ARS319) has no effect on their silencer and replicator activity.
The observed orientation effects on gene silencing suggest that ARSs can act as both proto-silencers and as insulator elements. In addition, the lack of B1 suggests that the ACS-B1 module could be different in silencer and replicator ARS.
PMCID: PMC3545912  PMID: 23157664
Autonomously replicating sequences; Telomere position effect; DNA replication; Gene silencing
35.  Escherichia coli RecG functionally suppresses human Bloom syndrome phenotypes 
BMC Molecular Biology  2012;13:33.
Defects in the human BLM gene cause Bloom syndrome, notable for early development of tumors in a broad variety of tissues. On the basis of sequence similarity, BLM has been identified as one of the five human homologs of RecQ from Escherichia coli. Nevertheless, biochemical characterization of the BLM protein indicates far greater functional similarity to the E. coli RecG protein and there is no known RecG homolog in human cells. To explore the possibility that the shared biochemistries of BLM and RecG may represent an example of convergent evolution of cellular function where in humans BLM has evolved to fulfill the genomic stabilization role of RecG, we determined whether expression of RecG in human BLM-deficient cells could suppress established functional cellular Bloom syndrome phenotypes. We found that RecG can indeed largely suppress both the definitive elevated sister chromatid exchange phenotype and the more recently demonstrated gene cluster instability phenotype of BLM-deficient cells. In contrast, expression of RecG has no impact on either of these phenotypes in human cells with functional BLM protein. These results suggest that the combination of biochemical activities shared by RecG and BLM fill the same evolutionary niche in preserving genomic integrity without requiring exactly identical molecular mechanisms.
PMCID: PMC3517418  PMID: 23110454
36.  Cloning, ligand-binding, and temporal expression of ecdysteroid receptors in the diamondback moth, Plutella xylostella 
BMC Molecular Biology  2012;13:32.
The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a devastating pest of cruciferous crops worldwide, and has developed resistance to a wide range of insecticides, including diacylhydrazine-based ecdysone agonists, a highly selective group of molt-accelerating biopesticides targeting the ecdysone receptors.
In this study, we cloned and characterized the ecdysone receptors from P. xylostella, including the two isoforms of EcR and a USP. Sequence comparison and phylogenetic analysis showed striking conservations among insect ecdysone receptors, especially between P. xylostella and other lepidopterans. The binding affinity of ecdysteroids to in vitro-translated receptor proteins indicated that PxEcRB isoform bound specifically to ponasterone A, and the binding affinity was enhanced by co-incubation with PxUSP (Kd =3.0±1.7 nM). In contrast, PxEcRA did not bind to ponasterone A, even in the presence of PxUSP. The expression of PxEcRB were consistently higher than that of PxEcRA across each and every developmental stage, while the pattern of PxUSP expression is more or less ubiquitous.
Target site insensitivity, in which the altered binding of insecticides (ecdysone agonists) to their targets (ecdysone receptors) leads to an adaptive response (resistance), is one of the underlying mechanisms of diacylhydrazine resistance. Given the distinct differences at expression level and the ligand-binding capacity, we hypothesis that PxEcRB is the ecdysone receptor that controls the remodeling events during metamorphosis. More importantly, PxEcRB is the potential target site which is modified in the ecdysone agonist-resistant P. xylostella.
PMCID: PMC3568735  PMID: 23078528
Plutella xylostella, Ecdysone receptor (EcR); Binding affinity, Expression profiling, Ecdysone agonist
37.  Adenylate kinase 2 (AK2) promotes cell proliferation in insect development 
BMC Molecular Biology  2012;13:31.
Adenylate kinase 2 (AK2) is a phosphotransferase that catalyzes the reversible reaction 2ADP(GDP) ↔ ATP(GTP) + AMP and influences cellular energy homeostasis. However, the role of AK2 in regulating cell proliferation remains unclear because AK2 has been reported to be involved in either cell proliferation or cell apoptosis in different cell types of various organisms.
This study reports AK2 promotion of cell proliferation using the lepidopteran insect Helicoverpa armigera and its epidermal cell line HaEpi as models. Western blot analysis indicates that AK2 constitutively expresses in various tissues during larval development. Immunocytochemistry analysis indicates that AK2 localizes in the mitochondria. The recombinant expressed AK2 in E. coli promotes cell growth and viability of HaEpi cell line by 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay. AK2 knockdown in larvae by RNA interference causes larval growth defects, including body weight decrease and development delay. AK2 knockdown in larvae also decreases the number of circulating haemocytes. The mechanism for such effects might be the suppression of gene transcription involved in insect development caused by AK2 knockdown.
These results show that AK2 regulates cell growth, viability, and proliferation in insect growth and development.
PMCID: PMC3583204  PMID: 23020757
Helicoverpa armigera; Adenylate kinase 2 (AK2); Cell growth and viability; RNA interference
38.  A MultiSite GatewayTM vector set for the functional analysis of genes in the model Saccharomyces cerevisiae 
BMC Molecular Biology  2012;13:30.
Recombinatorial cloning using the GatewayTM technology has been the method of choice for high-throughput omics projects, resulting in the availability of entire ORFeomes in GatewayTM compatible vectors. The MultiSite GatewayTM system allows combining multiple genetic fragments such as promoter, ORF and epitope tag in one single reaction. To date, this technology has not been accessible in the yeast Saccharomyces cerevisiae, one of the most widely used experimental systems in molecular biology, due to the lack of appropriate destination vectors.
Here, we present a set of three-fragment MultiSite GatewayTM destination vectors that have been developed for gene expression in S. cerevisiae and that allow the assembly of any promoter, open reading frame, epitope tag arrangement in combination with any of four auxotrophic markers and three distinct replication mechanisms. As an example of its applicability, we used yeast three-hybrid to provide evidence for the assembly of a ternary complex of plant proteins involved in jasmonate signalling and consisting of the JAZ, NINJA and TOPLESS proteins.
Our vectors make MultiSite GatewayTM cloning accessible in S. cerevisiae and implement a fast and versatile cloning method for the high-throughput functional analysis of (heterologous) proteins in one of the most widely used model organisms for molecular biology research.
PMCID: PMC3519679  PMID: 22994806
Gateway cloning; MultiSite; Saccharomyces cerevisiae; Yeast; Vector; Fusion protein; Epitope tag; Jasmonate; Arabidopsis thaliana
39.  A novel 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) splice variant with an alternative exon 1 potentially encoding an extended N-terminus 
BMC Molecular Biology  2012;13:29.
The major rate-limiting enzyme for de novo cholesterol synthesis is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR). HMGCR is sterically inhibited by statins, the most commonly prescribed drugs for the prevention of cardiovascular events. Alternative splicing of HMGCR has been implicated in the control of cholesterol homeostasis. The aim of this study was to identify novel alternatively spliced variants of HMGCR with potential physiological importance.
Bioinformatic analyses predicted three novel HMGCR transcripts containing an alternative exon 1 (HMGCR-1b, -1c, -1d) compared with the canonical transcript (HMGCR-1a). The open reading frame of the HMGCR-1b transcript potentially encodes 20 additional amino acids at the N-terminus, compared with HMGCR-1a. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) was used to examine the mRNA levels of HMGCR in different tissues; HMGCR-1a was the most highly expressed variant in most tissues, with the exception of the skin, esophagus, and uterine cervix, in which HMGCR-1b was the most highly expressed transcript. Atorvastatin treatment of HepG2 cells resulted in increased HMGCR-1b mRNA levels, but unaltered proximal promoter activity compared to untreated cells. In contrast, HMGCR-1c showed a more restricted transcription pattern, but was also induced by atorvastatin treatment.
The gene encoding HMGCR uses alternative, mutually exclusive exon 1 sequences. This contributes to an increased complexity of HMGCR transcripts. Further studies are needed to investigate whether HMGCR splice variants identified in this study are physiologically functional.
PMCID: PMC3526503  PMID: 22989091
3-hydroxy-3-methylglutaryl-coenzyme A reductase; HMG-CoA; Transcription; Alternative splicing; Statin; Cholesterol
40.  Regulation of GAD65 expression by SMAR1 and p53 upon Streptozotocin treatment 
BMC Molecular Biology  2012;13:28.
GAD65 (Glutamic acid decarboxylase 65 KDa isoform) is one of the most important auto-antigens involved in Type 1 diabetes induction. Although it serves as one of the first injury markers of β-islets, the mechanisms governing GAD65 expression remain poorly understood. Since the regulation of GAD65 is crucial for the proper functioning of insulin secreting cells, we investigated the stress induced regulation of GAD65 transcription.
The present study shows that SMAR1 regulates GAD65 expression at the transcription level. Using a novel protein-DNA pull-down assay, we show that SMAR1 binding is very specific to GAD65 promoter but not to the other isoform, GAD67. We show that Streptozotocin (STZ) mediated DNA damage leads to upregulation of SMAR1 and p53 expression, resulting in elevated levels of GAD65, in both cell lines as well as mouse β-islets. SMAR1 and p53 act synergistically to up-regulate GAD65 expression upon STZ treatment.
We propose a novel mechanism of GAD65 regulation by synergistic activities of SMAR1 and p53.
PMCID: PMC3459802  PMID: 22978699
SMAR1; Diabetes; GAD65; p53; Streptozotocin
41.  Clock-controlled mir-142-3p can target its activator, Bmal1 
BMC Molecular Biology  2012;13:27.
microRNAs (miRNAs) are shown to be involved in the regulation of circadian clock. However, it remains largely unknown whether miRNAs can regulate the core clock genes (Clock and Bmal1).
In this study, we found that mir-142-3p directly targeted the 3’UTR of human BMAL1 and mouse Bmal1. The over-expression (in 293ET and NIH3T3 cells) and knockdown (in U87MG cells) of mir-142-3p reduced and up-regulated the Bmal1/BMAL1 mRNA and protein levels, respectively. Moreover, the expression level of mir-142-3p oscillated in serum-shocked NIH3T3 cells and the results of ChIP and luciferase reporter assays suggested that the expression of mir-142-3p was directly controlled by CLOCK/BMAL1 heterodimers in NIH3T3 cells.
Our study demonstrates that mir-142-3p can directly target the 3’UTR of Bmal1. In addition, the expression of mir-142-3p is controlled by CLOCK/BMAL1 heterodimers, suggesting a potential negative feedback loop consisting of the miRNAs and the core clock genes. These findings open new perspective for studying the molecular mechanism of circadian clock.
PMCID: PMC3482555  PMID: 22958478
mir-142-3p; Bmal1; Circadian clock
42.  Structural/functional analysis of the human OXR1 protein: identification of exon 8 as the anti-oxidant encoding function 
BMC Molecular Biology  2012;13:26.
The human OXR1 gene belongs to a class of genes with conserved functions that protect cells from reactive oxygen species (ROS). The gene was found using a screen of a human cDNA library by its ability to suppress the spontaneous mutator phenotype of an E. coli mutH nth strain. The function of OXR1 is unknown. The human and yeast genes are induced by oxidative stress and targeted to the mitochondria; the yeast gene is required for resistance to hydrogen peroxide. Multiple spliced isoforms are expressed in a variety of human tissues, including brain.
In this report, we use a papillation assay that measures spontaneous mutagenesis of an E. coli mutM mutY strain, a host defective for oxidative DNA repair. Papillation frequencies with this strain are dependent upon a G→T transversion in the lacZ gene (a mutation known to occur as a result of oxidative damage) and are suppressed by in vivo expression of human OXR1. N-terminal, C-terminal and internal deletions of the OXR1 gene were constructed and tested for suppression of the mutagenic phenotype of the mutM mutY strain. We find that the TLDc domain, encoded by the final four exons of the OXR1 gene, is not required for papillation suppression in E. coli. Instead, we show that the protein segment encoded by exon 8 of OXR1 is responsible for the suppression of oxidative damage in E. coli.
The protein segment encoded by OXR1 exon 8 plays an important role in the anti-oxidative function of the human OXR1 protein. This result suggests that the TLDc domain, found in OXR1 exons 12–16 and common in many proteins with nuclear function, has an alternate (undefined) role other than oxidative repair.
PMCID: PMC3462732  PMID: 22873401
43.  Dual regulation of P-glycoprotein expression by Trichostatin A in cancer cell lines 
BMC Molecular Biology  2012;13:25.
It has been reported that the histone deacetylase inhibitor (iHDAc) trichostatin A (TSA) induces an increase in MDR1 gene transcription (ABCB1). This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp). It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a translational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation.
A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry has been used in this study.
The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a translational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5′ end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5′ end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used.
The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we demonstrate that TSA in fact, regulates differentially both ABCB1 promoters, downregulating the upstream promoter that is responsible for active P-glycoprotein expression. These results suggest that iHDACs such as TSA may in fact potentiate the effects of antitumour drugs that are substrates of Pgp. Finally, we also demonstrate that TSA upregulates RUNDC3B mRNA independently of the ABCB1 promoter in use.
PMCID: PMC3441908  PMID: 22846052
44.  Structure-function analysis of Methanobacterium thermoautotrophicum RNA ligase – engineering a thermostable ATP independent enzyme 
BMC Molecular Biology  2012;13:24.
RNA ligases are essential reagents for many methods in molecular biology including NextGen RNA sequencing. To prevent ligation of RNA to itself, ATP independent mutant ligases, defective in self-adenylation, are often used in combination with activated pre-adenylated linkers. It is important that these ligases not have de-adenylation activity, which can result in activation of RNA and formation of background ligation products. An additional useful feature is for the ligase to be active at elevated temperatures. This has the advantage or reducing preferences caused by structures of single-stranded substrates and linkers.
To create an RNA ligase with these desirable properties we performed mutational analysis of the archaeal thermophilic RNA ligase from Methanobacterium thermoautotrophicum. We identified amino acids essential for ATP binding and reactivity but dispensable for phosphodiester bond formation with 5’ pre-adenylated donor substrate. The motif V lysine mutant (K246A) showed reduced activity in the first two steps of ligation reaction. The mutant has full ligation activity with pre-adenylated substrates but retained the undesirable activity of deadenylation, which is the reverse of step 2 adenylation. A second mutant, an alanine substitution for the catalytic lysine in motif I (K97A) abolished activity in the first two steps of the ligation reaction, but preserved wild type ligation activity in step 3. The activity of the K97A mutant is similar with either pre-adenylated RNA or single-stranded DNA (ssDNA) as donor substrates but we observed two-fold preference for RNA as an acceptor substrate compared to ssDNA with an identical sequence. In contrast, truncated T4 RNA ligase 2, the commercial enzyme used in these applications, is significantly more active using pre-adenylated RNA as a donor compared to pre-adenylated ssDNA. However, the T4 RNA ligases are ineffective in ligating ssDNA acceptors.
Mutational analysis of the heat stable RNA ligase from Methanobacterium thermoautotrophicum resulted in the creation of an ATP independent ligase. The K97A mutant is defective in the first two steps of ligation but retains full activity in ligation of either RNA or ssDNA to a pre-adenylated linker. The ability of the ligase to function at 65°C should reduce the constraints of RNA secondary structure in RNA ligation experiments.
PMCID: PMC3514331  PMID: 22809063
45.  G-quadruplex recognition activities of E. Coli MutS 
BMC Molecular Biology  2012;13:23.
Guanine quadruplex (G4 DNA) is a four-stranded structure that contributes to genome instability and site-specific recombination. G4 DNA folds from sequences containing tandemly repetitive guanines, sequence motifs that are found throughout prokaryote and eukaryote genomes. While some cellular activities have been identified with binding or processing G4 DNA, the factors and pathways governing G4 DNA metabolism are largely undefined. Highly conserved mismatch repair factors have emerged as potential G4-responding complexes because, in addition to initiating heteroduplex correction, the human homologs bind non-B form DNA with high affinity. Moreover, the MutS homologs across species have the capacity to recognize a diverse range of DNA pairing variations and damage, suggesting a conserved ability to bind non-B form DNA.
Here, we asked if E. coli MutS and a heteroduplex recognition mutant, MutS F36A, were capable of recognizing and responding to G4 DNA structures. We find by mobility shift assay that E. coli MutS binds to G4 DNA with high affinity better than binding to G-T heteroduplexes. In the same assay, MutS F36A failed to recognize G-T mismatched oligonucleotides, as expected, but retained an ability to bind to G4 DNA. Association with G4 DNA by MutS is not likely to activate the mismatch repair pathway because nucleotide binding did not promote release of MutS or MutS F36A from G4 DNA as it does for heteroduplexes. G4 recognition activities occur under physiological conditions, and we find that M13 phage harboring G4-capable DNA poorly infected a MutS deficient strain of E. coli compared to M13mp18, suggesting functional roles for mismatch repair factors in the cellular response to unstable genomic elements.
Taken together, our findings demonstrate that E. coli MutS has a binding activity specific for non-B form G4 DNA, but such binding appears independent of canonical heteroduplex repair activation.
PMCID: PMC3437207  PMID: 22747774
DNA repair; G4; Quadruplex DNA; Mismatch repair; MutS
46.  Evaluation of reference genes for real-time quantitative PCR studies in Candida glabrata following azole treatment 
BMC Molecular Biology  2012;13:22.
The selection of stable and suitable reference genes for real-time quantitative PCR (RT-qPCR) is a crucial prerequisite for reliable gene expression analysis under different experimental conditions. The present study aimed to identify reference genes as internal controls for gene expression studies by RT-qPCR in azole-stimulated Candida glabrata.
The expression stability of 16 reference genes under fluconazole stress was evaluated using fold change and standard deviation computations with the hkgFinder tool. Our data revealed that the mRNA expression levels of three ribosomal RNAs (RDN5.8, RDN18, and RDN25) remained stable in response to fluconazole, while PGK1, UBC7, and UBC13 mRNAs showed only approximately 2.9-, 3.0-, and 2.5-fold induction by azole, respectively. By contrast, mRNA levels of the other 10 reference genes (ACT1, EF1α, GAPDH, PPIA, RPL2A, RPL10, RPL13A, SDHA, TUB1, and UBC4) were dramatically increased in C. glabrata following antifungal treatment, exhibiting changes ranging from 4.5- to 32.7-fold. We also assessed the expression stability of these reference genes using the 2-ΔΔCT method and three other software packages. The stability rankings of the reference genes by geNorm and the 2-ΔΔCT method were identical to those by hkgFinder, whereas the stability rankings by BestKeeper and NormFinder were notably different. We then validated the suitability of six candidate reference genes (ACT1, PGK1, RDN5.8, RDN18, UBC7, and UBC13) as internal controls for ten target genes in this system using the comparative CT method. Our validation experiments passed for all six reference genes analyzed except RDN18, where the amplification efficiency of RDN18 was different from that of the ten target genes. Finally, we demonstrated that the relative quantification of target gene expression varied according to the endogenous control used, highlighting the importance of the choice of internal controls in such experiments.
We recommend the use of RDN5.8, UBC13, and PGK1 alone or the combination of RDN5.8 plus UBC13 or PGK1 as reference genes for RT-qPCR analysis of gene expression in C. glabrata following azole treatment. In contrast, we show that ACT1 and other commonly used reference genes (GAPDH, PPIA, RPL13A, TUB1, etc.) were not validated as good internal controls in the current model.
PMCID: PMC3482582  PMID: 22747760
Candida glabrata; Azole resistance gene; Fluconazole; hkgFinder; Housekeeping gene; Reference gene; RT-qPCR
47.  Interaction of C/EBP-beta and NF-Y factors constrains activity levels of the nutritionally controlled promoter IA expressing the acetyl-CoA carboxylase-alpha gene in cattle 
BMC Molecular Biology  2012;13:21.
The enzyme acetyl-CoA carboxylase-alpha (ACC-α) is rate limiting for de novo fatty acid synthesis. Among the four promoters expressing the bovine gene, promoter IA (PIA) is dominantly active in lipogenic tissues. This promoter is in principal repressed but activated under favorable nutritional conditions. Previous analyses already coarsely delineated the repressive elements on the distal promoter but did not resolve the molecular nature of the repressor. Knowledge about the molecular functioning of this repressor is fundamental to understanding the nutrition mediated regulation of PIA activity. We analyzed here the molecular mechanism calibrating PIA activity.
We finely mapped the repressor binding sites in reporter gene assays and demonstrate together with Electrophoretic Mobility Shift Assays that nuclear factor-Y (NF-Y) and CCAAT/enhancer binding protein-β (C/EBPβ) each separately repress PIA activity by binding to their cognate low affinity sites, located on distal elements of the promoter. Simultaneous binding of both factors results in strongest repression. Paradoxically, over expression of NFY factors, but also - and even more so - of C/EBPβ significantly activated the promoter when bound to high affinity sites on the proximal promoter. However, co-transfection experiments revealed that NF-Y may eventually diminish the strong stimulatory effect of C/EBPβ at the proximal PIA in a dose dependent fashion. We validated by chromatin immunoprecipitation, that NF-Y and C/EBP factors may physically interact.
The proximal promoter segment of PIA appears to be principally in an active state, since even minute concentrations of both, NF-Y and C/EBPβ factors can saturate the high affinity activator sites. Higher factor concentrations will saturate the low affinity repressive sites on the distal promoter resulting in reduced and calibrated promoter activity. Based on measurements of the mRNA concentrations of those factors in different tissues we propose that the interplay of both factors may set tissue-specific limits for PIA activity.
PMCID: PMC3441787  PMID: 22738246
ACC-alpha; Bos taurus; CCAAT-enhancer binding protein; Fat synthesis; Gene regulation; Nuclear factor Y
48.  SPRR2A enhances p53 deacetylation through HDAC1 and down regulates p21 promoter activity 
BMC Molecular Biology  2012;13:20.
Small proline rich protein (SPRR) 2A is one of 14 SPRR genes that encodes for a skin cross-linking protein, which confers structural integrity to the cornified keratinocyte cell envelope. New evidence, however, shows that SPRR2A is also a critical stress and wound repair modulator: it enables a variety of barrier epithelia to transiently acquire mesenchymal characteristics (EMT) and simultaneously quench reactive oxygen species during wound repair responses. p53 is also widely recognized as the node in cellular stress responses that inhibits EMT and triggers cell-cycle arrest, apoptosis, and cellular senescence. Since some p53-directed processes would seem to impede wound repair of barrier epithelia, we hypothesized that SPRR2A up regulation might counteract these effects and enable/promote wound repair under stressful environmental conditions.
Using a well characterized cholangiocarcinoma cell line we show that levels of SPRR2A expression, similar to that seen during stressful biliary wound repair responses, disrupts acetylation and subsequent p53 transcriptional activity. p53 deacetylation is accomplished via two distinct, but possibly related, mechanisms: 1) a reduction of p300 acetylation, thereby interfering with p300-p53 binding and subsequent p300 acetylation of K382 in p53; and 2) an increase in histone deacetylase 1 (HDAC1) mRNA and protein expression. The p300 CH3 domain is essential for both the autoacetylation of p300 and transference of the acetyl group to p53 and HDAC1 is a component of several non-p300 complexes that enhance p53 deacetylation, ubiquitination, and proteosomal degradation. HDAC1 can also bind the p300-CH3 domain, regulating p300 acetylation and interfering with p300 mediated p53 acetylation. The importance of this pathway is illustrated by showing complete restoration of p53 acetylation and partial restoration of p300 acetylation by treating SPRR2A expressing cells with HDAC1 siRNA.
Up-regulation of SPRR2A, similar to that seen during barrier epithelia wound repair responses reduces p53 acetylation by interfering with p300-p53 interactions and by increasing HDAC1 expression. SPRR2A, therefore, functions as a suppressor of p53-dependent transcriptional activity, which otherwise might impede cellular processes needed for epithelial wound repair responses such as EMT.
PMCID: PMC3495018  PMID: 22731250
49.  PIM-1 kinase interacts with the DNA binding domain of the vitamin D receptor: a further kinase implicated in 1,25-(OH)2D3 signaling 
BMC Molecular Biology  2012;13:18.
The vitamin D3 receptor (VDR) is responsible for mediating the pleiotropic and, in part, cell-type-specific effects of 1,25-dihydroxyvitamin D3 (calcitriol) on the cardiovascular and the muscle system, on the bone development and maintenance, mineral homeostasis, cell proliferation, cell differentiation, vitamin D metabolism, and immune response modulation.
Based on data obtained from genome-wide yeast two-hybrid screenings, domain mapping studies, intracellular co-localization approaches as well as reporter transcription assay measurements, we show here that the C-terminus of human PIM-1 kinase isoform2 (amino acid residues 135–313), a serine/threonine kinase of the calcium/calmodulin-regulated kinase family, directly interacts with VDR through the receptor’s DNA-binding domain. We further demonstrate that PIM-1 modulates calcitriol signaling in HaCaT keratinocytes by enhancing both endogenous calcitriol response gene transcription (osteopontin) and an extrachromosomal DR3 reporter response.
These results, taken together with previous reports of involvement of kinase pathways in VDR transactivation, underscore the biological relevance of this novel protein-protein interaction.
PMCID: PMC3404970  PMID: 22720752
Coactivator; PIM-1 kinase; Protein-Protein interaction; Serine/Threonine kinase; Vitamin D; Vitamin D receptor
50.  The Saccharomyces cerevisiae Hot1p regulated gene YHR087W (HGI1) has a role in translation upon high glucose concentration stress 
BMC Molecular Biology  2012;13:19.
While growing in natural environments yeasts can be affected by osmotic stress provoked by high glucose concentrations. The response to this adverse condition requires the HOG pathway and involves transcriptional and posttranscriptional mechanisms initiated by the phosphorylation of this protein, its translocation to the nucleus and activation of transcription factors. One of the genes induced to respond to this injury is YHR087W. It encodes for a protein structurally similar to the N-terminal region of human SBDS whose expression is also induced under other forms of stress and whose deletion determines growth defects at high glucose concentrations.
In this work we show that YHR087W expression is regulated by several transcription factors depending on the particular stress condition, and Hot1p is particularly relevant for the induction at high glucose concentrations. In this situation, Hot1p, together to Sko1p, binds to YHR087W promoter in a Hog1p-dependent manner. Several evidences obtained indicate Yhr087wp’s role in translation. Firstly, and according to TAP purification experiments, it interacts with proteins involved in translation initiation. Besides, its deletion mutant shows growth defects in the presence of translation inhibitors and displays a slightly slower translation recovery after applying high glucose stress than the wild type strain. Analyses of the association of mRNAs to polysome fractions reveals a lower translation in the mutant strain of the mRNAs corresponding to genes GPD1, HSP78 and HSP104.
The data demonstrates that expression of Yhr087wp under high glucose concentration is controlled by Hot1p and Sko1p transcription factors, which bind to its promoter. Yhr087wp has a role in translation, maybe in the control of the synthesis of several stress response proteins, which could explain the lower levels of some of these proteins found in previous proteomic analyses and the growth defects of the deletion strain.
PMCID: PMC3441895  PMID: 22720784
Saccharomyces cerevisiae; High glucose osmotic stress; Gene YHR087W; Gene expression; Translation; Hot1p; Hog1p; Polysomes

Results 26-50 (706)