PMCC PMCC

Search tips
Search criteria

Advanced
Results 26-50 (4720)
 

Clipboard (0)
None

Select a Filter Below

Journals
Year of Publication
more »
26.  Animal model of naturally occurring bladder cancer: Characterization of four new canine transitional cell carcinoma cell lines 
BMC Cancer  2014;14:465.
Background
Development and further characterization of animal models for human cancers is important for the improvement of cancer detection and therapy. Canine bladder cancer closely resembles human bladder cancer in many aspects. In this study, we isolated and characterized four primary transitional cell carcinoma (K9TCC) cell lines to be used for future in vitro validation of novel therapeutic agents for bladder cancer.
Methods
Four K9TCC cell lines were established from naturally-occurring canine bladder cancers obtained from four dogs. Cell proliferation rates of K9TCC cells in vitro were characterized by doubling time. The expression profile of cell-cycle proteins, cytokeratin, E-cadherin, COX-2, PDGFR, VEGFR, and EGFR were evaluated by immunocytochemistry (ICC) and Western blotting (WB) analysis and compared with established human bladder TCC cell lines, T24 and UMUC-3. All tested K9TCC cell lines were assessed for tumorigenic behavior using athymic mice in vivo.
Results
Four established K9TCC cell lines: K9TCC#1Lillie, K9TCC#2Dakota, K9TCC#4Molly, and K9TCC#5Lilly were confirmed to have an epithelial-cell origin by morphology analysis, cytokeratin, and E-cadherin expressions. The tested K9TCC cells expressed UPIa (a specific marker of the urothelial cells), COX-2, PDGFR, and EGFR; however they lacked the expression of VEGFR. All tested K9TCC cell lines confirmed a tumorigenic behavior in athymic mice with 100% tumor incidence.
Conclusions
The established K9TCC cell lines (K9TCC#1Lillie, K9TCC#2Dakota, K9TCC#4Molly, and K9TCC#5Lilly) can be further utilized to assist in development of new target-specific imaging and therapeutic agents for canine and human bladder cancer.
doi:10.1186/1471-2407-14-465
PMCID: PMC4082678  PMID: 24964787
Transitional cell carcinoma; Canine; Xenograft; Bladder cancer
27.  DNA methylation alterations of AXIN2 in serrated adenomas and colon carcinomas with microsatellite instability 
BMC Cancer  2014;14:466.
Background
Recent work led to recognize sessile serrated adenomas (SSA) as precursor to many of the sporadic colorectal cancers with microsatellite instability (MSI). However, comprehensive analyses of DNA methylation in SSA and MSI cancer have not been conducted.
Methods
With an array-based methylation sensitive amplified fragment length polymorphism (MS-AFLP) method we analyzed 8 tubular (TA) and 19 serrated (SSA) adenomas, and 14 carcinomas with (MSI) and 12 without (MSS) microsatellite instability. MS-AFLP array can survey relative differences in methylation between normal and tumor tissues of 9,654 DNA fragments containing all NotI sequences in the human genome.
Results
Unsupervised clustering analysis of the genome-wide hypermethylation alterations revealed no major differences between or within these groups of benign and malignant tumors regardless of their location in intergenic, intragenic, promoter, or 3′ end regions. Hypomethylation was less frequent in SSAs compared with MSI or MSS carcinomas. Analysis of variance of DNA methylation between these four subgroups identified 56 probes differentially altered. The hierarchical tree of this subset of probes revealed two distinct clusters: Group 1, mostly composed by TAs and MSS cancers with KRAS mutations; and Group 2 with BRAF mutations, which consisted of cancers with MSI and MLH1 methylation (Group 2A), and SSAs without MLH1 methylation (Group 2B). AXIN2, which cooperates with APC and β-catenin in Wnt signaling, had more methylation alterations in Group 2, and its expression levels negatively correlated with methylation determined by bisulfite sequencing. Within group 2B, low and high AXIN2 expression levels correlated significantly with differences in size (P = 0.01) location (P = 0.05) and crypt architecture (P = 0.01).
Conclusions
Somatic methylation alterations of AXIN2, associated with changes in its expression, stratify SSAs according to some clinico-pathological differences. We conclude that hypermethylation of MLH1, when occurs in an adenoma cell with BRAF oncogenic mutational activation, drives the pathway for MSI cancer by providing the cells with a mutator phenotype. AXIN2 inactivation may contribute to this tumorigenic pathway either by mutator phenotype driven frameshift mutations or by epigenetic deregulation contemporary with the unfolding of the mutator phenotype.
doi:10.1186/1471-2407-14-466
PMCID: PMC4099028  PMID: 24964857
Colon sessile serrated adenoma; Microsatellite instability; BRAF mutation; DNA methylation; AXIN2
28.  Outcomes after stereotactic body radiotherapy for lung tumors, with emphasis on comparison of primary lung cancer and metastatic lung tumors 
BMC Cancer  2014;14:464.
Background
The goal of this study was to determine the prognostic factors associated with an improved overall outcome after stereotactic body radiotherapy (SBRT) for primary lung cancer and metastatic lung tumors.
Methods
A total of 229 lung tumors in 201 patients were included in the study. SBRT of 45 Gy in 3 fractions, 48 Gy in 4 fractions, 60 Gy in 8 fractions or 60 Gy in 15 fractions was typically used to treat 172 primary lungs cancer in 164 patients and 57 metastatic lung tumors in 37 patients between January 2001 and December 2011. Prognostic factors for local control (LC) and overall survival (OS) were analyzed using a Cox proportional hazards model.
Results
The median biologically effective dose was 105.6 Gy based on alpha/beta = 10 (BED10). The median follow-up period was 41.9 months. The 3-year LC and OS rates were 72.5% and 60.9%, and the 5-year LC and OS rates were 67.8% and 38.1%, respectively. Radiation pneumonitis of grades 2, 3 and 5 occurred in 22 petients, 6 patients and 1 patient, respectively. Multivariate analyses revealed that tumor origin (primary lung cancer or metastatic lung tumor, p < 0.001), tumor diameter (p = 0.005), BED10 (p = 0.029) and date of treatment (p = 0.011) were significant independent predictors for LC and that gender (p = 0.012), tumor origin (p = 0.001) and tumor diameter (p < 0.001) were significant independent predictors for OS.
Conclusions
SBRT resulted in good LC and tolerable treatment-related toxicities. Tumor origin and tumor diameter are significant independent predictors for both overall survival and local control.
doi:10.1186/1471-2407-14-464
PMCID: PMC4076495  PMID: 24957478
Stereotactic radiotherapy; SBRT; Primary lung cancer; Metastatic lung tumor; Oligometastasis; Prognostic factor
29.  FHL1C induces apoptosis in notch1-dependent T-ALL cells through an interaction with RBP-J 
BMC Cancer  2014;14:463.
Background
Aberrantly activated Notch signaling has been found in more than 50% of patients with T-cell acute lymphoblastic leukemia (T-ALL). Current strategies that employ γ-secretase inhibitors (GSIs) to target Notch activation have not been successful. Many limitations, such as non-Notch specificity, dose-limiting gastrointestinal toxicity and GSI resistance, have prompted an urgent need for more effective Notch signaling inhibitors for T-ALL treatment. Human four-and-a-half LIM domain protein 1C (FHL1C) (KyoT2 in mice) has been demonstrated to suppress Notch activation in vitro, suggesting that FHL1C may be new candidate target in T-ALL therapy. However, the role of FHL1C in T-ALL cells remained unclear.
Methods
Using RT-PCR, we amplified full-length human FHL1C, and constructed full-length and various truncated forms of FHL1C. Using cell transfection, flow cytometry, transmission electron microscope, real-time RT-PCR, and Western blotting, we found that overexpression of FHL1C induced apoptosis of Jurkat cells. By using a reporter assay and Annexin-V staining, the minimal functional sequence of FHL1C inhibiting RBP-J-mediated Notch transactivation and inducing cell apoptosis was identified. Using real-time PCR and Western blotting, we explored the possible molecular mechanism of FHL1C-induced apoptosis. All data were statistically analyzed with the SPSS version 12.0 software.
Results
In Jurkat cells derived from a Notch1-associated T-ALL cell line insensitive to GSI treatment, we observed that overexpression of FHL1C, which is down-regulated in T-ALL patients, strongly induced apoptosis. Furthermore, we verified that FHL1C-induced apoptosis depended on the RBP-J-binding motif at the C-terminus of FHL1C. Using various truncated forms of FHL1C, we found that the RBP-J-binding motif of FHL1C had almost the same effect as full-length FHL1C on the induction of apoptosis, suggesting that the minimal functional sequence in the RBP-J-binding motif of FHL1C might be a new drug candidate for T-ALL treatment. We also explored the molecular mechanism of FHL1C overexpression-induced apoptosis, which suppressed downstream target genes such as Hes1 and c-Myc and key signaling pathways such as PI3K/AKT and NF-κB of Notch signaling involved in T-ALL progression.
Conclusions
Our study has revealed that FHL1C overexpression induces Jurkat cell apoptosis. This finding may provide new insights in designing new Notch inhibitors based on FHL1C to treat T-ALL.
doi:10.1186/1471-2407-14-463
PMCID: PMC4077834  PMID: 24952875
T-cell acute lymphoblastic leukemia; Notch signaling; FHL1C; RBP-J; Apoptosis
30.  KIF2A silencing inhibits the proliferation and migration of breast cancer cells and correlates with unfavorable prognosis in breast cancer 
BMC Cancer  2014;14:461.
Background
Kinesin family member 2a (KIF2A), a type of motor protein found in eukaryotic cells, is associated with development and progression of various human cancers. The role of KIF2A during breast cancer tumorigenesis and progression was studied.
Methods
Immunohistochemical staining, real time RT-PCR and western blot were used to examine the expression of KIF2A in cancer tissues and adjacent normal tissues from breast cancer patients. Patients’ survival in relation to KIF2A expression was estimated using the Kaplan–Meier survival and multivariate analysis. Breast cancer cell line, MDA-MB-231 was used to study the proliferation, migration and invasion of cells following KIF2A-siRNA transfection.
Results
The expression of KIF2A in cancer tissues was higher than that in normal adjacent tissues from the same patient (P < 0.05). KIF2A expression in cancer tissue with lymph node metastasis and HER2 positive cancer were higher than that in cancer tissue without (P < 0.05). A negative correlation was found between KIF2A expression levels in breast cancer and the survival time of breast cancer patients (P < 0.05). In addition, multivariate analysis indicated that KIF2A was an independent prognostic for outcome in breast cancer (OR: 16.55, 95% CI: 2.216-123.631, P = 0.006). The proliferation, migration and invasion of cancer cells in vitro were suppressed by KIF2A gene silencing (P < 0.05).
Conclusions
KIF2A may play an important role in breast cancer progression and is potentially a novel predictive and prognostic marker for breast cancer.
doi:10.1186/1471-2407-14-461
PMCID: PMC4076253  PMID: 24950762
KIF2A; Breast cancer; Migration; Invasion; Survival; Marker
31.  Bortezomib and dexamethasone for multiple myeloma: higher AST and LDH levels associated with a worse prognosis on overall survival 
BMC Cancer  2014;14:462.
Background
Bortezomib offers a novel approach to the treatment of multiple myeloma producing rapid control. The aim of this study was to investigate the outcomes of bortezomib and dexamethasone-treated patients with multiple myeloma.
Methods
We conducted a retrospective study of 44 consecutively-treated multiple myeloma patients with bortezomib (1.3 mg/m2 on days 1, 4, 8, and 11 of a 21-day cycle or 1.3 mg/m2 intravenously 1, 8, 15, and 22 of every 35-day cycle) and dexamethasone.
Results
The median time to progression, progression free survival time, and overall survival time in the treatment groups was 14.9, 14.9, and 38.3 months, respectively. The present study also suggests the possibility that the prognosis of patients with high levels of AST and LDH might be worse.
Conclusions
Our results indicate that the treatment of multiple myeloma with bortezomib and dexamethasone is feasible.
doi:10.1186/1471-2407-14-462
PMCID: PMC4078016  PMID: 24952705
Bortezomib; Multiple myeloma; Prognosis
32.  Expression of integrin α3β1 and cyclooxygenase-2 (COX2) are positively correlated in human breast cancer 
BMC Cancer  2014;14:459.
Background
Expression of integrin α3β1 is associated with tumor progression, metastasis, and poor prognosis in several cancers, including breast cancer. Moreover, preclinical studies have revealed important pro-tumorigenic and pro-metastatic functions for this integrin, including tumor growth, survival, invasion, and paracrine induction of angiogenesis. Our previously published work in a preclinical breast cancer model showed that integrin α3β1 promotes expression of cyclooxygenase-2 (COX2/PTGS2), a known driver of breast cancer progression. However, the clinical significance of this regulation was unknown. The objective of the current study was to assess the clinical relevance of the relationship between integrin α3β1 and COX2 by testing for their correlated expression among various forms of human breast cancer.
Methods
Immunohistochemistry was performed to assess co-expression of α3 and COX2 in specimens of human invasive ductal carcinoma (IDC), either on a commercial tissue microarray (n = 59 samples) or obtained from Albany Medical Center archives (n = 68 samples). Immunostaining intensity for the integrin α3 subunit or COX2 was scored, and Spearman’s rank correlation coefficient analysis was performed to assess their co-expression across and within different tumor subtypes or clinicopathologic criteria.
Results
Although expression of integrin α3 or COX2 varied among clinical IDC samples, a statistically significant, positive correlation was detected between α3 and COX2 in both tissue microarrays (rs = 0.49, p < 0.001, n = 59) and archived samples (rs = 0.59, p < 0.0001, n = 68). In both sample sets, this correlation was independent of hormone receptor status, histological grade, or disease stage.
Conclusions
COX2 and α3 are correlated in IDC independently of hormone receptor status or other clinicopathologic features, supporting the hypothesis that integrin α3β1 is a determinant of COX2 expression in human breast cancer. These results support the clinical relevance of α3β1-dependent COX2 gene expression that we reported previously in breast cancer cells. The findings also suggest that COX2-positive breast carcinomas of various subtypes might be vulnerable to therapeutic strategies that target α3β1, and that α3 expression might serve as an independent prognostic biomarker.
doi:10.1186/1471-2407-14-459
PMCID: PMC4069347  PMID: 24950714
Integrin α3β1; COX2; PTGS2; Breast cancer; Invasive ductal carcinoma
33.  High efficiency of alphaviral gene transfer in combination with 5-fluorouracil in a mouse mammary tumor model 
BMC Cancer  2014;14:460.
Background
The combination of virotherapy and chemotherapy may enable efficient tumor regression that would be unachievable using either therapy alone. In this study, we investigated the efficiency of transgene delivery and the cytotoxic effects of alphaviral vector in combination with 5-fluorouracil (5-FU) in a mouse mammary tumor model (4 T1).
Methods
Replication-deficient Semliki Forest virus (SFV) vectors carrying genes encoding fluorescent proteins were used to infect 4 T1 cell cultures treated with different doses of 5-FU. The efficiency of infection was monitored via fluorescence microscopy and quantified by fluorometry. The cytotoxicity of the combined treatment with 5-FU and alphaviral vector was measured using an MTT-based cell viability assay. In vivo experiments were performed in a subcutaneous 4 T1 mouse mammary tumor model with different 5-FU doses and an SFV vector encoding firefly luciferase.
Results
Infection of 4 T1 cells with SFV prior to 5-FU treatment did not produce a synergistic anti-proliferative effect. An alternative treatment strategy, in which 5-FU was used prior to virus infection, strongly inhibited SFV expression. Nevertheless, in vivo experiments showed a significant enhancement in SFV-driven transgene (luciferase) expression upon intratumoral and intraperitoneal vector administration in 4 T1 tumor-bearing mice pretreated with 5-FU: here, we observed a positive correlation between 5-FU dose and the level of luciferase expression.
Conclusions
Although 5-FU inhibited SFV-mediated transgene expression in 4 T1 cells in vitro, application of the drug in a mouse model revealed a significant enhancement of intratumoral transgene synthesis compared with 5-FU untreated mice. These results may have implications for efficient transgene delivery and the development of potent cancer treatment strategies using alphaviral vectors and 5-FU.
doi:10.1186/1471-2407-14-460
PMCID: PMC4077127  PMID: 24950740
Semliki Forest virus; Cytotoxic effect; 5-fluorouracil; Combined cancer treatment; 4 T1 tumor
34.  Overexpression of prostate tumor overexpressed 1 correlates with tumor progression and predicts poor prognosis in breast cancer 
BMC Cancer  2014;14:457.
Background
Prostate tumor overexpressed 1 (PTOV1) was demonstrated to play an important role in cancer progression and was correlated with unfavorable clinical outcome. However, the clinical role of PTOV1 in cancer remains largely unknown. This study aimed to investigate the expression and clinicopathological significance of PTOV1 in breast cancer.
Methods
The mRNA and protein expression levels of PTOV1 were analyzed in 12 breast cancer cell lines and eight paired breast cancer tumors by semi-quantitative real time-PCR and western blotting, respectively. Immunohistochemistry was performed to assess PTOV1 protein expression in 169 paraffin-embedded, archived breast cancer samples. Survival analysis and Cox regression analysis were performed to investigate the clinicopathological significance of PTOV1 expression.
Results
Our data revealed that PTOV1 was frequently overexpressed in breast cancer cell lines compared to normal human breast epithelial cells and in primary breast cancer samples compared to adjacent noncancerous breast tissues, at both the mRNA and protein levels. Moreover, high expression of PTOV1 in breast cancer is strongly associated with clinicopathological characteristics and estrogen receptor expression status (P = 0.003). Breast cancer patients with higher PTOV1 expression had substantially shorter survival times than patients with lower PTOV1 expression (P < 0.001). Univariate and multivariate analysis revealed that PTOV1 might be an independent prognostic factor for breast cancer patients (P = 0.005).
Conclusions
Our study showed that PTOV1 is upregulated in breast cancer cell lines and clinical samples, and its expression was positively associated with progression and aggressiveness of breast cancer, suggesting that PTOV1 could serve as an independent prognostic marker.
doi:10.1186/1471-2407-14-457
PMCID: PMC4070404  PMID: 24947166
PTOV1; Breast cancer; Prognosis; Biomarker
35.  Single cell mutational analysis of PIK3CA in circulating tumor cells and metastases in breast cancer reveals heterogeneity, discordance, and mutation persistence in cultured disseminated tumor cells from bone marrow 
BMC Cancer  2014;14:456.
Background
Therapeutic decisions in cancer are generally guided by molecular biomarkers or, for some newer therapeutics, primary tumor genotype. However, because biomarkers or genotypes may change as new metastases emerge, circulating tumor cells (CTCs) from blood are being investigated for a role in guiding real-time drug selection during disease progression, expecting that CTCs will comprehensively represent the full spectrum of genomic changes in metastases. However, information is limited regarding mutational heterogeneity among CTCs and metastases in breast cancer as discerned by single cell analysis. The presence of disseminated tumor cells (DTCs) in bone marrow also carry prognostic significance in breast cancer, but with variability between CTC and DTC detection. Here we analyze a series of single tumor cells, CTCs, and DTCs for PIK3CA mutations and report CTC and corresponding metastatic genotypes.
Methods
We used the MagSweeper, an immunomagnetic separation device, to capture live single tumor cells from breast cancer patients’ primary and metastatic tissues, blood, and bone marrow. Single cells were screened for mutations in exons 9 and 20 of the PIK3CA gene. Captured DTCs grown in cell culture were also sequenced for PIK3CA mutations.
Results
Among 242 individual tumor cells isolated from 17 patients and tested for mutations, 48 mutated tumor cells were identified in three patients. Single cell analyses revealed mutational heterogeneity among CTCs and tumor cells in tissues. In a patient followed serially, there was mutational discordance between CTCs, DTCs, and metastases, and among CTCs isolated at different time points. DTCs from this patient propagated in vitro contained a PIK3CA mutation, which was maintained despite morphological changes during 21 days of cell culture.
Conclusions
Single cell analysis of CTCs can demonstrate genotypic heterogeneity, changes over time, and discordance from DTCs and distant metastases. We present a cautionary case showing that CTCs from any single blood draw do not always reflect metastatic genotype, and that CTC and DTC analyses may provide independent clinical information. Isolated DTCs remain viable and can be propagated in culture while maintaining their original mutational status, potentially serving as a future resource for investigating new drug therapies.
doi:10.1186/1471-2407-14-456
PMCID: PMC4071027  PMID: 24947048
Cancer cell culture; Circulating tumor cells (CTCs); Disseminated tumor cells (DTCs); Heterogeneity; Mutation analysis; PIK3CA; Single cell analysis
36.  18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals derived from a single-institution 18F-FDG-directed surgery experience: feasibility and quantification of 18F-FDG accumulation within 18F-FDG-avid lesions and background tissues 
BMC Cancer  2014;14:453.
Background
18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is a well-established imaging modality for a wide variety of solid malignancies. Currently, only limited data exists regarding the utility of PET/CT imaging at very extended injection-to-scan acquisition times. The current retrospective data analysis assessed the feasibility and quantification of diagnostic 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals.
Methods
18F-FDG-avid lesions (not surgically manipulated or altered during 18F-FDG-directed surgery, and visualized both on preoperative and postoperative 18F-FDG PET/CT imaging) and corresponding background tissues were assessed for 18F-FDG accumulation on same-day preoperative and postoperative 18F-FDG PET/CT imaging. Multiple patient variables and 18F-FDG-avid lesion variables were examined.
Results
For the 32 18F-FDG-avid lesions making up the final 18F-FDG-avid lesion data set (from among 7 patients), the mean injection-to-scan times of the preoperative and postoperative 18F-FDG PET/CT scans were 73 (±3, 70-78) and 530 (±79, 413-739) minutes, respectively (P < 0.001). The preoperative and postoperative mean 18F-FDG-avid lesion SUVmax values were 7.7 (±4.0, 3.6-19.5) and 11.3 (±6.0, 4.1-29.2), respectively (P < 0.001). The preoperative and postoperative mean background SUVmax values were 2.3 (±0.6, 1.0-3.2) and 2.1 (±0.6, 1.0-3.3), respectively (P = 0.017). The preoperative and postoperative mean lesion-to-background SUVmax ratios were 3.7 (±2.3, 1.5-9.8) and 5.8 (±3.6, 1.6-16.2), respectively, (P < 0.001).
Conclusions
18F-FDG PET/CT oncologic imaging can be successfully performed at extended injection-to-scan acquisition time intervals of up to approximately 5 half-lives for 18F-FDG while maintaining good/adequate diagnostic image quality. The resultant increase in the 18F-FDG-avid lesion SUVmax values, decreased background SUVmax values, and increased lesion-to-background SUVmax ratios seen from preoperative to postoperative 18F-FDG PET/CT imaging have great potential for allowing for the integrated, real-time use of 18F-FDG PET/CT imaging in conjunction with 18F-FDG-directed interventional radiology biopsy and ablation procedures and 18F-FDG-directed surgical procedures, as well as have far-reaching impact on potentially re-shaping future thinking regarding the “most optimal” injection-to-scan acquisition time interval for all routine diagnostic 18F-FDG PET/CT oncologic imaging.
doi:10.1186/1471-2407-14-453
PMCID: PMC4075626  PMID: 24942656
18F-FDG; PET/CT; SUVmax; Injection-to-scan acquisition time; Delayed imaging; Lesion-to-background ratio; Tumor-to-background ratio; 18F-FDG-directed surgery; Real-time; Oncologic
37.  Establishment of a novel clear cell sarcoma cell line (Hewga-CCS), and investigation of the antitumor effects of pazopanib on Hewga-CCS 
BMC Cancer  2014;14:455.
Background
Clear cell sarcoma (CCS) is a therapeutically unresolved, aggressive, soft tissue sarcoma (STS) that predominantly affects young adults. This sarcoma is defined by t(12;22)(q13;q12) translocation, which leads to the fusion of Ewing sarcoma gene (EWS) to activating transcription factor 1 (ATF1) gene, producing a chimeric EWS-ATF1 fusion gene. We established a novel CCS cell line called Hewga-CCS and developed an orthotopic tumor xenograft model to enable comprehensive bench-side investigation for intensive basic and preclinical research in CCS with a paucity of experimental cell lines.
Methods
Hewga-CCS was derived from skin metastatic lesions of a CCS developed in a 34-year-old female. The karyotype and chimeric transcript were analyzed. Xenografts were established and characterized by morphology and immunohistochemical reactivity. Subsequently, the antitumor effects of pazopanib, a recently approved, novel, multitargeted, tyrosine kinase inhibitor (TKI) used for the treatment of advanced soft tissue sarcoma, on Hewga-CCS were assessed in vitro and in vivo.
Results
Hewga-CCS harbored the type 2 EWS-ATF1 transcript. Xenografts morphologically mimicked the primary tumor and expressed S-100 protein and antigens associated with melanin synthesis (Melan-A, HMB45). Pazopanib suppressed the growth of Hewga-CCS both in vivo and in vitro. A phospho-receptor tyrosine kinase array revealed phosphorylation of c-MET, but not of VEGFR, in Hewga-CCS. Subsequent experiments showed that pazopanib exerted antitumor effects through the inhibition of HGF/c-MET signaling.
Conclusions
CCS is a rare, devastating disease, and our established CCS cell line and xenograft model may be a useful tool for further in-depth investigation and understanding of the drug-sensitivity mechanism.
doi:10.1186/1471-2407-14-455
PMCID: PMC4076438  PMID: 24946937
Clear cell sarcoma; Cell line; Xenograft; Pazopanib; HGF; cMET
38.  A grey literature review of special events for promoting cancer screenings 
BMC Cancer  2014;14:454.
Background
Cancer remains the second leading cause of mortality in the United States. Special events such as health fairs, screening days or cultural festivals are employed often for community education about cancer screening. A previous systematic review of the published literature was conducted in 2012-2013. The purpose of this study was to conduct a grey literature component of special events that promote breast, cervical and colorectal cancer screening in the U.S.
Methods
We conducted a grey literature search of dissertations/theses and conference abstracts. The theses/dissertations were restricted to those: 1) written in English, 2) published from January 1990 to December 2011, 3) examined at least one of the predefined categories of special events, 4) involved cancer screening for breast, cervical, and/or colorectal cancer, 5) included outcome data, and 6) conducted in the United States. A review of U.S. public health and cancer conference abstracts, that were readily available and had focused on at least of 3 cancer types and included outcome data, was conducted. Data were abstracted on the purpose, location, primary audience(s), activities conducted, screening provided onsite or referrals, and evaluation results.
Results
The grey literature review found 6 special events. The types of events found added to the numbers found in the systematic review, especially receptions or parties and cultural festivals/events. All focused on increasing breast and cervical cancer screening except one that focused on breast cancer only. The reach of these events was targeted at mostly minorities or underserved communities. Common evidence-based strategies were group education, small media, and reducing structural barriers. Group education involved presentations from physicians, lay-health advisors, or cancer survivors, while reducing structural barriers included activities such as providing screening appointment sign-ups at the event or providing transportation for event participants. Mammogram screening rates ranged from 6.8% to 60% and Pap tests from 52% to 70%.
Conclusions
Further evaluation of special events to promote cancer screening will prove their effectiveness. A grey literature review can augment a systematic review of published literature. Additional data about these events through the grey literature offered additional insights into the goals, intervention components and outcomes of interventions.
doi:10.1186/1471-2407-14-454
PMCID: PMC4082274  PMID: 24942822
Cancer screening; Community awareness; Cancer education; Breast cancer; Colorectal cancer; Cervical cancer
39.  Human papillomavirus detection in women with and without human immunodeficiency virus infection in Colombia 
BMC Cancer  2014;14:451.
Background
HIV infection leads to a decreasing immune response, thereby facilitating the appearance of other infections, one of the most important ones being HPV. However, studies are needed for determining associations between immunodeficiency caused by HIV and/or the presence of HPV during the course of cervical lesions and their degree of malignancy. This study describes the cytological findings revealed by the Papanicolaou test, laboratory characteristics and HPV molecular profile in women with and without HIV infection.
Methods
A total of 216 HIV-positive and 1,159 HIV-negative women were invited to participate in the study; PCR was used for the molecular detection of HPV in cervical samples. Statistical analysis (such as percentages, Chi-square test and Fisher’s exact test when applicable) determined human papillomavirus (HPV) infection frequency (single and multiple) and the distribution of six types of high-risk-HPV in women with and without HIV infection. Likewise, a logistic regression model was run to evaluate the relationship between HIV-HPV infection and different risk factors.
Results
An association was found between the frequency of HPV infection and infection involving 2 or more HPV types (also known as multiple HPV infection) in HIV-positive women (69.0% and 54.2%, respectively); such frequency was greater than that found in HIV-negative women (44.3% and 22.7%, respectively). Statistically significant differences were observed between both groups (p = 0.001) regarding HPV presence (both in infection and multiple HPV infection). HPV-16 was the most prevalent type in the population being studied (p = 0.001); other viral types had variable distribution in both groups (HIV-positive and HIV-negative). HPV detection was associated with <500 cell/mm3 CD4-count (p = 0.004) and higher HIV-viral-load (p = 0.001). HPV-DNA detection, <200 cell/mm3 CD4-count (p = 0.001), and higher HIV-viral-load (p = 0.001) were associated with abnormal cytological findings.
Conclusions
The HIV-1 positive population in this study had high multiple HPV infection prevalence. The results for this population group also suggested a greater association between HPV-DNA presence and cytological findings. HPV detection, together with low CD4 count, could represent useful tools for identifying HIV-positive women at risk of developing cervical lesions.
doi:10.1186/1471-2407-14-451
PMCID: PMC4067500  PMID: 24942545
Human papillomavirus; Human immunodeficiency virus; Multiple infection; Papanicolaou test; Epidemiology
40.  The genetic basis for inactivation of Wnt pathway in human osteosarcoma 
BMC Cancer  2014;14:450.
Background
Osteosarcoma is a highly genetically unstable tumor with poor prognosis. We performed microarray-based comparative genomic hybridization (aCGH), transcriptome sequencing (RNA-seq), and pathway analysis to gain a systemic view of the pathway alterations of osteosarcoma.
Methods
aCGH experiments were carried out on 10 fresh osteosarcoma samples. The output data (Gene Expression Omnibus Series accession number GSE19180) were pooled with published aCGH raw data (GSE9654) to determine recurrent copy number changes. These were analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis to identify altered pathways in osteosarcoma. Transcriptome sequencing of six osteosarcomas was performed to detect the expression profile of Wnt signaling pathway genes. Protein expression of WNT1, β-catenin, c-myc, and cyclin D1 in the Wnt pathway was detected by immunohistochemistry (IHC) in an independent group of 46 osteosarcoma samples.
Results
KEGG pathway analysis identified frequent deletions of Wnt and other Wnt signaling pathway genes. At the mRNA level, transcriptome sequencing found reduced levels of mRNA expression of Wnt signaling pathway transcripts. While WNT1 protein expression was detected by IHC in 69.6% (32/46) of the osteosarcomas, no β-catenin protein was detected in the nucleus. β-catenin protein expression was, however, detected in the membrane and cytoplasm of 69.6% (32/46) of the osteosarcomas. c-myc protein expression was detected in only 47.8% (22/46) and cyclin D1 protein expression in 52.2% (24/46) of osteosarcoma samples. Kaplan-Meier survival analysis showed that WNT1-negative patients had a trend towards longer disease free survival than WNT1-positive patients. Interestingly, in WNT1-negative patients, those who were also cyclin D1-negative had significantly longer disease free survival than cyclin D1-positive patients. However, there was no significant association between any of the investigated proteins and overall survival of human osteosarcoma patients.
Conclusions
Frequent deletions of Wnt and other Wnt signaling pathway genes suggest that the Wnt signaling pathway is genetically inactivated in human osteosarcoma.
doi:10.1186/1471-2407-14-450
PMCID: PMC4074405  PMID: 24942472
Osteosarcoma; Wnt signal pathway; Genetic aberration; Microarray-based comparative genomic hybridization
41.  The bacterial protein toxin, cytotoxic necrotizing factor 1 (CNF1) provides long-term survival in a murine glioma model 
BMC Cancer  2014;14:449.
Background
Glioblastomas are largely unresponsive to all available treatments and there is therefore an urgent need for novel therapeutics. Here we have probed the antineoplastic effects of a bacterial protein toxin, the cytotoxic necrotizing factor 1 (CNF1), in the syngenic GL261 glioma cell model. CNF1 produces a long-lasting activation of Rho GTPases, with consequent blockade of cytodieresis in proliferating cells and promotion of neuron health and plasticity.
Methods
We have tested the antiproliferative effects of CNF1 on GL261 cells and human glioma cells obtained from surgical specimens. For the in vivo experiments, we injected GL261 cells into the adult mouse visual cortex, and five days later we administered either a single intracerebral dose of CNF1 or vehicle. To compare CNF1 with a canonical antitumoral drug, we infused temozolomide (TMZ) via minipumps for 1 week in an additional animal group.
Results
In culture, CNF1 was very effective in blocking proliferation of GL261 cells, leading them to multinucleation, senescence and death within 15 days. CNF1 had a similar cytotoxic effect in primary human glioma cells. CNF1 also inhibited motility of GL261 cells in a scratch-wound migration assay. Low dose (2 nM) CNF1 and continuous TMZ infusion significantly prolonged animal survival (median survival 35 days vs. 28 days in vehicle controls). Remarkably, increasing CNF1 concentration to 80 nM resulted in a dramatic enhancement of survival with no obvious toxicity. Indeed, 57% of the CNF1-treated animals survived up to 60 days following GL261 glioma cell transplant.
Conclusions
The activation of Rho GTPases by CNF1 represents a novel potential therapeutic strategy for the treatment of central nervous system tumors.
doi:10.1186/1471-2407-14-449
PMCID: PMC4075618  PMID: 24939046
Glioma; Mouse; Cerebral cortex; CNF1; Temozolomide
42.  Oncogenic MicroRNAs: miR-155, miR-19a, miR-181b, and miR-24 enable monitoring of early breast cancer in serum 
BMC Cancer  2014;14:448.
Background
MicroRNAs (miRs) represent a distinct class of posttranscriptional modulators of gene expression with remarkable stability in sera. Several miRs are oncogenic (oncomiRs) and are deregulated in the pathogenesis of breast cancer and function to inhibit tumor suppressors. Routine blood monitoring of these circulating tumor-derived products could be of significant benefit to the diagnosis and relapse detection of early-stage breast cancer (EBC) patients.
Methods
Aim of this project was to determine expression of miR-155, miR-19a, miR-181b, miR-24, relative to let-7a in sera of 63 patients with EBC and 21 healthy controls. Longitudinal multivariate data analysis was performed to stochastically model the serum levels of each of the oncomiRs during disease phases: from diagnosis, after surgery, and following chemo/radiotherapy. Moreover, this analysis was utilized to evaluate oncomiR levels in EBC patients subgrouped using current clinical prognostic factors including HER2, Ki-67, and grade III.
Results
EBC patients significantly over-express the oncomiRs at the time of diagnosis. Following surgical resection the serum levels of miR-155, miR-181b, and miR-24 significantly decreased (p = 1.89e-05, 5.41e-06, and 0.00638, respectively) whereas the miR-19a decreased significantly after the therapy (p = 0.00869). Furthermore, in case of high-risk patients serum levels of miR-155, miR-19a, miR-181b, and miR-24 are significantly more abundant in comparison to low-risk group (p = 0.026, 0.02567, 0.0250, and 0.00990) and show a decreasing trend upon therapy.
Conclusions
OncomiRs are significantly more abundant in the sera of EBC patients compared to controls at diagnosis. Differences in oncomiR levels reflecting EBC risk were also observed. Testing the oncomiRs may be useful for diagnostic purpose and possibly also for relapse detection in follow-up studies of EBC.
doi:10.1186/1471-2407-14-448
PMCID: PMC4075993  PMID: 24938880
Breast cancer; microRNA; miR-155; miR-19a; miR-181b; miR-24; Let-7a
43.  Circulating anti-filamin C autoantibody as a potential serum biomarker for low-grade gliomas 
BMC Cancer  2014;14:452.
Background
Glioma is the most common primary malignant central nervous system tumor in adult, and is usually not curable due to its invasive nature. Establishment of serum biomarkers for glioma would be beneficial both for early diagnosis and adequate therapeutic intervention. Filamins are an actin cross-linker and filamin C (FLNC), normally restricted in muscle tissues, offers many signaling molecules an essential communication fields. Recently, filamins have been considered important for tumorigenesis in cancers.
Methods
We searched for novel glioma-associated antigens by serological identification of antigens utilizing recombinant cDNA expression cloning (SEREX), and found FLNC as a candidate protein. Tissue expressions of FLNC (both in normal and tumor tissues) were examined by immunohistochemistry and quantitative RT-PCR analyses. Serum anti-FLNC autoantibody level was measured by ELISA in normal volunteers and in the patients with various grade gliomas.
Results
FLNC was expressed in glioma tissues and its level got higher as tumor grade advanced. Anti-FLNC autoantibody was also detected in the serum of glioma patients, but its levels were inversely correlated with the tissue expression. Serum anti-FLNC autoantibody level was significantly higher in low-grade glioma patients than in high-grade glioma patients or in normal volunteers, which was confirmed in an independent validation set of patients’ sera. The autoantibody levels in the patients with meningioma or cerebral infarction were at the same level of normal volunteers, and they were significantly lower than that of low-grade gliomas. Total IgG and anti-glutatione S-transferase (GST) antibody level were not altered among the patient groups, which suggest that the autoantibody response was specific for FLNC.
Conclusions
The present results suggest that serum anti-FLNC autoantibody can be a potential serum biomarker for early diagnosis of low-grade gliomas while it needs a large-scale clinical study.
doi:10.1186/1471-2407-14-452
PMCID: PMC4094678  PMID: 24946857
Glioma; Filamin C; FLNC; Biomarker; Early diagnosis
44.  ALDH1A1 expression correlates with clinicopathologic features and poor prognosis of breast cancer patients: a systematic review and meta-analysis 
BMC Cancer  2014;14:444.
Background
Aldehyde dehydrogenase 1 family member A1 (ALDH1A1) has been identified as a putative cancer stem cell (CSC) marker in breast cancer. However, the clinicopathological and prognostic significance of this protein in breast cancer patients remains controversial.
Methods
This meta-analysis was conducted to address the above issues using 15 publications covering 921 ALDH1A1+ cases and 2353 controls. The overall and subcategory analyses were performed to detect the association between ALDH1A1 expression and clinicopathological/prognostic parameters in breast cancer patients.
Results
The overall analysis showed that higher expression of ALDH1A1 is associated with larger tumor size, higher histological grade, greater possibility of lymph node metastasis (LNM), higher level expression of epidermal growth factor receptor 2 (HER2), and lower level expression of estrogen receptor (ER)/progesterone receptor (PR). The prognosis of breast cancer patients with ALDH1A1+ tumors was poorer than that of the ALDH1A1- patients. Although the relationships between ALDH1A1 expression and some clinicopathological parameters (tumor size, LNM, and the expression of HER2) was not definitive to some degree when we performed a subcategory analysis, the predictive values of ALDH1A1 expression for histological grade and survival of breast cancer patients were significant regardless of the different cutoff values of ALDH1A1 expression, the different districts where the patients were located, the different clinical stages of the patients, the difference in antibodies used in the studies, and the surgery status.
Conclusions
Our results indicate that ALDH1A1 is a biomarker to predict tumor progression and poor survival of breast cancer patients. This marker should be taken into consideration in the development of new diagnostic and therapeutic program for breast cancer.
doi:10.1186/1471-2407-14-444
PMCID: PMC4070403  PMID: 24938375
Breast cancer; Mammary cancer; Cancer stem cell; Aldehyde dehydrogenase 1 family member A1; Prognosis
45.  Characteristics, survival, and related factors of newly diagnosed colorectal cancer patients refusing cancer treatments under a universal health insurance program 
BMC Cancer  2014;14:446.
Background
Colorectal cancer is the third most commonly diagnosed cancer worldwide. Few studies have addressed the causes and risks of treatment refusal in a universal health insurance setting.
Methods
We examined the characteristics and survival associated with treatment refusal in patients with newly diagnosed colorectal cancer in Taiwan during 2004–2008. Treatment refusal was defined as not undergoing any cancer treatment within 4 months of confirmed cancer diagnosis. Patient data were extracted from four national databases. Factors associated with treatment refusal were identified through logistic regression using the generalized estimating equation method, and survival analysis was performed using the Cox proportional hazards model.
Results
Of the 41,340 new colorectal cancer cases diagnosed, 3,612 patients (8.74%) refused treatment. Treatment refusal rate was higher in patients with less urbanized areas of residence, lower incomes, preexisting catastrophic illnesses, cancer stages of 0 and IV, and diagnoses at regional and district hospitals. Logistic regression analysis revealed that patients aged >75 years were the most likely to refuse treatment (OR, 1.87); patients with catastrophic illnesses (OR, 1.66) and stage IV cancer (OR, 1.43) had significantly higher refusal rates. The treatment refusers had 2.66 times the risk of death of those who received treatment. Factors associated with an increased risk of death in refusers included age ≥75 years, insured monthly salary ≥22,801 NTD, low-income household or aboriginal status, and advanced cancer stage (especially stage IV; HR, 11.33).
Conclusion
Our results show a lower 5-year survival for colorectal patients who refused treatment than for those who underwent treatment within 4 months. An age of 75 years or older, low-income household status, advanced stages of cancer, especially stage IV, were associated with higher risks of death for those who refused treatment.
doi:10.1186/1471-2407-14-446
PMCID: PMC4072493  PMID: 24938667
Colorectal cancer; Refusing treatment; Survival; Universal health insurance program
46.  Colon and rectal cancer incidence and water trihalomethane concentrations in New South Wales, Australia 
BMC Cancer  2014;14:445.
Background
There is evidence, although inconsistent, that long term exposure to disinfection by products (DBPs) increases the risk of bowel cancer. No study has been conducted in Australia to examine this association and due to difference in the methods of disinfection the risk can vary across geographical regions and. This study was conducted to analyse the association of trihalomethanes (THMs) in water with colon and rectal cancer in NSW Australia.
Methods
Average yearly concentrations of total and individual species of THMs were obtained for 50 local government areas (LGAs). Indirectly-standardized incidence rates of colon and rectal cancers in LGAs for the period 1995 to 2001 were regressed against mean THM concentrations lagged five years, adjusting for socioeconomic status, high risk drinking, smoking status, usual source of water and year of diagnosis, including local and global random effects within a Bayesian framework. The incidence rate ratios (IRRs) for an interquartile range (IQR) increase in THMs were estimated.
Results
Using five year lag of exposure there was a positive association between bromoform concentration and CRC in men (IRR = 1.025, 95% CI 1.010, 1.040) but not in women (IRR = 1.003, 95% CI 0.987, 1.018). The association in men was mainly found in colon cancer with bromoform (IRR = 1.035, 95% CI 1.017, 1.053). There was no appreciable association of colorectal cancer with other species of THMs. Sensitivity analyses did not materially change the associations observed.
Conclusion
A positive association was observed between colon cancer and water bromoform concentrations in men. Given the potential population impact of such an association, further research into the relationship between THMs, particularly brominated species, and colorectal cancer is warranted.
doi:10.1186/1471-2407-14-445
PMCID: PMC4088985  PMID: 24938491
Cancer; Colon; Rectal; Disinfection by-products; Chlorination; Ecological studies
47.  Src-homology 2 domain-containing tyrosine phosphatase 2 promotes oral cancer invasion and metastasis 
BMC Cancer  2014;14:442.
Background
Tumor invasion and metastasis represent a major unsolved problem in cancer pathogenesis. Recent studies have indicated the involvement of Src-homology 2 domain-containing tyrosine phosphatase 2 (SHP2) in multiple malignancies; however, the role of SHP2 in oral cancer progression has yet to be elucidated. We propose that SHP2 is involved in the progression of oral cancer toward metastasis.
Methods
SHP2 expression was evaluated in paired oral cancer tissues by using immunohistochemical staining and real-time reverse transcription polymerase chain reaction. Isogenic highly invasive oral cancer cell lines from their respective low invasive parental lines were established using a Boyden chamber assay, and changes in the hallmarks of the epithelial-mesenchymal transition (EMT) were assessed to evaluate SHP2 function. SHP2 activity in oral cancer cells was reduced using si-RNA knockdown or enforced expression of a catalytically deficient mutant to analyze migratory and invasive ability in vitro and metastasis toward the lung in mice in vivo.
Results
We observed the significant upregulation of SHP2 in oral cancer tissues and cell lines. Following SHP2 knockdown, the oral cancer cells markedly attenuated migratory and invasion ability. We observed similar results in phosphatase-dead SHP2 C459S mutant expressing cells. Enhanced invasiveness was associated with significant upregulation of E-cadherin, vimentin, Snail/Twist1, and matrix metalloproteinase-2 in the highly invasive clones. In addition, we determined that SHP2 activity is required for the downregulation of phosphorylated ERK1/2, which modulates the downstream effectors, Snail and Twist1 at a transcript level. In lung tissue sections of mice, we observed that HSC3 tumors with SHP2 deletion exhibited significantly reduced metastatic capacity, compared with tumors administered control si-RNA.
Conclusions
Our data suggest that SHP2 promotes the invasion and metastasis of oral cancer cells. These results provide a rationale for further investigating the effects of small-molecule SHP2 inhibitors on the progression of oral cancer, and indicate a previously unrecognized SHP2-ERK1/2-Snail/Twist1 pathway that is likely to play a crucial role in oral cancer invasion and metastasis.
doi:10.1186/1471-2407-14-442
PMCID: PMC4067087  PMID: 24931737
Extracellular signal-related kinase; Invasion; Metastasis; Oral cancer; Src-homology 2 domain-containing tyrosine phosphatase 2
48.  MicroRNA-26a regulates glucose metabolism by direct targeting PDHX in colorectal cancer cells 
BMC Cancer  2014;14:443.
Background
Reprogramming energy metabolism has been an emerging hallmark of cancer cells. MicroRNAs play important roles in glucose metabolism.
Methods
The targets of microRNA-26a (miR-26a) were predicted by bioinformatics tools. The efficacy of miR-26a binding the 3′-untranslated region (UTR) of pyruvate dehydrogenase protein X component (PDHX) mRNA was evaluated using a dual-luciferase reporter assay. The PDHX expression at the mRNA and protein level in several colon cancer cell lines was quantified with real-time PCR and Western blot analysis respectively. The effects of miR-26a on glucose metabolism were determined by detecting the content of glucose consumption, production of lactate, pyruvate, and acetyl-coenzyme A.
Results
The expression of miR-26a is inversely associated with the level of its targeting protein PDHX in several colon cancer cell lines with different malignancy potentials. MiR-26a inhibits PDHX expression by direct targeting the 3′-UTR of PDHX mRNA. The glucose consumption and lactate concentration were both greatly increased in colon cancer cells than the normal colon mucosal epithelia under physiological conditions. The overexpression of miR-26a in HCT116 cells efficiently improved the accumulation of pyruvate and decreased the production of acetyl coenzyme A. Meanwhile the inhibition of miR-26a expression induced inverse biological effects.
Conclusions
MiR-26a regulates glucose metabolism of colorectal cancer cells by direct targeting the PDHX, which inhibits the conversion of pyruvate to acetyl coenzyme A in the citric acid cycle.
doi:10.1186/1471-2407-14-443
PMCID: PMC4071217  PMID: 24935220
MicroRNA-26a; PDHX; Colorectal cancer; Glucose metabolism
49.  Diagnosed hematological malignancies in Bangladesh - a retrospective analysis of over 5000 cases from 10 specialized hospitals 
BMC Cancer  2014;14:438.
Background
The global burden from cancer is rising, especially as low-income countries like Bangladesh observe rapid aging. So far, there are no comprehensive descriptions reporting diagnosed cancer group that include hematological malignancies in Bangladesh.
Methods
This was a multi-center hospital-based retrospective descriptive study of over 5000 confirmed hematological cancer cases in between January 2008 to December 2012. Morphological typing was carried out using the “French American British” classification system.
Results
A total of 5013 patients aged between 2 to 90 years had been diagnosed with malignant hematological disorders. A 69.2% were males (n = 3468) and 30.8% females (n = 1545), with a male to female ratio of 2.2:1. The overall median age at diagnosis was 42 years. Acute myeloid leukemia was most frequent (28.3%) with a median age of 35 years, followed by chronic myeloid leukemia with 18.2% (median age 40 years), non-Hodgkin lymphoma (16.9%; median age 48 years), acute lymphoblastic leukemia (14.1%; median age 27 years), multiple myeloma (10.5%; median age 55 years), myelodysplastic syndromes (4.5%; median age 57 years) and Hodgkin’s lymphoma (3.9%; median age 36 years). The least common was chronic lymphocytic leukemia (3.7%; median age 60 years). Below the age of 20 years, acute lymphoblastic leukemia was predominant (37.3%), followed by acute myeloid leukemia (34%). Chronic lymphocytic leukemia and multiple myeloma had mostly occurred among older patients, aged 50-over.
Conclusions
For the first time, our study presents the pattern and distribution of diagnosed hematological cancers in Bangladesh. It shows differences in population distributions as compared to other settings with possibly a lower presence of non-Hodgkin lymphoma. There might be under-reporting of affected women. Further studies are necessary on the epidemiology, genetics and potential environmental risk factors within this rapidly aging country.
doi:10.1186/1471-2407-14-438
PMCID: PMC4063230  PMID: 24929433
AML; CML; ALL; MDS; NHL; HL; MM; Hematological malignancy; Bangladesh
50.  MiR-205 inhibits cell apoptosis by targeting phosphatase and tensin homolog deleted on chromosome ten in endometrial cancer ishikawa cells 
BMC Cancer  2014;14:440.
Background
MicroRNAs (miRNAs) are frequently dysregulated in human cancers and can act as either potent oncogenes or tumor suppressor genes. In the present study, we intend to prove that the gene PTEN (phosphatase and tensin homolog deleted on chromosome ten) is a target gene of miR-205 and to investigate the suppressive effects on PTEN transcriptional activity by enhancing miR-205 expression in endometrial cancer Ishikawa cells.
Methods
Using Ishikawa cells as model systems, we up-regulated miR-205 expression by transient transfection with miR-205 mimics. A luciferase reporter assay, qRT-PCR and western blotting assays were used to verify whether PTEN is a direct target of miR-205. Meanwhile, the modulatory role of miR-205 in the AKT (protein kinase B) pathway was evaluated by determining the AKT phosphorylation. As a biological counterpart, we investigated cell apoptosis using flow cytometry.
Results
Our data indicate that miR-205 down-regulates the expression of PTEN through direct interaction with the putative binding site in the 3′-untranslated region (3′-UTR) of PTEN. Moreover, we documented the functional interactions of miR-205 and PTEN, which have a downstream effect on the regulation of the AKT pathway, explaining, at least in part, the inhibitory effects on Ishikawa cell apoptosis of enhancing miR-205 expression.
Conclusions
For the first time, we demonstrate that the expression of PTEN is directly regulated by miR-205 in endometrial cancer cells and leads the inhibition of cellular apoptosis. This relationship could be targeted for new therapeutic strategies for endometrial cancer.
doi:10.1186/1471-2407-14-440
PMCID: PMC4073515  PMID: 24929707
Endometrial cancer; microRNA; PTEN; AKT pathway

Results 26-50 (4720)