Search tips
Search criteria

Results 26-50 (1059)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
26.  In Utero Exposure to Second-Hand Smoke Aggravates the Response to Ovalbumin in Adult Mice 
Second-hand smoke (SHS) exposure in utero exacerbates adult responses to environmental irritants. We tested the hypothesis that effects of in utero SHS exposure on modulating physiological and transcriptome responses in BALB/c mouse lungs after ovalbumin (OVA) challenge extend well into adulthood, and that the responses show a sex bias. We exposed BALB/c mice in utero to SHS or filtered air (AIR), then sensitized and challenged all offspring with OVA from 19 to 23 weeks of age. At the end of the adult OVA challenge, we evaluated pulmonary function, examined histopathology, analyzed bronchoalveolar lavage fluid (BALF), and assessed gene expression changes in the lung samples. All groups exhibited lung inflammation and inflammatory cell infiltration. Pulmonary function testing (airway hyperresponsiveness [AHR], breathing frequency [f]) and BALF (cell differentials, Th1/Th2 cytokines) assessments showed significantly more pronounced lung responses in the SHS-OVA groups than in AIR-OVA groups (AHR, f; eosinophils, neutrophils; IFN-γ, IL-1b, IL-4, IL-5, IL-10, IL-13, KC/CXCL1, TNF-α), with the majority of responses being more pronounced in males than in females. SHS exposure in utero also significantly altered lung gene expression profiles, primarily of genes associated with inflammatory responses and respiratory diseases, including lung cancer and lung fibrosis. Altered expression profiles of chemokines (Cxcl2, Cxcl5, Ccl8, Ccl24), cytokines (Il1b, Il6, Il13) and acute phase response genes (Saa1, Saa3) were confirmed by qRT-PCR. In conclusion, in utero exposure to SHS exacerbates adult lung responses to OVA challenge and promotes a pro-asthmatic milieu in adult lungs; further, males are generally more affected by SHS-OVA than are females.
PMCID: PMC3931120  PMID: 23898987
second-hand smoke; in utero exposure; mouse asthma model; inflammation; gene regulation
27.  Sirtuin 3 Deficiency Does Not Augment Hypoxia-Induced Pulmonary Hypertension 
Alveolar hypoxia elicits increases in mitochondrial reactive oxygen species (ROS) signaling in pulmonary arterial (PA) smooth muscle cells (PASMCs), triggering hypoxic pulmonary vasoconstriction. Mice deficient in sirtuin (Sirt) 3, a nicotinamide adenine dinucleotide–dependent mitochondrial deacetylase, demonstrate enhanced left ventricular hypertrophy after aortic banding, whereas cells from these mice reportedly exhibit augmented hypoxia-induced ROS signaling and hypoxia-inducible factor (HIF)-1 activation. We therefore tested whether deletion of Sirt3 would augment hypoxia-induced ROS signaling in PASMCs, thereby exacerbating the development of pulmonary hypertension (PH) and right ventricular hypertrophy. In PASMCs from Sirt3 knockout (Sirt3−/−) mice in the C57BL/6 background, we observed that acute hypoxia (1.5% O2; 30 min)–induced changes in ROS signaling, detected using targeted redox-sensitive, ratiometric fluorescent protein sensors (roGFP) in the mitochondrial matrix, intermembrane space, and the cytosol, were indistinguishable from Sirt3+/+ cells. Acute hypoxia–induced cytosolic calcium signaling in Sirt3−/− PASMCs was also indistinguishable from Sirt3+/+ cells. During sustained hypoxia (1.5% O2; 16 h), Sirt3 deletion augmented mitochondrial matrix oxidant stress, but this did not correspond to an augmentation of intermembrane space or cytosolic oxidant signaling. Sirt3 deletion did not affect HIF-1α stabilization under normoxia, nor did it augment HIF-1α stabilization during sustained hypoxia (1.5% O2; 4 h). Sirt3−/− mice housed in chronic hypoxia (10% O2; 30 d) developed PH, PA wall remodeling, and right ventricular hypertrophy that was indistinguishable from Sirt3+/+ littermates. Thus, Sirt3 deletion does not augment hypoxia-induced ROS signaling or its consequences in the cytosol of PASMCs, or the development of PH. These findings suggest that Sirt3 responses may be cell type specific, or restricted to certain genetic backgrounds.
PMCID: PMC3931121  PMID: 24047466
sirtuins; hypoxia-inducible factor-1; reactive oxygen species; redox-sensitive, ratiometric fluorescent protein sensor; hypoxic pulmonary vasoconstriction
28.  IL-17A Mediates a Selective Gene Expression Profile in Asthmatic Human Airway Smooth Muscle Cells 
Airway smooth muscle (ASM) cells are thought to contribute to the pathogenesis of allergic asthma by orchestrating and perpetuating airway inflammation and remodeling responses. In this study, we evaluated the IL-17RA signal transduction and gene expression profile in ASM cells from subjects with mild asthma and healthy individuals. Human primary ASM cells were treated with IL-17A and probed by the Affymetrix GeneChip array, and gene targets were validated by real-time quantitative RT-PCR. Genomic analysis underlined the proinflammatory nature of IL-17A, as multiple NF-κB regulatory factors and chemokines were induced in ASM cells. Transcriptional regulators consisting of primary response genes were overrepresented and displayed dynamic expression profiles. IL-17A poorly enhanced IL-1β or IL-22 gene responses in ASM cells from both subjects with mild asthma and healthy donors. Interestingly, protein modifications to the NF-κB regulatory network were not observed after IL-17A stimulation, although oscillations in IκBε expression were detected. ASM cells from subjects with mild asthma up-regulated more genes with greater overall variability in response to IL-17A than from healthy donors. Finally, in response to IL-17A, ASM cells displayed rapid activation of the extracellular signal–regulated kinase/ribosomal S6 kinase signaling pathway and increased nuclear levels of phosphorylated extracellular signal–regulated kinase. Taken together, our results suggest that IL-17A mediated modest gene expression response, which, in cooperation with the NF-κB signaling network, may regulate the gene expression profile in ASM cells.
PMCID: PMC4068909  PMID: 24393021
IL-17RA; signal transduction; gene expression; airway smooth muscle cells
29.  Longitudinal, Noninvasive Monitoring of Compensatory Lung Growth in Mice after Pneumonectomy via 3He and 1H Magnetic Resonance Imaging 
In rodents and some other mammals, partial pneumonectomy (PNX) of adult lungs results in rapid compensatory lung growth. In the past, quantification of compensatory lung growth and realveolarization could only be accomplished after killing the animal, removal of lungs, and histologic analysis of lungs at single time points. Hyperpolarized 3He diffusion magnetic resonance imaging (MRI) allows in vivo morphometry of human lungs; our group has adapted this technique for application to mouse lungs. Through imaging, we can obtain maps of lung microstructural parameters that allow quantification of morphometric and physiologic measurements. In this study, we employed our 3He MRI technique to image in vivo morphometry at baseline and to serially assess compensatory growth after left PNX of mice. 1H and hyperpolarized 3He diffusion MRI were performed at baseline (pre-PNX), 3-days, and 30-days after PNX. Compared with the individual mouse’s own baseline, MRI was able to detect and serially quantify changes in lung volume, alveolar surface area, alveolar number, and regional changes in alveolar size that occurred during the course of post-PNX lung growth. These results are consistent with morphometry measurements reported in the literature for mouse post-PNX compensatory lung growth. In addition, we were also able to serially assess and quantify changes in the physiologic parameter of lung compliance during the course of compensatory lung growth; this was consistent with flexiVent data. With these techniques, we now have a noninvasive, in vivo method to serially assess the effectiveness of therapeutic interventions on post-PNX lung growth in the same mouse.
PMCID: PMC3931091  PMID: 23763461
helium; magnetic resonance imaging; pneumonectomy; neoalveolarization
30.  Loss of Basal Cells Precedes Bronchiolitis Obliterans–Like Pathological Changes in a Murine Model of Chlorine Gas Inhalation 
Bronchiolitis obliterans (BO) is a major cause of chronic airway dysfunction after toxic chemical inhalation. The pathophysiology of BO is not well understood, but epithelial cell injury has been closely associated with the development of fibrotic lesions in human studies and in animal models of both toxin-induced and transplant-induced BO. However, whereas almost all cases and models of BO include epithelial injury, not all instances of epithelial injury result in BO, suggesting that epithelial damage per se is not the critical event leading to the development of BO. Here, we describe a model of chlorine-induced BO in which mice develop tracheal and large airway obliterative lesions within 10 days of exposure to high (350 parts per million [ppm]), but not low (200 ppm), concentrations of chlorine gas. Importantly, these lesions arise only under conditions and in areas in which basal cells, the resident progenitor cells for large airway epithelium, are eliminated by chlorine exposure. In areas of basal cell loss, epithelial regeneration does not occur, resulting in persistent regions of epithelial denudation. Obliterative airway lesions arise specifically from regions of epithelial denudation in a process that includes inflammatory cell infiltration by Day 2 after exposure, fibroblast infiltration and collagen deposition by Day 5, and the ingrowth of blood vessels by Day 7, ultimately leading to lethal airway obstruction by Days 9–12. We conclude that the loss of epithelial progenitor cells constitutes a critical factor leading to the development of obliterative airway lesions after chemical inhalation.
PMCID: PMC3931092  PMID: 23742075
bronchiolitis obliterans; basal cells; fibrosis; chlorine
31.  Persistence of LPS-Induced Lung Inflammation in Surfactant Protein-C–Deficient Mice 
Pulmonary surfactant protein-C (SP-C) gene–targeted mice (Sftpc−/−) develop progressive lung inflammation and remodeling. We hypothesized that SP-C deficiency reduces the ability to suppress repetitive inflammatory injury. Sftpc+/+ and Sftpc−/− mice given three doses of bacterial LPS developed airway and airspace inflammation, which was more intense in the Sftpc−/− mice at 3 and 5 days after the final dose. Compared with Sftpc+/+mice, inflammatory injury persisted in the lungs of Sftpc−/− mice 30 days after the final LPS challenge. Sftpc−/− mice showed LPS-induced airway goblet cell hyperplasia with increased detection of Sam pointed Ets domain and FoxA3 transcription factors. Sftpc−/− type II alveolar epithelial cells had increased cytokine expression after LPS exposure relative to Sftpc+/+ cells, indicating that type II cell dysfunction contributes to inflammatory sensitivity. Microarray analyses of isolated type II cells identified a pattern of enhanced expression of inflammatory genes consistent with an intrinsic low-level inflammation resulting from SP-C deficiency. SP-C–containing clinical surfactant extract (Survanta) or SP-C/phospholipid vesicles blocked LPS signaling through the LPS receptor (Toll-like receptor [TLR] 4/CD14/MD2) in human embryonic kidney 293T cells, indicating that SP-C blocks LPS-induced cytokine production by a TLR4-dependent mechanism. Phospholipid vesicles alone did not modify the TLR4 response. In vivo deficiency of SP-C leads to inflammation, increased cytokine production by type II cells, and persistent inflammation after repetitive LPS stimulation.
PMCID: PMC3931093  PMID: 23795648
surfactant protein-C; LPS; lung inflammation; type II cells; Toll-like receptor 4
32.  Tissue Inhibitor of Metalloproteinases–3 Moderates the Proinflammatory Status of Macrophages 
Tissue inhibitor of metalloproteinases–3 (TIMP-3) has emerged as a key mediator of inflammation. Recently, we reported that the resolution of inflammation is impaired in Timp3−/− mice after bleomycin-induced lung injury. Here, we demonstrate that after LPS instillation (another model of acute lung injury), Timp3−/− mice demonstrate enhanced and persistent neutrophilia, increased numbers of infiltrated macrophages, and delayed weight gain, compared with wild-type (WT) mice. Because macrophages possess broad immune functions and can differentiate into cells that either stimulate inflammation (M1 macrophages) or are immunosuppressive (M2 macrophages), we examined whether TIMP-3 influences macrophage polarization. Comparisons of the global gene expression of unstimulated or LPS-stimulated bone marrow–derived macrophages (BMDMs) from WT and Timp3−/− mice revealed that Timp3−/− BMDMs exhibited an increased expression of genes associated with proinflammatory (M1) macrophages, including Il6, Il12, Nos2, and Ccl2. Microarray analyses also revealed a baseline difference in gene expression between WT and Timp3−/− BMDMs, suggesting altered macrophage differentiation. Furthermore, the treatment of Timp3−/− BMDMs with recombinant TIMP-3 rescued this altered gene expression. We also examined macrophage function, and found that Timp3−/− M1 cells exhibit significantly more neutrophil chemotactic activity and significantly less soluble Fas ligand–induced caspase-3/7 activity, a marker of apoptosis, compared with WT M1 cells. Macrophage differentiation into immunosuppressive M2 cells is mediated by exposure to IL-4/IL-13, and we found that Timp3−/− M2 macrophages demonstrated a lower expression of genes associated with an anti-inflammatory phenotype, compared with WT M2 cells. Collectively, these findings indicate that TIMP-3 functions to moderate the differentiation of macrophages into proinflammatory (M1) cells.
PMCID: PMC3931094  PMID: 23742180
resolution of inflammation; macrophage; metalloproteinase; lung injury
33.  Bioelectric Characterization of Epithelia from Neonatal CFTR Knockout Ferrets 
Cystic fibrosis (CF) is a life-shortening, recessive, multiorgan genetic disorder caused by the loss of CF transmembrane conductance regulator (CFTR) chloride channel function found in many types of epithelia. Animal models that recapitulate the human disease phenotype are critical to understanding pathophysiology in CF and developing therapies. CFTR knockout ferrets manifest many of the phenotypes observed in the human disease, including lung infections, pancreatic disease and diabetes, liver disease, malnutrition, and meconium ileus. In the present study, we have characterized abnormalities in the bioelectric properties of the trachea, stomach, intestine, and gallbladder of newborn CF ferrets. Short-circuit current (ISC) analysis of CF and wild-type (WT) tracheas revealed the following similarities and differences: (1) amiloride-sensitive sodium currents were similar between genotypes; (2) responses to 4,4′-diisothiocyano-2,2′-stilbene disulphonic acid were 3.3-fold greater in CF animals, suggesting elevated baseline chloride transport through non-CFTR channels in a subset of CF animals; and (3) a lack of 3-isobutyl-1-methylxanthine (IBMX)/forskolin–stimulated and N-(2-Naphthalenyl)-((3,5-dibromo-2,4-dihydroxyphenyl)methylene)glycine hydrazide (GlyH-101)–inhibited currents in CF animals due to the lack of CFTR. CFTR mRNA was present throughout all levels of the WT ferret and IBMX/forskolin–inducible ISC was only observed in WT animals. However, despite the lack of CFTR function in the knockout ferret, the luminal pH of the CF ferret gallbladder, stomach, and intestines was not significantly changed relative to WT. The WT stomach and gallbladder exhibited significantly enhanced IBMX/forskolin ISC responses and inhibition by GlyH-101 relative to CF samples. These findings demonstrate that multiple organs affected by disease in the CF ferret have bioelectric abnormalities consistent with the lack of cAMP-mediated chloride transport.
PMCID: PMC3931095  PMID: 23782101
cystic fibrosis; animal model; ferret; intestine; trachea
34.  Dual Acute Proinflammatory and Antifibrotic Pulmonary Effects of Short Palate, Lung, and Nasal Epithelium Clone–1 after Exposure to Carbon Nanotubes 
Carbon nanotubes (CNTs; allotropes of carbon with a cylindrical nanostructure) have emerged as one of the most commonly used types of nanomaterials, with numerous applications in industry and biomedicine. However, the inhalation of CNTs has been shown to elicit pulmonary toxicity, accompanied by a robust inflammatory response with an early-onset fibrotic phase. Epithelial host-defense proteins represent an important component of the pulmonary innate immune response to foreign inhalants such as particles and bacteria. The short palate, lung, and nasal epithelium clone–1 (SPLUNC1) protein, a member of the bactericidal/permeability-increasing–fold (BPIF)–containing protein family, is a 25-kD secretory protein that is expressed in nasal, oropharyngeal, and lung epithelia, and has been shown to have multiple functions, including antimicrobial and chemotactic activities, as well as surfactant properties. This study sought to assess the importance of SPLUNC1-mediated pulmonary responses in airway epithelial secretions, and to explore the biological relevance of SPLUNC1 to inhaled particles in a single-walled carbon nanotube (SWCNT) model. Using Scgb1a1-hSPLUNC1 transgenic mice, we observed that SPLUNC1 significantly modified host inflammatory responses by increasing leukocyte recruitment and enhancing phagocytic activity. Furthermore, we found that transgenic mice were more susceptible to SWCNT exposure at the acute phase, but showed resistance against lung fibrogenesis through pathological changes in the long term. The binding of SPLUNC1 also attenuated SWCNT-induced TNF-α secretion by RAW 264.7 macrophages. Taken together, our data indicate that SPLUNC1 is an important component of mucosal innate immune defense against pulmonary inhaled particles.
PMCID: PMC3931096  PMID: 23721177
SPLUNC1; BPIFA1; carbon nanotube; fibrosis; inflammation
35.  Hyperoxia Synergizes with Mutant Bone Morphogenic Protein Receptor 2 to Cause Metabolic Stress, Oxidant Injury, and Pulmonary Hypertension 
Pulmonary arterial hypertension (PAH) has been associated with a number of different but interrelated pathogenic mechanisms. Metabolic and oxidative stresses have been shown to play important pathogenic roles in a variety of model systems. However, many of these relationships remain at the level of association. We sought to establish a direct role for metabolic stress and oxidant injury in the pathogenesis of PAH. Mice that universally express a disease-causing mutation in bone morphogenic protein receptor 2 (Bmpr2) were exposed to room air or to brief daily hyperoxia (95% oxygen for 3 h) for 6 weeks, and were compared with wild-type animals undergoing identical exposures. In both murine tissues and cultured endothelial cells, the expression of mutant Bmpr2 was sufficient to cause oxidant injury that was particularly pronounced in mitochondrial membranes. With the enhancement of mitochondrial generation of reactive oxygen species by hyperoxia, oxidant injury was substantially enhanced in mitochondrial membranes, even in tissues distant from the lung. Hyperoxia, despite its vasodilatory actions in the pulmonary circulation, significantly worsened the PAH phenotype (elevated right ventricular systolic pressure, decreased cardiac output, and increased pulmonary vascular occlusion) in Bmpr2 mutant animals. These experiments demonstrate that oxidant injury and metabolic stress contribute directly to disease development, and provide further evidence for PAH as a systemic disease with life-limiting cardiopulmonary manifestations.
PMCID: PMC3931097  PMID: 23742019
pulmonary hypertension; Bmpr2; oxidative stress; mitochondria; hyperoxia
36.  Innate Immune Response to LPS in Airway Epithelium Is Dependent on Chronological Age and Antecedent Exposures 
The immune mechanisms for neonatal susceptibility to respiratory pathogens are poorly understood. Given that mucosal surfaces serve as a first line of host defense, we hypothesized that the innate immune response to infectious agents may be developmentally regulated in airway epithelium. To test this hypothesis, we determined whether the expression of IL-8 and IL-6 in airway epithelium after LPS exposure is dependent on chronological age. Tracheas from infant, juvenile, and adult rhesus monkeys were first exposed to LPS ex vivo, and then processed for air–liquid interface primary airway epithelial cell cultures and secondary LPS treatment in vitro. Compared with adult cultures, infant and juvenile cultures expressed significantly reduced concentrations of IL-8 after LPS treatment. IL-8 protein in cultures increased with animal age, whereas LPS-induced IL-6 protein was predominantly associated with juvenile cultures. Toll-like receptor (TLR) pathway RT-PCR arrays showed differential expressions of multiple mRNAs in infant cultures relative to adult cultures, including IL-1α, TLR10, and the peptidoglycan recognition protein PGLYRP2. To determine whether the age-dependent cytokine response to LPS is reflective of antecedent exposures, we assessed primary airway epithelial cell cultures established from juvenile monkeys housed in filtered air since birth. Filtered air–housed animal cultures exhibited LPS-induced IL-8 and IL-6 expression that was discordant with age-matched ambient air–housed animals. A single LPS aerosol in vivo also affected this cytokine profile. Cumulatively, our findings demonstrate that the innate immune response to LPS in airway epithelium is variable with age, and may be modulated by previous environmental exposures.
PMCID: PMC3931090  PMID: 23600597
infant; airway epithelium; LPS; Toll-like receptor; cytokine
37.  Hypercapnia Impairs Lung Neutrophil Function and Increases Mortality in Murine Pseudomonas Pneumonia 
Hypercapnia, an elevation of the level of carbon dioxide (CO2) in blood and tissues, is a marker of poor prognosis in chronic obstructive pulmonary disease and other pulmonary disorders. We previously reported that hypercapnia inhibits the expression of TNF and IL-6 and phagocytosis in macrophages in vitro. In the present study, we determined the effects of normoxic hypercapnia (10% CO2, 21% O2, and 69% N2) on outcomes of Pseudomonas aeruginosa pneumonia in BALB/c mice and on pulmonary neutrophil function. We found that the mortality of P. aeruginosa pneumonia was increased in 10% CO2–exposed compared with air-exposed mice. Hypercapnia increased pneumonia mortality similarly in mice with acute and chronic respiratory acidosis, indicating an effect unrelated to the degree of acidosis. Exposure to 10% CO2 increased the burden of P. aeruginosa in the lungs, spleen, and liver, but did not alter lung injury attributable to pneumonia. Hypercapnia did not reduce pulmonary neutrophil recruitment during infection, but alveolar neutrophils from 10% CO2–exposed mice phagocytosed fewer bacteria and produced less H2O2 than neutrophils from air-exposed mice. Secretion of IL-6 and TNF in the lungs of 10% CO2–exposed mice was decreased 7 hours, but not 15 hours, after the onset of pneumonia, indicating that hypercapnia inhibited the early cytokine response to infection. The increase in pneumonia mortality caused by elevated CO2 was reversible when hypercapnic mice were returned to breathing air before or immediately after infection. These results suggest that hypercapnia may increase the susceptibility to and/or worsen the outcome of lung infections in patients with severe lung disease.
PMCID: PMC3931098  PMID: 23777386
carbon dioxide; pulmonary infection; reactive oxygen species; phagocytosis; inflammation
38.  Inflammation Promotes Airway Epithelial ATP Release via Calcium-Dependent Vesicular Pathways 
ATP in airway surface liquid (ASL) controls mucociliary clearance functions via the activation of airway epithelial purinergic receptors. However, abnormally elevated ATP levels have been reported in inflamed airways, suggesting that excessive ATP in ASL contributes to airway inflammation. Despite these observations, little is known about the mechanisms of ATP accumulation in the ASL covering inflamed airways. In this study, links between cystic fibrosis (CF)–associated airway inflammation and airway epithelial ATP release were investigated. Primary human bronchial epithelial (HBE) cells isolated from CF lungs exhibited enhanced IL-8 secretion after 6 to 11 days, but not 28 to 35 days, in culture, compared with normal HBE cells. Hypotonic cell swelling–promoted ATP release was increased in 6- to 11-day-old CF HBE cells compared with non-CF HBE cells, but returned to normal values after 28 to 35 days in culture. The exposure of non-CF HBE cells to airway secretions isolated from CF lungs, namely, sterile supernatants of mucopurulent material (SMM), also caused enhanced IL-8 secretion and increased ATP release. The SMM-induced increase in ATP release was sensitive to Ca2+ chelation and vesicle trafficking/exocytosis inhibitors, but not to pannexin inhibition. Transcript levels of the vesicular nucleotide transporter, but not pannexin 1, were up-regulated after SMM exposure. SMM-treated cultures displayed increased basal mucin secretion, but mucin secretion was not enhanced in response to hypotonic challenge after the exposure of cells to either vehicle or SMM. We propose that CF airway inflammation up-regulates the capacity of airway epithelia to release ATP via Ca2+-dependent vesicular mechanisms not associated with mucin granule secretion.
PMCID: PMC3931099  PMID: 23763446
human bronchial epithelia; supernatant of mucopurulent material from human CF airways; high performance liquid chromatography; well-differentiated vesicular nucleotide transporter
39.  Laminin-332 and α3β1 Integrin–Supported Migration of Bronchial Epithelial Cells Is Modulated by Fibronectin 
The repair of the bronchiolar epithelium damaged by cell-mediated, physical, or chemical insult requires epithelial cell migration over a provisional matrix composed of complexes of extracellular matrix molecules, including fibronectin and laminin. These matrix molecules support migration and enhance cell adhesion. When cells adhere too tightly to their matrix they fail to move; but if they adhere too little, they are unable to develop the traction force necessary for motility. Thus, we investigated the relative contributions of laminin and fibronectin to bronchiolar cell adhesion and migration using the immortalized bronchial lung epithelial cell line (BEP2D) and normal human bronchial epithelial (NHBE) cells, both of which assemble a laminin α3β3γ2 (LM332)/fibronectin-rich matrix. Intriguingly, BEP2D and NHBE cells migrate significantly faster on an LM332-rich matrix than on fibronectin. Moreover, addition of fibronectin to LM332 matrix suppresses motility of both cell types. Finally, fibronectin enhances the adhesion of both BEP2D and NHBE cells to LM332-coated surfaces. These results suggest that fibronectin fine tunes LM332-mediated migration by boosting bronchiolar cell adhesion to substrate. We suggest that, during epithelial wound healing of the injured airway, fibronectin plays an important adhesive role for laminin-driven epithelial cell motility by promoting a stable cellular interaction with the provisional matrix.
PMCID: PMC3931100  PMID: 23590307
motility; adhesion; extracellular matrix
40.  The Glutathione Peroxidase 1–Protein Tyrosine Phosphatase 1B–Protein Phosphatase 2A Axis. A Key Determinant of Airway Inflammation and Alveolar Destruction 
Protein phosphatase–2A (PP2A) is a primary serine–threonine phosphatase that modulates inflammatory responses in asthma and chronic obstructive pulmonary disease (COPD). Despite its importance, the mechanisms that regulate lung PP2A activity remain to be determined. The redox-sensitive enzyme protein tyrosine phosphatase–1B (PTP1B) activates PP2A by dephosphorylating the catalytic subunit of the protein at tyrosine 307. This study aimed to identify how the interaction between the intracellular antioxidant glutathione peroxidase–1 (GPx-1) and PTP1B affected lung PP2A activity and airway inflammation. Experiments using gene silencing techniques in mouse lung or human small airway epithelial cells determined that knocking down PTP1B expression blocked GPx-1’s activation of PP2A and negated the anti-inflammatory effects of GPx-1 protein in the lung. Similarly, the expression of human GPx-1 in transgenic mice significantly increased PP2A and PTP1B activities and prevented chronic cigarette smoke–induced airway inflammation and alveolar destruction. GPx-1 knockout mice, however, exhibited an exaggerated emphysema phenotype, correlating with a nonresponsive PP2A pathway. Importantly, GPx-1–PTP1B–PP2A signaling becomes inactivated in advanced lung disease. Indeed, PTP1B protein was oxidized in the lungs of subjects with advanced emphysema, and cigarette smoke did not increase GPx-1 or PTP1B activity within epithelial cells isolated from subjects with COPD, unlike samples of healthy lung epithelial cells. In conclusion, these findings establish that the GPx-1–PTP1B–PP2A axis plays a critical role in countering the inflammatory and proteolytic responses that result in lung-tissue destruction in response to cigarette smoke exposure.
PMCID: PMC3931101  PMID: 23590304
phosphorylation; inflammation; oxidation; kinase
41.  Lipid-Based Signaling Modulates DNA Repair Response and Survival against Klebsiella pneumoniae Infection in Host Cells and in Mice 
Klebsiella pneumoniae causes serious infections in the urinary tract, respiratory tract, and blood. Lipid rafts, also known as membrane microdomains, have been linked to the pathogenesis of bacterial infection. However, whether lipid rafts affect K. pneumoniae internalization into host cells remains unknown. Here, we show for the first time that K. pneumoniae was internalized into lung cells by activating lipid rafts. Disrupting lipid rafts by methyl-β-cyclodextrin inhibited pathogen internalization, impairing host defense. A deficient mutant of capsule polysaccharide (CPS) showed a higher internalization rate than a wild-type strain, indicating that CPS may inhibit bacterial entry to host cells. Furthermore, lipid rafts may affect the function of extracellular regulated kinase (ERK)–1/2, and knocking down ERK1/2 via short, interfering RNA increased apoptosis in both alveolar macrophages and epithelial cells after infection. To gain insights into bacterial pathogenesis, we evaluated the impact of lipid rafts on DNA integrity, and showed that raft aggregates also affect DNA damage and DNA repair responses (i.e., 8-oxoguanine DNA glycosylase [Ogg1]) through the regulation of reactive oxygen species. Importantly, cells overexpressing Ogg1 demonstrated reduced cytotoxicity during bacterial infection. Taken together, these results suggest that lipid rafts may modulate bacterial internalization, thereby affecting DNA damage and repair, which is critical to host defense against K. pneumoniae.
PMCID: PMC3931102  PMID: 23742126
Klebsiella pneumoniae infection; internalization; alveolar epithelial cells; lipid rafts; capsule polysaccharide
42.  Viral Bronchiolitis in Young Rats Causes Small Airway Lesions that Correlate with Reduced Lung Function 
Viral illness with wheezing during infancy is associated with the inception of childhood asthma. Small airway dysfunction is a component of childhood asthma, but little is known about how viral illness at an early age may affect the structure and function of small airways. We used a well-characterized rat model of postbronchiolitis chronic airway dysfunction to address how postinfectious small airway lesions affect airway physiological function and if the structure/function correlates persist into maturity. Brown Norway rats were sham- or virus inoculated at 3 to 4 weeks of age and allowed to recover from the acute illness. At 3 to 14 months of age, physiology (respiratory system resistance, Newtonian resistance, tissue damping, and static lung volumes) was assessed in anesthetized, intubated rats. Serial lung sections revealed lesions in the terminal bronchioles that reduced luminal area and interrupted further branching, affecting 26% (range, 13–39%) of the small airways at 3 months of age and 22% (range, 6–40%) at 12 to 14 months of age. At 3 months of age (n = 29 virus; n = 7 sham), small airway lesions correlated with tissue damping (rs = 0.69) but not with Newtonian resistance (rs = 0.23), and Newtonian resistance was not elevated compared with control rats, indicating that distal airways were primarily responsible for the airflow obstruction. Older rats (n = 7 virus; n = 6 sham) had persistent small airway dysfunction and significantly increased Newtonian resistance in the postbronchiolitis group. We conclude that viral airway injury at an early age may induce small airway lesions that are associated quantitatively with small airway physiological dysfunction early on and that these defects persist into maturity.
PMCID: PMC3931103  PMID: 23763491
asthma; lung growth and development; airway injury and repair
43.  Organic Dust, Lipopolysaccharide, and Peptidoglycan Inhalant Exposures Result in Bone Loss/Disease 
Skeletal health consequences associated with chronic inflammatory respiratory disease, and particularly chronic obstructive pulmonary disease (COPD), contribute to overall disease morbidity. Agricultural environmental exposures induce significant airway diseases, including COPD. However, animal models to understand inhalant exposure–induced lung injury and bone disease have not been described. Using micro–computed tomography (micro-CT) imaging technology and histology, bone quantity and quality measurements were investigated in mice after repetitive intranasal inhalation exposures to complex organic dust extracts (ODEs) from swine confinement facilities. Comparison experiments with LPS and peptidoglycan (PGN) alone were also performed. After 3 weeks of repetitive ODE inhalation exposure, significant loss of bone mineral density and trabecular bone volume fraction was evident, with altered morphological microarchitecture changes in the trabecular bone, compared with saline-treated control animals. Torsional resistance was also significantly reduced. Compared with saline treatment, ODE-treated mice demonstrated decreased collagen and proteoglycan content in their articular cartilage, according to histopathology. Significant bone deterioration was also evident after repetitive intranasal inhalant treatment with LPS and PGN. These findings were not secondary to animal distress, and not entirely dependent on the degree of induced lung parenchymal inflammation. Repetitive LPS treatment demonstrated the most pronounced changes in bone parameters, and PGN treatment resulted in the greatest lung parenchymal inflammatory changes. Collectively, repetitive inhalation exposures to noninfectious inflammatory agents such as complex organic dust, LPS, and PGN resulted in bone loss. This animal model may contribute to efforts toward understanding the mechanisms and evaluating the therapeutics associated with adverse skeletal health consequences after subchronic airway injury.
PMCID: PMC3931104  PMID: 23782057
lung; inflammation; bone; imaging; bioaerosol
44.  Statins in Lymphangioleiomyomatosis. Simvastatin and Atorvastatin Induce Differential Effects on tuberous sclerosis complex 2–Null Cell Growth and Signaling 
Mutations of the tumor suppressor genes tuberous sclerosis complex (TSC)1 and TSC2 cause pulmonary lymphangioleiomyomatosis (LAM) and tuberous sclerosis (TS). Current rapamycin-based therapies for TS and LAM have a predominantly cytostatic effect, and disease progression resumes with therapy cessation. Evidence of RhoA GTPase activation in LAM-derived and human TSC2-null cells suggests that 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitor statins can be used as potential adjuvant agents. The goal of this study was to determine which statin (simvastatin or atorvastatin) is more effective in suppressing TSC2-null cell growth and signaling. Simvastatin, but not atorvastatin, showed a concentration-dependent (0.5–10 μM) inhibitory effect on mouse TSC2-null and human LAM–derived cell growth. Treatment with 10 μM simvastatin induced dramatic disruption of TSC2-null cell monolayer and cell rounding; in contrast, few changes were observed in cells treated with the same concentration of atorvastatin. Combined treatment of rapamycin with simvastatin but not with atorvastatin showed a synergistic growth-inhibitory effect on TSC2-null cells. Simvastatin, but not atorvastatin, inhibited the activity of prosurvival serine-threonine kinase Akt and induced marked up-regulation of cleaved caspase-3, a marker of cell apoptosis. Simvastatin, but not atorvastatin, also induced concentration-dependent inhibition of p42/p44 Erk and mTORC1. Thus, our data show growth-inhibitory and proapoptotic effects of simvastatin on TSC2-null cells compared with atorvastatin. These findings have translational significance for combinatorial therapeutic strategies of simvastatin to inhibit TSC2-null cell survival in TS and LAM.
PMCID: PMC3931105  PMID: 23947572
TSC; LAM; apoptosis; TSC2; mTOR
45.  Post-Transcriptional Regulation of Cystic Fibrosis Transmembrane Conductance Regulator Expression and Function by MicroRNAs 
MicroRNAs (miRNAs) are increasingly recognized as important posttranscriptional regulators of gene expression, and changes in their actions can contribute to disease states. Little is understood regarding miRNA functions in the airway epithelium under normal or diseased conditions. We profiled miRNA expression in well-differentiated primary cultures of human cystic fibrosis (CF) and non-CF airway epithelia, and discovered that miR-509–3p and miR-494 concentrations were increased in CF epithelia. Human non-CF airway epithelia, transfected with the mimics of miR-509–3p or miR-494, showed decreased cystic fibrosis transmembrane conductance regulator (CFTR) expression, whereas their respective anti-miRs exerted the opposite effect. Interestingly, the two miRNAs acted cooperatively in regulating CFTR expression. Upon infecting non-CF airway epithelial cells with Staphylococcus aureus, or upon stimulating them with the proinflammatory cytokines TNF-α or IL-1β, we observed an increased expression of both miRNAs and a concurrent decrease in CFTR expression and function, suggesting that inflammatory mediators may regulate these miRNAs. Transfecting epithelia with anti-miRs for miR-509–3p and miR-494, or inhibiting NF-κB signaling before stimulating cells with TNFα or IL-1β, suppressed these responses, suggesting that the expression of both miRNAs was responsive to NF-κB signaling. Thus, miR-509–3p and miR-494 are dynamic regulators of CFTR abundance and function in normal, non-CF airway epithelia.
PMCID: PMC3824042  PMID: 23646886
ATP binding cassette protein; cystic fibrosis transmembrane conductance regulator; 3′ UTR; epithelial fluid and electrolyte transport
46.  Adenosine Monophosphate–Activated Protein Kinase Is Required for Pulmonary Artery Smooth Muscle Cell Survival and the Development of Hypoxic Pulmonary Hypertension 
Human pulmonary artery smooth muscle cells (HPASMCs) express both adenosine monophosphate–activated protein kinase (AMPK) α1 and α2. We investigated the distinct roles of AMPK α1 and α2 in the survival of HPASMCs during hypoxia and hypoxia-induced pulmonary hypertension (PH). The exposure of HPASMCs to hypoxia (3% O2) increased AMPK activation and phosphorylation, and the inhibition of AMPK with Compound C during hypoxia decreased their viability and increased lactate dehydrogenase activity and apoptosis. Although the suppression of either AMPK α1 or α2 expression led to increased cell death, the suppression of AMPK α2 alone increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. It also resulted in the decreased expression of myeloid cell leukemia sequence 1 (MCL-1). The knockdown of MCL-1 or MCL-1 inhibitors increased caspase-3 activity and apoptosis in HPASMCs exposed to hypoxia. On the other hand, the suppression of AMPK α1 expression alone prevented hypoxia-mediated autophagy. The inhibition of autophagy induced cell death in HPASMCs. Our results suggest that AMPK α1 and AMPK α2 play differential roles in the survival of HPASMCs during hypoxia. The activation of AMPK α2 maintains the expression of MCL-1 and prevents apoptosis, whereas the activation of AMPK α1 stimulates autophagy, promoting HPASMC survival. Moreover, treatment with Compound C, which inhibits both isoforms of AMPK, prevented and partly reversed hypoxia-induced PH in mice. Taking these results together, our study suggests that AMPK plays a key role in the pathogenesis of pulmonary arterial hypertension, and AMPK may represent a novel therapeutic target for the treatment of pulmonary arterial hypertension.
PMCID: PMC3824043  PMID: 23668615
hypoxia; adenosine monophosphate–activated protein kinase; pulmonary artery smooth muscle cells; apoptosis; autophagy
47.  Ephrin-B2 Reverse Signaling Increases α5β1 Integrin–Mediated Fibronectin Deposition and Reduces Distal Lung Compliance 
Alveolar growth abnormalities and severe respiratory dysfunction are often fatal. Identifying mechanisms that control epithelial proliferation and enlarged, poorly septated airspaces is essential in developing new therapies for lung disease. The membrane-bound ligand ephrin-B2 is strongly expressed in lung epithelium, and yet in contrast to its known requirement for arteriogenesis, considerably less is known regarding the function of this protein in the epithelium. We hypothesize that the vascular mediator ephrin-B2 governs alveolar growth and mechanics beyond the confines of the endothelium. We used the in vivo manipulation of ephrin-B2 reverse signaling to determine the role of this vascular mediator in the pulmonary epithelium and distal lung mechanics. We determined that the ephrin-B2 gene (EfnB2) is strongly expressed in alveolar Type 2 cells throughout development and into adulthood. The role of ephrin-B2 reverse signaling in the lung was assessed in Efnb2LacZ/6YFΔV mutants that coexpress the intracellular truncated ephrin-B2–β-galactosidase fusion and an intracellular point mutant ephrin-B2 protein that is unable to become tyrosine-phosphorylated or to interact with either the SH2 or PDZ domain–containing downstream signaling proteins. In these viable mice, we observed pulmonary hypoplasia and altered pulmonary mechanics, as evidenced by a marked reduction in lung compliance. Associated with the reduction in lung compliance was a significant increase in insoluble fibronectin (FN) basement membrane matrix assembly with FN deposition, and a corresponding increase in the α5 integrin receptor required for FN fibrillogenesis. These experiments indicate that ephrin-B2 reverse signaling mediates distal alveolar formation, fibrillogenesis, and pulmonary compliance.
PMCID: PMC3824044  PMID: 23742148
arterial; fibronectin; α5β1 integrin; alveoli; pulmonary mechanics
48.  Role of Cyclooxygenase-2 in Exacerbation of Allergen-Induced Airway Remodeling by Multiwalled Carbon Nanotubes 
The emergence of nanotechnology has produced a multitude of engineered nanomaterials such as carbon nanotubes (CNTs), and concerns have been raised about their effects on human health, especially for susceptible populations such as individuals with asthma. Multiwalled CNTs (MWCNTs) have been shown to exacerbate ovalbumin (OVA)–induced airway remodeling in mice. Moreover, cyclooxygenase-2 (COX-2) has been described as a protective factor in asthma. We postulated that COX-2–deficient (COX-2−/−) mice would be susceptible to MWCNT-induced exacerbations of allergen-induced airway remodeling, including airway inflammation, fibrosis, and mucus-cell metaplasia (i.e., the formation of goblet cells). Wild-type (WT) or COX-2−/− mice were sensitized to OVA to induce allergic airway inflammation before a single dose of MWCNTs (4 mg/kg) delivered to the lungs by oropharyngeal aspiration. MWCNTs significantly increased OVA-induced lung inflammation and mucus-cell metaplasia in COX-2−/− mice compared with WT mice. However, airway fibrosis after exposure to allergen and MWCNTs was no different between WT and COX-2−/− mice. Concentrations of certain prostanoids (prostaglandin D2 and thromboxane B2) were enhanced by OVA or MWCNTs in COX-2−/− mice. No differences in COX-1 mRNA concentrations were evident between WT and COX-2−/− mice treated with OVA and MWCNTs. Interestingly, MWCNTs significantly enhanced allergen-induced cytokines involved in Th2 (IL-13 and IL-5), Th1 (CXCL10), and Th17 (IL-17A) inflammatory responses in COX-2−/− mice, but not in WT mice. We conclude that exacerbations of allergen-induced airway inflammation and mucus-cell metaplasia by MWCNTs are enhanced by deficiencies in COX-2, and are associated with the activation of a mixed Th1/Th2/Th17 immune response.
PMCID: PMC3824045  PMID: 23642096
carbon nanotubes; nanoparticles; asthma; inflammation; COX-2
49.  Effects of the Inflammatory Cytokines TNF-α and IL-13 on Stromal Interaction Molecule–1 Aggregation in Human Airway Smooth Muscle Intracellular Ca2+ Regulation 
Inflammation elevates intracellular Ca2+ ([Ca2+]i) concentrations in airway smooth muscle (ASM). Store-operated Ca2+ entry (SOCE) is an important source of [Ca2+]i mediated by stromal interaction molecule–1 (STIM1), a sarcoplasmic reticulum (SR) protein. In transducing SR Ca2+ depletion, STIM1 aggregates to form puncta, thereby activating SOCE via interactions with a Ca2+ release-activated Ca2+ channel protein (Orai1) in the plasma membrane. We hypothesized that STIM1 aggregation is enhanced by inflammatory cytokines, thereby augmenting SOCE in human ASM cells. We used real-time fluorescence microscopic imaging to assess the dynamics of STIM1 aggregation and SOCE after exposure to TNF-α or IL-13 in ASM cells overexpressing yellow fluorescent protein–tagged wild-type STIM1 (WT-STIM1) and STIM1 mutants lacking the Ca2+-sensing EF-hand (STIM1-D76A), or lacking the cytoplasmic membrane binding site (STIM1ΔK). STIM1 aggregation was analyzed by monitoring puncta size during the SR Ca2+ depletion induced by cyclopiazonic acid (CPA). We found that puncta size was increased in cells expressing WT-STIM1 after CPA. However, STIM1-D76A constitutively formed puncta, whereas STIM1ΔK failed to form puncta. Furthermore, cytokines increased basal WT-STIM1 puncta size, and the SOCE triggered by SR Ca2+ depletion was increased in cells expressing WT-STIM1 or STIM1-D76A. Meanwhile, SOCE in cells expressing STIM1ΔK and STIM1 short, interfering RNA (siRNA) was decreased. Similarly, in cells overexpressing STIM1, the siRNA knockdown of Orai1 blunted SOCE. However, exposure to cytokines increased SOCE in all cells, increased basal [Ca2+]i, and decreased SR Ca2+ content. These data suggest that cytokines induce a constitutive increase in STIM1 aggregation that contributes to enhanced SOCE in human ASM after inflammation. Such effects of inflammation on STIM1 aggregations may contribute to airway hyperresponsiveness.
PMCID: PMC3824046  PMID: 23713409
airway smooth muscle; asthma; inflammation; SOCE; STIM1
50.  Flow Cytometric Analysis of Macrophages and Dendritic Cell Subsets in the Mouse Lung 
The lung hosts multiple populations of macrophages and dendritic cells, which play a crucial role in lung pathology. The accurate identification and enumeration of these subsets are essential for understanding their role in lung pathology. Flow cytometry is a mainstream tool for studying the immune system. However, a systematic flow cytometric approach to identify subsets of macrophages and dendritic cells (DCs) accurately and consistently in the normal mouse lung has not been described. Here we developed a panel of surface markers and an analysis strategy that accurately identify all known populations of macrophages and DCs, and their precursors in the lung during steady-state conditions and bleomycin-induced injury. Using this panel, we assessed the polarization of lung macrophages during the course of bleomycin-induced lung injury. Alveolar macrophages expressed markers of alternatively activated macrophages during both acute and fibrotic phases of bleomycin-induced lung injury, whereas markers of classically activated macrophages were expressed only during the acute phase. Taken together, these data suggest that this flow cytometric panel is very helpful in identifying macrophage and DC populations and their state of activation in normal, injured, and fibrotic lungs.
PMCID: PMC3824047  PMID: 23672262
pulmonary macrophages; alveolar macrophages; interstitial macrophages; macrophage polarization; lung fibrosis

Results 26-50 (1059)