Search tips
Search criteria

Results 26-50 (179)

Clipboard (0)

Select a Filter Below

Year of Publication
26.  5-HT6 receptors and Alzheimer's disease 
During the past 20 years, the 5-HT6 receptor has received increasing attention and become a promising target for improving cognition. Several studies with structurally different compounds have shown that not only antagonists but also 5-HT6 receptor agonists improve learning and memory in animal models. A large number of publications describing the development of ligands for this receptor have come to light, and it is now quite evident that 5-HT6 receptors have great pharmaceutical potential in terms of related patents. However, 5-HT6 receptor functionality is much more complex than initially defined. According to the existing data, different cellular pathways may be activated, depending on the drug being used. This article reviews preclinical and clinical evidence of the effects that 5-HT6 receptor compounds have on cognition. In addition, the biochemical and neurochemical mechanisms of action through which 5-HT6 receptor compounds can influence cognition will be described. Overall, several 5-HT6-targeted compounds can reasonably be regarded as powerful drug candidates for the treatment of Alzheimer's disease.
PMCID: PMC3706851  PMID: 23607787
27.  Dominantly Inherited Alzheimer Network: facilitating research and clinical trials 
The Dominantly Inherited Alzheimer Network (DIAN) is an international registry of individuals at risk for developing autosomal dominant Alzheimer’s disease (AD). Its primary aims are to investigate the temporal ordering of AD pathophysiological changes that occur in asymptomatic mutation carriers and to identify those markers that herald the transition from cognitive normality to symptomatic AD. DIAN participants undergo longitudinal evaluations, including clinical and cognitive assessments and measurements of molecular and imaging AD biomarkers. This review details the unique attributes of DIAN as a model AD biomarker study and how it provides the infrastructure for innovative research projects, including clinical trials. The recent design and launch of the first anti-amyloid-beta secondary prevention trial in AD, led by the related DIAN Trials Unit, also are discussed.
PMCID: PMC3978584  PMID: 24131566
28.  Cerebrospinal fluid biomarkers for Alzheimer disease and subcortical axonal damage in 5,542 clinical samples 
The neuronal loss in Alzheimer disease (AD) has been described to affect grey matter in the cerebral cortex. However, in the elderly, AD pathology is likely to occur together with subcortical axonal degeneration on the basis of cerebrovascular disease. Therefore, we hypothesized that biomarkers for AD and subcortical axonal degeneration would correlate in patients undergoing testing for dementia biomarkers, particularly in older age groups.
We performed correlation and cluster analyses of cerebrospinal fluid (CSF) biomarker data from 5,542 CSF samples analyzed in our routine clinical neurochemistry laboratory in 2010 through 2012 for the established CSF AD biomarkers total tau (T-tau), phosphorylated-tau (P-tau), amyloid β1-42 (Aβ42), and for neurofilament light (NFL), which is a protein expressed in large-caliber myelinated axons, the CSF levels of which correlate with subcortical axonal injury.
Aβ42, T-tau, and P-tau correlated with NFL. By cluster analysis, we found a bimodal data distribution in which a group with a low Aβ42/P-tau ratio (suggesting AD pathology) had high levels of NFL. High levels of NFL also correlated with the presence of an AD biomarker pattern defined by Aβ42/P-tau and T-tau. Only 29% of those with an AD biomarker signature had normal NFL levels. Age was a possible confounding factor for the associations between NFL and established AD biomarkers, but in a logistic regression analysis, both age and NFL independently predicted the AD biomarker pattern.
The association between an AD-like signature using the established biomarkers Aβ42, T-tau, and P-tau with increased levels of NFL provides in vivo evidence of an association between AD and subcortical axonal degeneration in this uniquely large dataset of CSF samples tested for dementia biomarkers.
PMCID: PMC3978733  PMID: 24479774
29.  DNA-dependent protein kinase and DNA repair: relevance to Alzheimer's disease 
The pathological hallmark of Alzheimer's disease (AD), the leading cause of senile dementia, involves region-specific neuronal death and an accumulation of neuronal and extracellular lesions termed neurofibrillary tangles and senile plaques, respectively. One of the biochemical abnormalities observed in AD is reduced DNA end-joining activity. The reduced capacity of post-mitotic neurons for some types of DNA repair is further compromised by aging. The predominant mechanism to repair double-strand DNA (dsDNA) breaks (DSB) is non-homologous end joining (NHEJ), which requires DNA-dependent protein kinase (DNA-PK) activity. DNA-PK is a holoenzyme comprising the p460 kDa DNA-PK catalytic subunit (DNA-PKcs) and the Ku heterodimer consisting of p86 (Ku 80) and p70 (Ku 70) subunits. Ku binds to DNA ends first and then recruits DNA-PKcs during NHEJ. However, in AD brains, reduced NHEJ activity has been reported along with reduced levels of DNA-PKcs and the Ku proteins, indicating a potential link between AD and dsDNA damage. Since age-matched control brains also show a reduction in these protein levels, whether there is a direct link between NHEJ ability and AD remains unknown. Possible mechanisms involving the role of DNA-PK in neurodegeneration, a benchmark of AD, are the focus of this review.
PMCID: PMC3706827  PMID: 23566654
30.  The role of APP and BACE1 trafficking in APP processing and amyloid-β generation 
Neuritic plaques in the brain are a major neuropathological hallmark of Alzheimer’s disease. They are formed by the deposition and aggregation of extracellular amyloid-β protein (Aβ). Aβ is derived from the sequential cleavage of amyloid-β precursor protein (APP) by β-secretase and γ-secretase. β-Site APP cleaving enzyme 1 (BACE1) functions as the primary, if not sole, β-secretase in vivo and is essential for Aβ production. Regulation of APP processing is a major focus of research into AD pathogenesis. The trafficking systems of APP and its cleavage enzymes are complex. Transporting APP and secretases into the same subcellular organelles facilitates their interaction and favors APP processing. The role of APP and BACE1 trafficking in the amyloidgenic pathway and the underlying mechanisms for Aβ production are discussed in this review. In addition, the distinct mechanisms of amino- and carboxy-terminal Aβ generation are reviewed.
PMCID: PMC3978418  PMID: 24103387
31.  Progress in novel cognitive enhancers for cognitive aging and Alzheimer’s disease 
Increased knowledge of the biology of synaptic function has led to the development of novel cognitive-enhancing therapeutic strategies with the potential for increased efficacy and safety. This editorial highlights a diverse array of approaches currently being explored to target cognitive dysfunction due to aging and/or Alzheimer’s disease.
PMCID: PMC3979029  PMID: 24083622
33.  Diets involved in PPAR and PI3K/AKT/PTEN pathway may contribute to neuroprotection in a traumatic brain injury 
Traumatic encephalopathy has emerged as a significant public health problem. It is believed that traumatic encephalopathy is caused by exposure to repetitive brain trauma prior to the initial symptoms of neurodegenerative disease. Therefore, prevention is important for the disease. The PI3K/AKT/PTEN (phosphoinositide-3 kinase/AKT/phosphatase and tensin homologue deleted on chromosome 10) pathway has been shown to play a pivotal role in neuroprotection, enhancing cell survival by stimulating cell proliferation and inhibiting apoptosis. PTEN negatively regulates the PI3K/AKT pathways through its lipid phosphatase activity. Although PTEN has been discovered as a tumor suppressor, PTEN is also involved in several other diseases, including diabetes and Alzheimer’s disease. Dietary fish oil rich in polyunsaturated fatty acids may induce the PTEN expression by activation of peroxisome proliferator-activated receptor. Supplementation of these natural compounds may provide a new therapeutic approach to the brain disorder. We review recent studies on the features of several diets and the signaling pathways involved in traumatic encephalopathy.
PMCID: PMC3978568  PMID: 24074163
34.  Potential synergy between tau aggregation inhibitors and tau chaperone modulators 
Tau is a soluble, microtubule-associated protein known to aberrantly form amyloid-positive aggregates. This pathology is characteristic for more than 15 neuropathies, the most common of which is Alzheimer’s disease. Finding therapeutics to reverse or remove this non-native tau state is of great interest; however, at this time only one drug is entering phase III clinical trials for treating tauopathies. Generally, tau manipulation by therapeutics can either directly or indirectly alter tau aggregation and stability. Drugs that bind and change the conformation of tau itself are largely classified as aggregation inhibitors, while drugs that alter the activity of a tau-effector protein fall into several categories, such as kinase inhibitors, microtubule stabilizers, or chaperone modulators. Chaperone inhibitors that have proven effective in tau models include heat shock protein 90 inhibitors, heat shock protein 70 inhibitors and activators, as well as inducers of heat shock proteins. While many of these compounds can alter tau levels and/or aggregation states, it is possible that combining these approaches may produce the most optimal outcome. However, because many of these compounds have multiple off-target effects or poor blood–brain barrier permeability, the development of this synergistic therapeutic strategy presents significant challenges. This review will summarize many of the drugs that have been identified to alter tau biology, with special focus on therapeutics that prevent tau aggregation and regulate chaperone-mediated clearance of tau.
PMCID: PMC3979086  PMID: 24041111
35.  Plasma amyloid beta measurements - a desired but elusive Alzheimer's disease biomarker 
Cerebrospinal fluid and positron emission tomography biomarkers accurately predict an underlying Alzheimer's disease (AD) pathology; however, they represent either invasive or expensive diagnostic tools. Therefore, a blood-based biomarker like plasma amyloid beta (Aβ) that could correlate with the underlying AD pathology and serve as a prognostic biomarker or an AD screening strategy is urgently needed as a cost-effective and non-invasive diagnostic tool. In this paper we review the demographic, biologic, genetic and technical aspects that affect plasma Aβ levels. Findings of cross-sectional and longitudinal studies of plasma Aβ, including autosomal dominant AD cases, sporadic AD cases, Down syndrome cases and population studies, are also discussed. Finally, we review the association between cerebrovascular disease and Aβ plasma levels and the responses observed in clinical trials. Based on our review of the current literature on plasma Aβ, we conclude that further clinical research and assay development are needed before measures of plasma Aβ can be interpreted so they can be applied as trait, risk or state biomarkers for AD.
PMCID: PMC3706955  PMID: 23470128
36.  Biomarkers for Alzheimer's disease in plasma, serum and blood - conceptual and practical problems 
Substances produced throughout the body are detectable in the blood, which is the most common biological fluid used in clinical testing. Biomarkers for Alzheimer's disease (AD) have long been sought in the blood, but none has become an established or validated diagnostic test. Companion reviews in Alzheimer's Research & Therapy will review specific types of biomarkers or applications; in this overview, we cover key concepts related to AD blood biomarker studies in general. Reasons for the difficulty of detecting markers of a brain-specific disorder, such as AD, in the blood are outlined; these pose conceptual challenges for blood biomarker discovery and development. Applications of blood tests in AD go beyond screening and diagnostic testing; other potential uses are risk assessment, prognostication, and evaluation of treatment target engagement, toxicity, and outcome. Opportunities and questions that may surround these different uses are discussed. A systematic approach to biomarker discovery, detection, assay development and quality control, sample collection, handling and storage, and design and analysis of clinical studies needs to be implemented at every step of discovery and translation to identify an interpretable and useful biomarker.
PMCID: PMC3706797  PMID: 23470193
37.  Would you want to know? Public attitudes on early diagnostic testing for Alzheimer's disease 
Research is underway to develop an early medical test for Alzheimer's disease (AD).
To evaluate potential demand for such a test, we conducted a cross-sectional telephone survey of 2,678 randomly selected adults across the United States and four European countries.
Most surveyed adults (67%) reported that they are "somewhat" or "very likely" to get an early medical test if one becomes available in the future. Interest was higher among those worried about developing AD, those with an immediate blood relative with AD, and those who have served as caregivers for AD patients. Older respondents and those living in Spain and Poland also exhibited greater interest in testing. Knowing AD is a fatal condition did not influence demand for testing, except among those with an immediate blood relative with the disease.
Potential demand for early medical testing for AD could be high. A predictive test could not only advance medical research, it could transform political and legal landscapes by creating a large constituency of asymptomatic, diagnosed adults.
PMCID: PMC3978817  PMID: 24010759
Alzheimer's disease; medical testing; predictive testing; medical decision-making; public attitudes; preclinical
38.  Apolipoprotein E as a β-amyloid-independent factor in Alzheimer’s disease 
APOE, which encodes apolipoprotein E, is the most prevalent and best established genetic risk factor for late-onset Alzheimer’s disease. Current understanding of Alzheimer’s disease pathophysiology posits an important role for apolipoprotein E in the disease cascade via its interplay with β-amyloid. However, evidence is also emerging for roles of apolipoprotein E in the disease process that are independent of β-amyloid. Particular areas of interest are lipid metabolism, tau pathology, neuroenergetics, neurodevelopment, synaptic plasticity, the neurovasculature, and neuroinflammation. The intent of this article is to review the literature in each of these areas.
PMCID: PMC3979087  PMID: 23998393
39.  Amyloid imaging in clinical trials 
The possibility to map amyloid-beta, the Alzheimer’s disease hallmark protein, in vivo opens the application for amyloid imaging in clinical trials with disease-modifying agents. Monitoring change in amyloid burden, particularly when potential amyloid-lowering drugs are at play, requires accurate analytical methods. Studies to date have used suboptimal methods that do not account for heterogeneous changes in flow associated with disease progression and potentially with anti-amyloid drugs. In this commentary, we discuss practical and methodological issues regarding longitudinal amyloid imaging and propose several quantitative, yet feasible, alternatives for reliable assessment of changes over time in amyloid burden.
PMCID: PMC3978734  PMID: 23953396
40.  Regulation of distinct pools of amyloid β-protein by multiple cellular proteases  
Alzheimer’s disease (AD) is a progressive, age-related neurodegenerative disorder characterized by extracellular and intracellular deposition of the amyloid β-protein (Aβ). The study of rare, familial forms of AD has shown that sustained elevations in the production of Aβ (either all forms or specific pathogenic variants thereof) are sufficient to trigger the full spectrum of cognitive and histopathological features of the disease. Although the exact cause or causes remain unknown, emerging evidence suggests that impairments in the clearance of Aβ, after it is produced, may underlie the vast majority of sporadic AD cases. This review focuses on Aβ-degrading proteases (AβDPs), which have emerged as particularly important mediators of Aβ clearance. A wide variety of proteases that – by virtue of their particular regional and subcellular localization profiles – define distinct pools of Aβ have been identified. Different pools of Aβ, in turn, may contribute differentially to the pathogenesis of the disease. The study of individual AβDPs, therefore, promises to offer new insights into the mechanistic basis of AD pathogenesis and, ultimately, may facilitate the development of effective methods for its prevention or treatment or both.
PMCID: PMC3978621  PMID: 23953275
41.  Diverse therapeutic targets and biomarkers for Alzheimer's disease and related dementias: report on the Alzheimer's Drug Discovery Foundation 2012 International Conference on Alzheimer's Drug Discovery 
The Alzheimer's Drug Discovery Foundation's 13th International Conference on Alzheimer's Drug Discovery was held on 10-11 September 2012 in Jersey City, NJ, USA. This meeting report provides an overview of Alzheimer's Drug Discovery Foundation-funded programs, ranging from novel biomarkers to accelerate clinical development to drug-discovery programs with a focus on targets related to neuroprotection, mitochondrial function, apolipoprotein E and vascular biology.
PMCID: PMC3580332  PMID: 23374760
42.  Alcohol-related dementia: an update of the evidence 
The characteristics of dementia relating to excessive alcohol use have received increased research interest in recent times. In this paper, the neuropathology, nosology, epidemiology, clinical features, and neuropsychology of alcohol-related dementia (ARD) and alcohol-induced persisting amnestic syndrome (Wernicke-Korsakoff syndrome, or WKS) are reviewed. Neuropathological and imaging studies suggest that excessive and prolonged use of alcohol may lead to structural and functional damage that is permanent in nature; however, there is debate about the relative contributions of the direct toxic effect of alcohol (neurotoxicity hypothesis), and the impact of thiamine deficiency, to lasting damage. Investigation of alcohol-related cognitive impairment has been further complicated by differing definitions of patterns of alcohol use and associated lifestyle factors related to the abuse of alcohol. Present diagnostic systems identify two main syndromes of alcohol-related cognitive impairment: ARD and WKS. However, 'alcohol-related brain damage' is increasingly used as an umbrella term to encompass the heterogeneity of these disorders. It is unclear what level of drinking may pose a risk for the development of brain damage or, in fact, whether lower levels of alcohol may protect against other forms of dementia. Epidemiological studies suggest that individuals with ARD typically have a younger age of onset than those with other forms of dementia, are more likely to be male, and often are socially isolated. The cognitive profile of ARD appears to involve both cortical and subcortical pathology, and deficits are most frequently observed on tasks of visuospatial function as well as memory and higher-order (executive) tasks. The WKS appears more heterogeneous in nature than originally documented, and deficits on executive tasks commonly are reported in conjunction with characteristic memory deficits. Individuals with alcohol-related disorders have the potential to at least partially recover - both structurally and functionally - if abstinence is maintained. In this review, considerations in a clinical setting and recommendations for diagnosis and management are discussed.
PMCID: PMC3580328  PMID: 23347747
43.  Clinical, imaging, and pathological heterogeneity of the Alzheimer's disease syndrome 
With increasing knowledge of clinical in vivo biomarkers and the pathological intricacies of Alzheimer's disease (AD), nosology is evolving. Harmonized consensus criteria that emphasize prototypic illness continue to develop to achieve diagnostic clarity for treatment decisions and clinical trials. However, it is clear that AD is clinically heterogeneous in presentation and progression, demonstrating variable topographic distributions of atrophy and hypometabolism/hypoperfusion. AD furthermore often keeps company with other conditions that may further nuance clinical expression, such as synucleinopathy exacerbating executive and visuospatial dysfunction and vascular pathologies (particularly small vessel disease that is increasingly ubiquitous with human aging) accentuating frontal-dysexecutive symptomatology. That some of these atypical clinical patterns recur may imply the existence of distinct AD variants. For example, focal temporal lobe dysfunction is associated with a pure amnestic syndrome, very slow decline, with atrophy and neurofibrillary tangles limited largely to the medial temporal region including the entorhinal cortex. Left parietal atrophy and/or hypometabolism/hypoperfusion are associated with language symptoms, younger age of onset, and faster rate of decline - a potential 'language variant' of AD. Conversely, the same pattern but predominantly affecting the right parietal lobe is associated with a similar syndrome but with visuospatial symptoms replacing impaired language function. Finally, the extremely rare frontal variant is associated with executive dysfunction out of keeping with degree of memory decline and may have prominent behavioural symptoms. Genotypic differences may underlie some of these subtypes; for example, absence of apolipoprotein E e4 is often associated with atypicality in younger onset AD. Understanding the mechanisms behind this variability merits further investigation, informed by recent advances in imaging techniques, biomarker assays, and quantitative pathological methods, in conjunction with standardized clinical, functional, neuropsychological and neurobehavioral evaluations. Such an understanding is needed to facilitate 'personalized AD medicine', and eventually allow for clinical trials targeting specific AD subtypes. Although the focus legitimately remains on prototypic illness, continuing efforts to develop disease-modifying therapies should not exclude the rarer AD subtypes and common comorbid presentations, as is currently often the case. Only by treating them as well can we address the full burden of this devastating dementia syndrome.
PMCID: PMC3580331  PMID: 23302773
44.  Assessment of psychiatric changes in C9ORF72 frontotemporal dementia 
Recent neuroimaging evidence highlights cerebellar atrophy as one feature of frontotemporal dementia (FTD) with C9ORF72 mutation. Interestingly, C9ORF72 patients do not present with classic cerebellar symptoms, such as ataxia, but have instead a higher incidence of psychiatric changes compared to sporadic FTD. To date there exists no objective tool to assess such psychiatric changes due to cerebellar dysfunction. In the previous edition of Alzheimer's Research & Therapy, Downey and colleagues present a novel task, including a new apparatus, that targets such psychiatric disturbances. In the task participants are required to make self-other attributions, which have been shown to be dependent on the cerebellum in functional neuroimaging in healthy subjects. The data Downey and colleagues present on a case of C9ORF72 compared to four age-matched controls reveal that the patient shows impaired judgement only for other induced actions. These findings highlight the sensitivity of such a simple task to tap into potential cerebellar dysfunction in C9ORF72. Future studies are needed to now to determine whether this task is mediated solely via the cerebellum and is disease specific to C9ORF72. Nevertheless, this study is an important first step in the development of cerebellar-specific tasks tapping into psychiatric dysfunction, which will inform future diagnosis and disease management of patients with cerebellar dysfunction, and in particular C9ORF72.
PMCID: PMC3580458  PMID: 23269019
45.  Does a prion-like mechanism play a major role in the apparent spread of α-synuclein pathology? 
Parkinson's disease, the most common movement disorder, results in an insidious reduction for patients in quality of life and ability to function. A hallmark of Parkinson's disease is the brain accumulation of neuronal cytoplasmic inclusions comprised of the protein α-synuclein. The presence of α-synuclein brain aggregates is observed in several neurodegenerative diseases, including dementia with Lewy bodies and Lewy body variant of Alzheimer's disease. These disorders, as a group, are termed synucleinopathies. Mounting evidence indicates that α-synuclein amyloid pathology may spread during disease progression by a prion-like (self-templating alteration in protein conformation) mechanism. Clear in vitro and cell culture data demonstrate that amyloidogenic α-synuclein can readily induce the conversion of other α-synuclein molecules into this conformation. Some data from experimental mouse studies and autopsied brain analyses also are consistent with the notion that a self-promoting process of α-synuclein amyloid inclusion formation may lead to a progressive spread of disease in vivo. However, as pointed out in this review, there are alternative explanations and interpretations for these findings. Therefore, from a therapeutic perspective, it is critical to determine the relative importance and contribution of α-synuclein prionlike spread in disease before embarking on elaborate efforts to target this putative pathogenic mechanism.
PMCID: PMC3580457  PMID: 23245350
46.  NF-κB-regulated, proinflammatory miRNAs in Alzheimer's disease 
Abundant neurochemical, neuropathological, and genetic evidence suggests that a critical number of proinflammatory and innate immune system-associated factors are involved in the underlying pathological pathways that drive the sporadic Alzheimer's disease (AD) process. Most recently, a series of epigenetic factors - including a select family of inducible, proinflammatory, NF-κB-regulated small noncoding RNAs called miRNAs - have been shown to be significantly elevated in abundance in AD brain. These upregulated miRNAs appear to be instrumental in reshaping the human brain transcriptome. This reorganization of mRNA speciation and complexity in turn drives proinflammatory and pathogenic gene expression programs. The ensuing, progressively altered immune and inflammatory signaling patterns in AD brain support immunopathogenetic events and proinflammatory features of the AD phenotype. This report will briefly review what is known concerning NF-κB-inducible miRNAs that are significantly upregulated in AD-targeted anatomical regions of degenerating human brain cells and tissues. Quenching of NF-κB-sensitive inflammatory miRNA signaling using NF-κB-inhibitors such as the polyphenolic resveratrol analog trans-3,5,4'-trihydroxystilbene (CAY10512) may have some therapeutic value in reducing inflammatory neurodegeneration. Antagonism of NF-κB-inducing, and hence proinflammatory, epigenetic and environmental factors, such as the neurotrophic herpes simplex virus-1 and exposure to the potent neurotoxin aluminum, are briefly discussed. Early reports further indicate that miRNA neutralization employing anti-miRNA (antagomir) strategies may hold future promise in the clinical management of this insidious neurological disorder and expanding healthcare concern.
PMCID: PMC3580456  PMID: 23217212
47.  Treatment implications of C9ORF72 
Frontotemporal dementia (FTD) is a common dementia syndrome in patients under the age of 65 years with many features overlapping with amyotrophic lateral sclerosis (ALS). The link between FTD and ALS has been strengthened by the discovery that a hexanucleotide repeat expansion in a non-coding region of the C9ORF72 gene causes both familial and sporadic types of these two diseases. As we begin to understand the pathophysiological mechanisms by which this mutation leads to FTD and ALS (c9FTD/ALS), new targets for disease-modifying therapies will likely be unveiled. Putative C9ORF72 expansion pathogenic mechanisms include loss of C9ORF72 protein function, sequestration of nucleic acid binding proteins due to expanded hexanucleotide repeats, or a combination of the two. New animal models and other research tools informed by work in other repeat expansion neurodegenerative diseases such as the spinocerebellar ataxias will help to elucidate the mechanisms of C9ORF72-mediated disease. Similarly, re-examining previous studies of drugs developed to treat ALS in light of this new mutation may identify novel FTD treatments. Ultimately, research consortiums incorporating animal models and well-characterized clinical populations will be necessary to fully understand the natural history of the c9FTD/ALS clinical phenotypes and identify biomarkers and therapeutic agents that can cure the most common form of genetically determined FTD and ALS.
PMCID: PMC3580455  PMID: 23186535
48.  Comprehensive behavioral characterization of an APP/PS-1 double knock-in mouse model of Alzheimer's disease 
Despite the extensive mechanistic and pathological characterization of the amyloid precursor protein (APP)/presenilin-1 (PS-1) knock-in mouse model of Alzheimer's disease (AD), very little is known about the AD-relevant behavioral deficits in this model. Characterization of the baseline behavioral performance in a variety of functional tasks and identification of the temporal onset of behavioral impairments are important to provide a foundation for future preclinical testing of AD therapeutics. Here we perform a comprehensive behavioral characterization of this model, discuss how the observed behavior correlates with the mechanistic and pathological observations of others, and compare this model with other commonly used AD mouse models.
Four different groups of mice ranging across the lifespan of this model (test groups: 7, 11, 15, and 24 months old) were run in a behavioral test battery consisting of tasks to assess motor function (grip strength, rotor rod, beam walk, open field ambulatory movement), anxiety-related behavior (open field time spent in peripheral zone vs. center zone, elevated plus maze), and cognitive function (novel object recognition, radial arm water maze).
There were no differences in motor function or anxiety-related behavior between APP/PS-1 knock-in mice and wild-type counterpart mice for any age group. Cognitive deficits in both recognition memory (novel object recognition) and spatial reference memory (radial arm water maze) became apparent for the knock-in animals as the disease progressed.
This is the first reported comprehensive behavioral analysis of the APP/PS1 knock-in mouse model of AD. The lack of motor/coordination deficits or abnormal anxiety levels, coupled with the age/disease-related cognitive decline and high physiological relevance of this model, make it well suited for utilization in preclinical testing of AD-relevant therapeutics.
PMCID: PMC3706792  PMID: 23705774
Alzheimer's disease; amyloid precursor protein/presenilin-1; motor behavior; anxiety behavior; cognition; learning and memory; spatial reference memory; recognition memory; transgenic mouse model
49.  Neuroimaging features of C9ORF72 expansion 
Hexanucleotide expansion intronic to chromosome 9 open reading frame 72 (C9ORF72) has recently been identified as the most common genetic cause of both familial and sporadic amyotrophic lateral sclerosis and of frontotemporal dementia with or without concomitant motor neuron disease. Given the common frequency of this genetic aberration, clinicians seek to identify neuroimaging hallmarks characteristic of C9ORF72-associated disease, both to provide a better understanding of the underlying degenerative patterns associated with this mutation and to enable better identification of patients for genetic screening and diagnosis. A survey of the literature describing C9ORF72 neuroimaging thus far suggests that patients with this mutation may demonstrate symmetric frontal and temporal lobe, insular, and posterior cortical atrophy, although temporal involvement may be less than that seen in other mutations. Some studies have also suggested cerebellar and thalamic involvement in C9ORF72-associated disease. Diffuse cortical atrophy that includes anterior as well as posterior structures and subcortical involvement thus may represent unique features of C9ORF72.
PMCID: PMC3580454  PMID: 23153366
50.  The neurotrophic compound J147 reverses cognitive impairment in aged Alzheimer's disease mice 
Despite years of research, there are no disease-modifying drugs for Alzheimer's disease (AD), a fatal, age-related neurodegenerative disorder. Screening for potential therapeutics in rodent models of AD has generally relied on testing compounds before pathology is present, thereby modeling disease prevention rather than disease modification. Furthermore, this approach to screening does not reflect the clinical presentation of AD patients which could explain the failure to translate compounds identified as beneficial in animal models to disease modifying compounds in clinical trials. Clearly a better approach to pre-clinical drug screening for AD is required.
To more accurately reflect the clinical setting, we used an alternative screening strategy involving the treatment of AD mice at a stage in the disease when pathology is already advanced. Aged (20-month-old) transgenic AD mice (APP/swePS1ΔE9) were fed an exceptionally potent, orally active, memory enhancing and neurotrophic molecule called J147. Cognitive behavioral assays, histology, ELISA and Western blotting were used to assay the effect of J147 on memory, amyloid metabolism and neuroprotective pathways. J147 was also investigated in a scopolamine-induced model of memory impairment in C57Bl/6J mice and compared to donepezil. Details on the pharmacology and safety of J147 are also included.
Data presented here demonstrate that J147 has the ability to rescue cognitive deficits when administered at a late stage in the disease. The ability of J147 to improve memory in aged AD mice is correlated with its induction of the neurotrophic factors NGF (nerve growth factor) and BDNF (brain derived neurotrophic factor) as well as several BDNF-responsive proteins which are important for learning and memory. The comparison between J147 and donepezil in the scopolamine model showed that while both compounds were comparable at rescuing short term memory, J147 was superior at rescuing spatial memory and a combination of the two worked best for contextual and cued memory.
J147 is an exciting new compound that is extremely potent, safe in animal studies and orally active. J147 is a potential AD therapeutic due to its ability to provide immediate cognition benefits, and it also has the potential to halt and perhaps reverse disease progression in symptomatic animals as demonstrated in these studies.
PMCID: PMC3706879  PMID: 23673233

Results 26-50 (179)