PMCC PMCC

Search tips
Search criteria

Advanced
Results 26-50 (67)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
Document Types
26.  Matrix Metalloproteinases Modulated by PKCε Mediate Resistin-Induced Migration of Human Coronary Artery Smooth Muscle Cells 
Journal of vascular surgery  2011;53(4):1044-1051.
Background
Emerging evidence showed that resistin induces vascular smooth muscle cell (VSMC) migration, a critical step to initiating vascular restenosis. Mechanistically, adhesion molecule expression and cytoskeletal rearrangement have been observed in this progress. Given that matrix metalloproteinases (MMPs) also regulates cell migration, we hypothesized that MMPs may mediate resistin-induced VSMC migration.
Materials and Methods
Human VSMCs were treated with recombinant human resistin at physiological (10 ng/mL) and pathological (40 ng/mL) concentrations for 24 hours. Cell migration was determinate by Boyden chamber assay. MMP and TIMP mRNA and protein levels were measured with real-time PCR and ELISA. MMP enzymatic activity was measured by zymography on precast gels. In another experiment, neutralizing antibodies against MMP-2 and MMP-9 were co-incubated with resistin in cultured VSMCs. The regulation of MMP by protein kinase C (PKC) was determined by εV1–2, a selective PKCε inhibitor.
Results
Resistin-induced SMC migration was confirmed by Boyden chamber assay. 40ng/mL Resistin increased SMC migration by 3.7 fold. Molecularly, resistin stimulated MMP-2 and - MMP9 mRNA and protein expressions. In contrast, the TIMP-1 and TIMP-2 mRNA levels were inhibited by resistin. Neutralizing antibodies against MMP-2 and MMP-9 effectively reversed VSMC migration. Furthermore, resistin activated PKCε and selective PKCε inhibitor suppressed resistin-induced MMP expression, activity and cell migration.
Conclusions
Our study confirmed that resistin increases vascular smooth muscle cell migration in vitro. Mechanistically, resistin-stimulated cell migration was associated with increased MMP expression and activity, which was dependent on PKCε activation.
doi:10.1016/j.jvs.2010.10.117
PMCID: PMC3538810  PMID: 21277149
diabetes mellitus; obesity; resistin; smooth muscle cell migration; restenosis
27.  Exercise Training Restores Cardiac Protein Quality Control in Heart Failure 
PLoS ONE  2012;7(12):e52764.
Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H2O2 release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H2O2 resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca2+-induced permeability transition and reduced H2O2 release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a non-pharmacological tool for heart failure therapy.
doi:10.1371/journal.pone.0052764
PMCID: PMC3531365  PMID: 23300764
28.  THERAPEUTIC POTENTIAL FOR PROTEIN KINASE C INHIBITOR IN VASCULAR RESTENOSIS 
Vascular restenosis, an overreaction of biological response to injury, is initialized by thrombosis and inflammation. This response is characterized by increased smooth muscle cell migration and proliferation. Available pharmacological treatments include anticoagulants, antiplatelet agents, immunosuppressants and antiproliferation agents. Protein kinase C (PKC), a large family of serine/threonine kinases, has been shown to participate in various pathological stages of restenosis. Consequently, PKC inhibitors are expected to exert a wide range of pharmacological activities therapeutically beneficial for restenosis. In this review, the roles of PKC isozymes in platelets, leukocytes, endothelial cells and smooth muscle cells are discussed, with emphasis given to smooth muscle cells. We will describe cellular and animal studies assessing prevention of restenosis with PKC inhibitors, particularly targeting -alpha, -beta, -delta and -zeta isozymes. The delivery strategy, efficacy and safety of such PKC regulators will also be discussed.
doi:10.1177/1074248410382106
PMCID: PMC3527091  PMID: 21183728
protein kinase C; smooth muscle cell; migration; proliferation; vascular restenosis
29.  Nitroglycerin Use in Myocardial Infarction Patients: Risks and Benefits 
Acute myocardial infarction and its sequelae are leading causes of morbidity and mortality worldwide. Nitroglycerin remains a first-line treatment for angina pectoris and acute myocardial infarction. Nitroglycerin achieves its benefit by giving rise to nitric oxide, which causes vasodilation and increases blood flow to the myocardium. However, continuous delivery of nitroglycerin results in tolerance, limiting the use of this drug. Nitroglycerin tolerance is due, at least in part, to inactivation of aldehyde dehydrogenase 2 (ALDH2), an enzyme that converts nitroglycerin to the vasodilator, nitric oxide. We have recently found that, in addition to nitroglycerin’s effect on the vasculature, sustained treatment with nitroglycerin negatively affects cardiomyocyte viability following ischemia, thus resulting in increased infarct size in a myocardial infarction model in animals. Co-administration of Alda-1, an activator of ALDH2, with nitroglycerin improves metabolism of reactive aldehyde adducts and prevents the nitroglycerin-induced increase in cardiac dysfunction following myocardial infarction. In this review, we describe the molecular mechanisms associated with the benefits and risks of nitroglycerin administration in myocardial infarction. (167 of 200).
PMCID: PMC3527093  PMID: 22040938
aldehyde dehydrogenase; nitric oxide; nitroglycerin tolerance; cardiomyocyte; cell death
30.  Regulation of Cardiac Excitability Protein Kinase C Isozymes 
Cardiac excitability and electrical activity are determined by the sum of individual ion channels, gap junctions and exchanger activities. Electrophysiological remodeling during heart disease involves changes in membrane properties of cardiomyocytes and is related to higher prevalence of arrhythmia-associated morbidity and mortality. Pharmacological and genetic manipulation of cardiac cells as well as animal models of cardiovascular diseases are used to identity changes in electrophysiological properties and the molecular mechanisms associated with the disease. Protein kinase C (PKC) and several other kinases play a pivotal role in cardiac electrophysiological remodeling. Therefore, identifying specific therapies that regulate these kinases is the main focus of current research. PKC, a family of serine/threonine kinases, has been implicated as potential signaling nodes associated with biochemical and biophysical stress in cardiovascular diseases. Thus, the role of PKC isozymes in regulating cardiac excitability has been a subject of great attention. In this review, we describe the role of PKC isozymes that are involved in cardiac excitability and discuss both genetic and pharmacological tools that were used, their attributes and limitations. Selective and effective pharmacological interventions to normalize cardiac electrical activities and correct cardiac arrhythmias will be of great clinical benefit.
PMCID: PMC3527095  PMID: 22202075
31.  Identification of εPKC targets during cardiac ischemic injury 
Background
Activation of ε protein kinase C (εPKC) protects hearts from ischemic injury. However, some of the mechanism(s) of εPKC mediated cardioprotection are still unclear. Identification of εPKC targets may aid to elucidate εPKC–mediated cardioprotective mechanisms. Previous studies, using a combination of εPKC transgenic mice and difference in gel electrophoresis (DIGE), identified a number of proteins involved in glucose metabolism, whose expression was modified by εPKC. These studies, were accompanied by metabolomic analysis, and suggested that increased glucose oxidation may be responsible for the cardioprotective effect of εPKC. However, whether these εPKC-mediated alterations were due to differences in protein expression or phosphorylation was not determined.
Methods and Results
Here, we used an εPKC-specific activator peptide, ψεRACK, in combination with phosphoproteomics to identify εPKC targets, and identified proteins whose phosphorylation was altered by selective activation of εPKC most of the identified proteins were mitochondrial proteins and analysis of the mitochondrial phosphoproteome, led to the identification of 55 spots, corresponding to 37 individual proteins, which were exclusively phosphorylated, in the presence of ψεRACK. The majority of the proteins identified were proteins involved in glucose and lipid metabolism, components of the respiratory chain as well as mitochondrial heat shock proteins.
Conclusion
In summary the protective effect of εPKC during ischemia involves phosphorylation of several mitochondrial proteins involved in glucose, lipid metabolism and oxidative phosphorylation. Regulation of these metabolic pathways by εPKC phosphorylation may lead to εPKC-mediated cardioprotection induced by ψεRACK.
PMCID: PMC3527096  PMID: 22453000
εPKC; ischemia; phosphorylation; mitochondria
32.  Pharmacological inhibition of βIIPKC is cardioprotective in late-stage hypertrophy 
We previously found that in the hearts of hypertensive Dahl salt-sensitive rats, βIIPKC levels increase during the transition from compensated cardiac hypertrophy to cardiac dysfunction. Here we showed that a six-week treatment of these hypertensive rats with a βIIPKC-specific inhibitor, βIIV5-3, prolonged their survival by at least six weeks, suppressed myocardial fibrosis and inflammation, and delayed the transition from compensated hypertrophy to cardiac dysfunction. In addition, changes in the levels of the Ca2+-handling proteins, SERCA2 and the Na+/Ca2+ exchanger, as well as troponin I phosphorylation, seen in the control-treated hypertensive rats were not observed in the βIIPKC-treated rats, suggesting that βIIPKC contributes to the regulation of calcium levels in the myocardium. In contrast, treatment with the selective inhibitor of βIPKC, an alternative spliced form of βIIPKC, had no beneficial effects in these rats. We also found that βIIV5-3, but not βIV5-3, improved calcium handling in isolated rat cardiomyocytes and enhanced contractility in isolated rat hearts. In conclusion, our data using an in vivo model of cardiac dysfunction (late-phase hypertrophy), suggest that βIIPKC contributes to the pathology associated with heart failure and thus an inhibitor of βIIPKC may be a potential treatment for this disease.
doi:10.1016/j.yjmcc.2011.08.025
PMCID: PMC3418885  PMID: 21920368
33.  β2-Adrenergic Receptors Mediate Cardioprotection through Crosstalk with Mitochondrial Cell Death Pathways 
Aims
β-adrenergic receptors (β-ARs) modulate cardiotoxicity/cardioprotection through crosstalk with multiple signaling pathways. We have previously shown that β2-ARs are cardioprotective during exposure to oxidative stress induced by doxorubicin (DOX). DOX cardiotoxicity is mediated in part through a Ca2+-dependent opening of the mitochondrial permeability transition (MPT), however the signals linking a cell surface receptor like the β2-AR to regulators of mitochondrial function are not clear. The objective of this study was to assess mechanisms of crosstalk between β2-ARs and mitochondrial cell death pathways.
Methods and Results
DOX administered to WT mice resulted in no acute mortality, however 85% of β2-/- mice died within 30 min. Several pro- and anti-survival pathways were altered. The pro-survival kinase, εPKC, was decreased by 64% in β2-/- after DOX vs WT (p<0.01); the εPKC activator ψεRACK partially rescued these mice (47% reduction in mortality). Activity of the pro-survival kinase Akt decreased by 76% in β2-/- after DOX vs WT (p<0.01). The α1-antagonist prazosin restored Akt activity to normal and also partially reversed the mortality (45%). Deletion of the β2-AR increased rate of Ca2+ release by 75% and peak [Ca2+]i by 20% respectively in isolated cardiomyocytes; the Ca2+ channel blocker verapamil also partially rescued the β2-/- (26%). Mitochondrial architecture was disrupted and complex I and II activities decreased by 40.9% and 34.6% respectively after DOX only in β2-/-. The MPT blocker cyclosporine reduced DOX mortality by 41% and prazosin plus cyclosporine acted synergistically to decrease mortality by 85%.
Conclusion
β2-ARs activate pro-survival kinases and attenuate mitochondrial dysfunction during oxidative stress; absence of β2-ARs enhances cardiotoxicity via negative regulation of survival kinases and enhancement of intracellular Ca2+, thus predisposing the mitochondria to opening of the MPT.
doi:10.1016/j.yjmcc.2011.06.019
PMCID: PMC3184305  PMID: 21756913
Adrenergic receptors; cardiomyopathy; mitochondria; signal transduction; protein kinases
34.  βIIPKC and εPKC isozymes as potential pharmacological targets in cardiac hypertrophy and heart failure 
Cardiac hypertrophy is a complex adaptive response to mechanical and neurohumoral stimuli and under continual stressor, it contributes to maladaptive responses, heart failure and death. Protein kinase C (PKC) and several other kinases play a role in the maladaptative cardiac responses, including cardiomyocyte hypertrophy, myocardial fibrosis and inflammation. Identifying specific therapies that regulate these kinases is a major focus of current research. PKC, a family of serine/threonine kinases, has emerged as potential mediators of hypertrophic stimuli associated with neurohumoral hyperactivity in heart failure. In this review, we describe the role of PKC isozymes that are involved in cardiac hypertrophy and heart failure.
doi:10.1016/j.yjmcc.2010.10.020
PMCID: PMC3135714  PMID: 21035454
PKC signaling pathways; cardiac remodeling; heart failure
35.  PKCβII inhibition attenuates myocardial infarction induced heart failure and is associated with a reduction of fibrosis and pro-inflammatory responses 
Protein kinase C βII (PKCβII) levels increase in the myocardium of patients with end-stage heart failure (HF). Also targeted over-expression of PKCβII in the myocardium of mice leads to dilated cardiomyopathy associated with inflammation, fibrosis and myocardial dysfunction. These reports suggest a deleterious role of PKCβII in HF development. Using a post-myocardial infarction (MI) model of heart failure in rats, we determined the benefit of chronic inhibition of PKCβII on the progression of heart failure over a period of 6 weeks after the onset of symptoms and the cellular basis for these effects. Four weeks after MI, rats with HF signs that were treated for 6 weeks with the PKCβII selective inhibitor (βIIV5-3 conjugated to TAT47-57 alone) (3mg/kg/day) showed improved fractional shortening (from 21% to 35%) compared to control (TAT47-57 alone). Formalin-fixed mid-ventricle tissue sections stained with picrosirius red, hematoxylin-eosin and toluidine blue dyes exhibited a 150% decrease in collagen deposition, a two-fold decrease in inflammation and a 30% reduction in mast cell degranulation, respectively, in rat hearts treated with the selective PKCβII inhibitor. Further, a 90% decrease in active TGFβ1 and a significant reduction in SMAD2/3 phosphorylation indicated that the selective inhibition of PKCβII attenuates cardiac remodeling mediated by the TGF-SMAD signaling pathway. Therefore, sustained selective inhibition of PKCβII in a post-MI HF rat model improves cardiac function and is associated with inhibition of pathological myocardial remodeling.
doi:10.1111/j.1582-4934.2010.01174.x
PMCID: PMC3136735  PMID: 20874717
Protein kinase; PKCβII inhibitor peptide; cardiac remodeling; heart failure; myocardial infarction; mast cells, myocardial fibrosis; inflammation
36.  Common ALDH2 genetic variants predict development of hypertension in the SAPPHIRe prospective cohort: Gene-environmental interaction with alcohol consumption 
Background
Genetic variants near/within the ALDH2 gene encoding the mitochondrial aldehyde dehydrogenase 2 have been associated with blood pressure and hypertension in several case–control association studies in East Asian populations.
Methods
Three common tag single nucleotide polymorphisms (tagSNP) in the ALDH2 gene were genotyped in 1,134 subjects of Chinese origin from the Stanford Asia-Pacific Program for Hypertension and Insulin Resistance (SAPPHIRe) family cohort. We examined whether the ALDH2 SNP genotypes predicted the development of hypertension in the prospective SAPPHIRe cohort.
Results
Over an average follow-up period of 5.7 years, carriers homozygous for the rs2238152 T allele in the ALDH2 gene were more likely to progress to hypertension than were non-carriers (hazard ratio [HR], 2.88, 95% confidence interval [CI], 1.06-7.84, P = 0.03), corresponding to a population attributable risk of ~7.1%. The risk associated with the rs2238152 T allele were strongest in heavy/moderate alcohol drinkers and was reduced in non-drinkers, indicating an interaction between ALDH2 genetic variants and alcohol intake on the risk of hypertension (P for interaction = 0.04). The risk allele was associated with significantly lower ALDH2 gene expression levels in human adipose tissue.
Conclusion
ALDH2 genetic variants were associated with progression to hypertension in a prospective Chinese cohort. The association was modified by alcohol consumption.
doi:10.1186/1471-2261-12-58
PMCID: PMC3476438  PMID: 22839215
ALDH2; Hypertension; SNP; Chinese
37.  Protein Quality Control Disruption by PKCβII in Heart Failure; Rescue by the Selective PKCβII Inhibitor, βIIV5-3 
PLoS ONE  2012;7(3):e33175.
Myocardial remodeling and heart failure (HF) are common sequelae of many forms of cardiovascular disease and a leading cause of mortality worldwide. Accumulation of damaged cardiac proteins in heart failure has been described. However, how protein quality control (PQC) is regulated and its contribution to HF development are not known. Here, we describe a novel role for activated protein kinase C isoform βII (PKCβII) in disrupting PQC. We show that active PKCβII directly phosphorylated the proteasome and inhibited proteasomal activity in vitro and in cultured neonatal cardiomyocytes. Importantly, inhibition of PKCβII, using a selective PKCβII peptide inhibitor (βIIV5-3), improved proteasomal activity and conferred protection in cultured neonatal cardiomyocytes. We also show that sustained inhibition of PKCβII increased proteasomal activity, decreased accumulation of damaged and misfolded proteins and increased animal survival in two rat models of HF. Interestingly, βIIV5-3-mediated protection was blunted by sustained proteasomal inhibition in HF. Finally, increased cardiac PKCβII activity and accumulation of misfolded proteins associated with decreased proteasomal function were found also in remodeled and failing human hearts, indicating a potential clinical relevance of our findings. Together, our data highlights PKCβII as a novel inhibitor of proteasomal function. PQC disruption by increased PKCβII activity in vivo appears to contribute to the pathophysiology of heart failure, suggesting that PKCβII inhibition may benefit patients with heart failure. (218 words)
doi:10.1371/journal.pone.0033175
PMCID: PMC3316563  PMID: 22479367
38.  Aldehyde dehydrogenase activation prevents reperfusion arrhythmias by inhibiting local renin release from cardiac mast cells 
Circulation  2010;122(8):771-781.
Background
Renin released by ischemia/reperfusion (I/R) from cardiac mast cells activates a local renin-angiotensin system (RAS). This exacerbates norepinephrine release and reperfusion arrhythmias (VT/VF), making RAS a new therapeutic target in myocardial ischemia.
Methods and Results
We investigated whether ischemic preconditioning (IPC) prevents cardiac RAS activation in guinea-pig hearts ex-vivo. When I/R (20-min ischemia/30-min reperfusion) was preceded by IPC (2×5-min I/R cycles), renin and norepinephrine release and VT/VF duration were markedly decreased, a cardioprotective anti-RAS effect. Activation and blockade of adenosine A2b/A3-receptors, and activation and inhibition of PKCε, mimicked and prevented, respectively, the anti-RAS effects of IPC. Moreover, activation of A2b/A3-receptors, or activation of PKCε, prevented degranulation and renin release elicited by peroxide in cultured mast cells (HMC-1). Activation and inhibition of mitochondrial aldehyde dehydrogenase type-2 (ALDH2) also mimicked and prevented, respectively, the cardioprotective anti-RAS effects of IPC. Furthermore, ALDH2 activation inhibited degranulation and renin release by reactive aldehydes in HMC-1. Notably, PKCε and ALDH2 were both activated by A2b/A3-receptor stimulation in HMC-1, and PKCε inhibition prevented ALDH2 activation.
Conclusions
The results uncover a signaling cascade initiated by A2b/A3-receptors, which triggers PKCε-mediated ALDH2 activation in cardiac mast cells, contributing to IPC-induced cardioprotection by preventing mast-cell renin release and the dysfunctional consequences of local RAS activation. Thus, unlike classical IPC where cardiac myocytes are the main target, cardiac mast cells are the critical site at which the cardioprotective anti-RAS effects of IPC develop.
doi:10.1161/CIRCULATIONAHA.110.952481
PMCID: PMC2927811  PMID: 20697027
Renin; Ischemia; Reperfusion; Norepinephrine; Arrhythmia
39.  Highly Specific Modulators of Protein Kinase C Localization: Applications to Heart Failure 
Heart failure (HF) in which the blood supply does not match the body's needs, affects 10% of the population over 65 years old. The protein kinase C (PKC) family of kinases has a key role in normal and disease states. Here we discuss the role of PKC in HF and focus on the use of specific PKC regulators to identify the mechanism leading to this Pathology and potential leads for therapeutics.
doi:10.1016/j.ddmec.2010.07.001
PMCID: PMC2998291  PMID: 21151743
40.  Regulation of mitochondrial processes: a target for heart failure 
Cardiac mitochondria, the main source of energy as well as free radicals, are vital organelles for normal functioning of the heart. Mitochondrial number, structure, turnover and function are regulated by processes such as mitochondrial protein quality control, mitochondrial fusion and fission and mitophagy. Recent studies suggest that abnormal changes in these mitochondrial regulatory processes may contribute to the pathology of heart failure (HF). Here we discuss these processes and their potential as therapeutic targets.
doi:10.1016/j.ddmec.2010.07.002
PMCID: PMC3026286  PMID: 21278905
41.  Activation of aldehyde dehydrogenase 2 (ALDH2) confers cardioprotection in protein kinase C epsilon (PKCε) knockout mice 
Acute administration of ethanol can reduce cardiac ischemia/reperfusion injury. Previous studies demonstrated that the acute cytoprotective effect of ethanol on the myocardium is mediated by protein kinase C epsilon (PKCε). We recently identified aldehyde dehydrogenase 2 (ALDH2) as an PKCε substrate, whose activation is necessary and sufficient to confer cardioprotection in vivo. ALDH2 metabolizes cytotoxic reactive aldehydes, such as 4-hydroxy-2-nonenal (4-HNE), which accumulate during cardiac ischemia/reperfusion. Here, we used a combination of PKCε knockout mice and a direct activator of ALDH2, Alda-44, to further investigate the interplay between PKCε and ALDH2 in cardioprotection. We report that ethanol preconditioning requires PKCε, whereas direct activation of ALDH2 reduces infarct size in both wild type and PKCε knockout hearts. Our data suggest that ALDH2 is downstream of PKCε in ethanol preconditioning and that direct activation of ALDH2 can circumvent the requirement of PKCε to induce cytoprotection. We also report that in addition to ALDH2 activation, Alda-44 prevents 4-HNE induced inactivation of ALDH2 by reducing the formation of 4-HNE-ALDH2 protein adducts. Thus, Alda-44 promotes metabolism of cytotoxic reactive aldehydes that accumulate in ischemic myocardium. Taken together, our findings suggest that direct activation of ALDH2 may represent a method of harnessing the cardioprotective effect of ethanol without the side effects associated with alcohol consumption.
doi:10.1016/j.yjmcc.2009.10.030
PMCID: PMC2837767  PMID: 19913552
42.  Aberrant mitochondrial fission in neurons induced by protein kinase Cδ under oxidative stress conditions in vivo 
Molecular Biology of the Cell  2011;22(2):256-265.
Impaired mitochondrial fusion/fission plays a causal role in neuronal death. This study delineated a PKCδ-related signaling cascade in which excessive mitochondrial fission is induced during oxidative stress. Moreover, a selective peptide inhibitor of PKCδ inhibits impaired mitochondrial fission under these pathological conditions.
Neuronal cell death in a number of neurological disorders is associated with aberrant mitochondrial dynamics and mitochondrial degeneration. However, the triggers for this mitochondrial dysregulation are not known. Here we show excessive mitochondrial fission and mitochondrial structural disarray in brains of hypertensive rats with hypertension-induced brain injury (encephalopathy). We found that activation of protein kinase Cδ (PKCδ) induced aberrant mitochondrial fragmentation and impaired mitochondrial function in cultured SH-SY5Y neuronal cells and in this rat model of hypertension-induced encephalopathy. Immunoprecipitation studies indicate that PKCδ binds Drp1, a major mitochondrial fission protein, and phosphorylates Drp1 at Ser 579, thus increasing mitochondrial fragmentation. Further, we found that Drp1 Ser 579 phosphorylation by PKCδ is associated with Drp1 translocation to the mitochondria under oxidative stress. Importantly, inhibition of PKCδ, using a selective PKCδ peptide inhibitor (δV1-1), reduced mitochondrial fission and fragmentation and conferred neuronal protection in vivo and in culture. Our study suggests that PKCδ activation dysregulates the mitochondrial fission machinery and induces aberrant mitochondrial fission, thus contributing to neurological pathology.
doi:10.1091/mbc.E10-06-0551
PMCID: PMC3020920  PMID: 21119009
43.  Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant 
In approximately one billion people, a point mutation inactivates a key detoxifying enzyme, aldehyde dehydrogenase (ALDH2). This mitochondrial enzyme metabolizes toxic biogenic and environmental aldehydes, including the endogenously produced 4-hydroxynonenal (4HNE) and the environmental pollutant, acrolein. ALDH2 also bioactivates nitroglycerin, but it is best known for its role in ethanol metabolism. The accumulation of acetaldehyde following the consumption of even a single alcoholic beverage leads to the Asian Alcohol-induced Flushing Syndrome in ALDH2*2 homozygotes. The ALDH2*2 allele is semi-dominant and heterozygotic individuals exhibit a similar, but not as severe phenotype. We recently identified a small molecule, Alda-1, which activates wild-type ALDH2 and restores near wild-type activity to ALDH2*2. The structures of Alda-1 bound to ALDH2 and ALDH2*2 reveal how Alda-1 activates the wild-type enzyme and how it restores the activity of ALDH2*2 by acting as a structural chaperone.
doi:10.1038/nsmb.1737
PMCID: PMC2857674  PMID: 20062057
44.  Aldehyde dehydrogenase 2 in cardiac protection: a new therapeutic target? 
Trends in cardiovascular medicine  2009;19(5):158-164.
Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is emerging as a key enzyme involved in cytoprotection in the heart. ALDH2 mediates both the detoxification of reactive aldehydes such as acetaldehyde and 4-hydroxy-2-nonenal (4-HNE) and the bioactivation of nitroglycerin (GTN) to nitric oxide (NO). In addition, chronic nitrate treatment results in ALDH2 inhibition and contributes to nitrate tolerance. Our lab recently identified ALDH2 to be a key mediator of endogenous cytoprotection. We reported that ALDH2 is phosphorylated and activated by the survival kinase protein kinase C epsilon (PKCε) and found a strong inverse correlation between ALDH2 activity and infarct size. We also identified a small molecule ALDH2 activator (Alda-1) which reduces myocardial infarct size induced by ischemia/reperfusion in vivo. In this review, we discuss evidence that ALDH2 is a key mediator of endogenous survival signaling in the heart, suggest possible cardioprotective mechanisms mediated by ALDH2, and discuss potential clinical implications of these findings.
doi:10.1016/j.tcm.2009.09.003
PMCID: PMC2856486  PMID: 20005475
45.  Mitochondrial import of PKCε is mediated by HSP90: a role in cardioprotection from ischaemia and reperfusion injury 
Cardiovascular Research  2010;88(1):83-92.
Aims
Protein kinase C epsilon (PKCε) is critical for cardiac protection from ischaemia and reperfusion (IR) injury. PKCε substrates that mediate cytoprotection reside in the mitochondria. However, the mechanism enabling mitochondrial translocation and import of PKCε to enable phosphorylation of these substrates is not known. Heat shock protein 90 (HSP90) is a cytoprotective protein chaperone that participates in mitochondrial import of a number of proteins. Here, we investigated the role of HSP90 in mitochondrial import of PKCε.
Methods and results
Using an ex vivo perfused rat heart model of IR, we found that PKCε translocates from the cytosol to the mitochondrial fraction following IR. Immunogold electron microscopy and mitochondrial fractionation demonstrated that following IR, mitochondrial PKCε is localized within the mitochondria, on the inner mitochondrial membrane. Pharmacological inhibition of HSP90 prevented IR-induced interaction between PKCε and the translocase of the outer membrane (Tom20), reduced mitochondrial import of PKCε, and increased necrotic cell death by ∼70%. Using a rational approach, we designed a 7-amino acid peptide activator of PKCε, derived from an HSP90 homologous sequence located in the C2 domain of PKCε (termed ψεHSP90). Treatment with this peptide (conjugated to the cell permeating TAT protein-derived peptide, TAT47–57) increased PKCε–HSP90 protein–protein interaction, enhanced mitochondrial translocation of PKCε, increased phosphorylation and activity of an intra-mitochondrial PKCε substrate, aldehyde dehydrogenase 2, and reduced cardiac injury in ex vivo and in vivo models of myocardial infarction.
Conclusion
Our results suggest that HSP90-mediated mitochondrial import of PKCε plays an important role in the protection of the myocardium from IR injury.
doi:10.1093/cvr/cvq154
PMCID: PMC2936125  PMID: 20558438
Protein kinase C epsilon; Mitochondria; Protein–protein interaction; Ischaemia reperfusion; Heat shock protein 90
46.  Mitochondrial aldehyde dehydrogenase and cardiac diseases 
Cardiovascular Research  2010;88(1):51-57.
Numerous conditions promote oxidative stress, leading to the build-up of reactive aldehydes that cause cell damage and contribute to cardiac diseases. Aldehyde dehydrogenases (ALDHs) are important enzymes that eliminate toxic aldehydes by catalysing their oxidation to non-reactive acids. The review will discuss evidence indicating a role for a specific ALDH enzyme, the mitochondrial ALDH2, in combating oxidative stress by reducing the cellular ‘aldehydic load’. Epidemiological studies in humans carrying an inactive ALDH2, genetic models in mice with altered ALDH2 levels, and small molecule activators of ALDH2 all highlight the role of ALDH2 in cardioprotection and suggest a promising new direction in cardiovascular research and the development of new treatments for cardiovascular diseases.
doi:10.1093/cvr/cvq192
PMCID: PMC2936126  PMID: 20558439
ALDH2; Mitochondria; Ischaemia; Nitroglycerin; Alda-1
47.  Preserved Coronary Endothelial Function by Inhibition of δ Protein Kinase C in a Porcine Acute Myocardial Infarction Model 
International journal of cardiology  2008;133(2):256-259.
Background
Previous studies demonstrate impairment of endothelial-dependent vasodilation after ischemia/reperfusion (I/R). Though we have demonstrated that inhibition of δ protein kinase C (δPKC) at reperfusion reduces myocyte damage and improves cardiac function in a porcine acute myocardial infarction (AMI) model, impact of the selective δPKC inhibitor on epicardial coronary endothelial function remains unknown.
Methods
Either δPKC inhibitor (δV1-1, n=5) or saline (n=5) was infused into the left anterior descending artery at the last 1 minute of the 30-minute ischemia by balloon occlusion. In vivo responses to bradykinin (endothelium-dependent vasodilator) or nitroglycerin (endothelium-independent vasodilator) were analyzed at 24 h after I/R using intravascular ultrasound. Vascular responses were calculated as the ratio of vessel area at each time point (30, 60, 90 and 120 seconds after the infusion), divided by values at baseline (before the infusion).
Results
In control pigs, endothelial-dependent vasodilation following bradykinin infusion in infarct-related epicardial coronary artery was impaired, whereas in δPKC inhibitor treated-pigs the endothelial-dependent vasodilation was preserved. Nitroglycerin infusion caused similar vasodilatory responses in the both groups.
Conclusions
This is the first demonstration that a δPKC inhibitor preserves vasodilator capacity in epicardial coronary arteries in an in vivo porcine AMI model. Because endothelial dysfunction correlates with worse outcome in patients with AMI, this preserved endothelial function in epicardial coronary arteries might result in a better clinical outcome.
doi:10.1016/j.ijcard.2007.11.021
PMCID: PMC2688394  PMID: 18242734
ultrasonography; angioplasty; myocardial infarction; protein kinases; endothelium
48.  Insight into intra- and inter-molecular interactions of PKC: design of specific modulators of kinase function 
Protein kinase C (PKC) is a family of kinases that are critical in many cellular events. These enzymes are activated by lipid-derived second messengers, are dependent on binding to negatively charged phospholipids and some members also require calcium to attain full activation. The interaction with lipids and calcium activators is mediated by binding to the regulatory domains C1 and C2. In addition, many protein-protein interactions between PKC and other proteins have been described. These include interactions with adaptor proteins, substrates and cytoskeletal elements. Regulation of the interactions between PKC, small molecules and other proteins is essential for signal transduction to occur. Finally, a number of auto-inhibitory intramolecular protein-protein interactions have also been identified in PKC. This chapter focuses on mapping the sites for many of these inter and intramolecular interactions and how this information may be used to generate selective inhibitors and activators of PKC signaling.
doi:10.1016/j.phrs.2007.04.014
PMCID: PMC2834269  PMID: 17580120
49.  Time-dependent and ethanol-induced cardiac protection from ischemia mediated by mitochondrial translocation of εPKC and activation of aldehyde dehydrogenase 2 
The cardioprotective effects of moderate alcohol consumption have been well documented in animal models and in humans. Protection afforded against ischemia and reperfusion injury (I/R) proceeds through an ischemic preconditioning-like mechanism involving the activation of epsilon protein kinase C (εPKC) and is dependent on the time and duration of ethanol treatment. However, the substrates of εPKC and the molecular mechanisms by which the enzyme protects the heart from oxidative damage induced by I/R are not fully described. Using an open-chest model of acute myocardial infarction in vivo, we find that intraperitoneal injection of ethanol (0.5 g/kg) 60 minutes prior to (but not 15 minutes prior to) a 30-minute transient ligation of the left anterior descending coronary artery reduced I/R-mediated injury by 57% (measured as a decrease of creatine phosphokinase release into the blood). Only under cardioprotective conditions, ethanol treatment resulted in the translocation of εPKC to cardiac mitochondria, where the enzyme bound aldehyde dehydrogenase-2 (ALDH2). ALDH2 is an intra-mitochondrial enzyme involved in the detoxification of toxic aldehydes such as 4-hydroxy-2-nonenal (4-HNE) and 4-HNE mediates oxidative damage, at least in part, by covalently modifying and inactivating proteins (by forming 4-HNE adducts). In hearts subjected to I/R after ethanol treatment, the levels of 4-HNE protein adducts were lower and JNK1/2 and ERK1/2 activities were diminished relative to the hearts from rats subjected to I/R in the absence of ethanol. Together, this work provides an insight into the mitochondrial-dependent basis of ethanol-induced and εPKC-mediated protection from cardiac ischemia, in vivo.
doi:10.1016/j.yjmcc.2008.09.713
PMCID: PMC2675554  PMID: 18983847
50.  Rationally designed peptide regulators of protein kinase C 
Protein-protein interactions sequester enzymes close to their substrates. Protein kinase C (PKC) is one example of a ubiquitous signaling molecule with effects that are dependent upon localization. Short peptides derived from interaction sites between each PKC isozyme and its receptor for activated C kinase act as highly specific inhibitors and have become available as selective drugs in basic research and animal models of human diseases, such as myocardial infarction and hyperglycemia. Whereas the earlier inhibitory peptides are highly specific, we believe that peptides targeting additional interactions between PKC and selective substrates will generate even more selective tools that regulate different functions of individual isozymes. Here, we discuss the methodologies and applications for identifying selective regulators of PKC.
doi:10.1016/j.tem.2008.10.002
PMCID: PMC2714361  PMID: 19056296

Results 26-50 (67)