PMCC PMCC

Search tips
Search criteria

Advanced
Results 26-44 (44)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Year of Publication
more »
26.  Aberrant 5′ splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization 
Nucleic Acids Research  2007;35(13):4250-4263.
Despite a growing number of splicing mutations found in hereditary diseases, utilization of aberrant splice sites and their effects on gene expression remain challenging to predict. We compiled sequences of 346 aberrant 5′splice sites (5′ss) that were activated by mutations in 166 human disease genes. Mutations within the 5′ss consensus accounted for 254 cryptic 5′ss and mutations elsewhere activated 92 de novo 5′ss. Point mutations leading to cryptic 5′ss activation were most common in the first intron nucleotide, followed by the fifth nucleotide. Substitutions at position +5 were exclusively G>A transitions, which was largely attributable to high mutability rates of C/G>T/A. However, the frequency of point mutations at position +5 was significantly higher than that observed in the Human Gene Mutation Database, suggesting that alterations of this position are particularly prone to aberrant splicing, possibly due to a requirement for sequential interactions with U1 and U6 snRNAs. Cryptic 5′ss were best predicted by computational algorithms that accommodate nucleotide dependencies and not by weight-matrix models. Discrimination of intronic 5′ss from their authentic counterparts was less effective than for exonic sites, as the former were intrinsically stronger than the latter. Computational prediction of exonic de novo 5′ss was poor, suggesting that their activation critically depends on exonic splicing enhancers or silencers. The authentic counterparts of aberrant 5′ss were significantly weaker than the average human 5′ss. The development of an online database of aberrant 5′ss will be useful for studying basic mechanisms of splice-site selection, identifying splicing mutations and optimizing splice-site prediction algorithms.
doi:10.1093/nar/gkm402
PMCID: PMC1934990  PMID: 17576681
27.  A novel histone exchange factor, protein phosphatase 2Cγ, mediates the exchange and dephosphorylation of H2A–H2B 
The Journal of Cell Biology  2006;175(3):389-400.
In eukaryotic nuclei, DNA is wrapped around a protein octamer composed of the core histones H2A, H2B, H3, and H4, forming nucleosomes as the fundamental units of chromatin. The modification and deposition of specific histone variants play key roles in chromatin function. In this study, we established an in vitro system based on permeabilized cells that allows the assembly and exchange of histones in situ. H2A and H2B, each tagged with green fluorescent protein (GFP), are incorporated into euchromatin by exchange independently of DNA replication, and H3.1-GFP is assembled into replicated chromatin, as found in living cells. By purifying the cellular factors that assist in the incorporation of H2A–H2B, we identified protein phosphatase (PP) 2C γ subtype (PP2Cγ/PPM1G) as a histone chaperone that binds to and dephosphorylates H2A–H2B. The disruption of PP2Cγ in chicken DT40 cells increased the sensitivity to caffeine, a reagent that disturbs DNA replication and damage checkpoints, suggesting the involvement of PP2Cγ-mediated histone dephosphorylation and exchange in damage response or checkpoint recovery in higher eukaryotes.
doi:10.1083/jcb.200608001
PMCID: PMC2064517  PMID: 17074886
28.  Enhancement of SMN2 Exon 7 Inclusion by Antisense Oligonucleotides Targeting the Exon 
PLoS Biology  2007;5(4):e73.
Several strategies have been pursued to increase the extent of exon 7 inclusion during splicing of SMN2 (survival of motor neuron 2) transcripts, for eventual therapeutic use in spinal muscular atrophy (SMA), a genetic neuromuscular disease. Antisense oligonucleotides (ASOs) that target an exon or its flanking splice sites usually promote exon skipping. Here we systematically tested a large number of ASOs with a 2′-O-methoxy-ethyl ribose (MOE) backbone that hybridize to different positions of SMN2 exon 7, and identified several that promote greater exon inclusion, others that promote exon skipping, and still others with complex effects on the accumulation of the two alternatively spliced products. This approach provides positional information about presumptive exonic elements or secondary structures with positive or negative effects on exon inclusion. The ASOs are effective not only in cell-free splicing assays, but also when transfected into cultured cells, where they affect splicing of endogenous SMN transcripts. The ASOs that promote exon 7 inclusion increase full-length SMN protein levels, demonstrating that they do not interfere with mRNA export or translation, despite hybridizing to an exon. Some of the ASOs we identified are sufficiently active to proceed with experiments in SMA mouse models.
Author Summary
Spinal muscular atrophy (SMA) is a severe genetic disease that causes motor-neuron degeneration. SMA patients lack a functional SMN1 (survival of motor neuron 1) gene, but they possess an intact SMN2 gene, which though nearly identical to SMN1, is only partially functional. The defect in SMN2 gene expression is at the level of pre-mRNA splicing (skipping of exon 7), and the presence of this gene in all SMA patients makes it an attractive target for potential therapy. Here we have surveyed a large number of antisense oligonucleotides (ASOs) that are complementary to different regions of exon 7 in the SMN2 mRNA. A few of these ASOs are able to correct the pre-mRNA splicing defect, presumably because they bind to regions of exon 7 that form RNA structures, or provide protein-binding sites, that normally weaken the recognition of this exon by the splicing machinery in the cell nucleus. We describe optimal ASOs that promote correct expression of SMN2 mRNA and, therefore, normal SMN protein, in cultured cells from SMA patients. These ASOs can now be tested in mouse models of SMA, and may be useful for SMA therapy.
Mutations inSMN1 cause spinal muscular atrophy; a nearly identical gene is not functional, but becomes functional in vitro and in vivo after addition of antisense oligos.
doi:10.1371/journal.pbio.0050073
PMCID: PMC1820610  PMID: 17355180
29.  Antisense oligonucleotide-induced alternative splicing of the APOB mRNA generates a novel isoform of APOB 
Background
Apolipoprotein B (APOB) is an integral part of the LDL, VLDL, IDL, Lp(a) and chylomicron lipoprotein particles. The APOB pre-mRNA consists of 29 constitutively-spliced exons. APOB exists as two natural isoforms: the full-length APOB100 isoform, assembled into LDL, VLDL, IDL and Lp(a) and secreted by the liver in humans; and the C-terminally truncated APOB48, assembled into chylomicrons and secreted by the intestine in humans. Down-regulation of APOB100 is a potential therapy to lower circulating LDL and cholesterol levels.
Results
We investigated the ability of 2'O-methyl RNA antisense oligonucleotides (ASOs) to induce the skipping of exon 27 in endogenous APOB mRNA in HepG2 cells. These ASOs are directed towards the 5' and 3' splice-sites of exon 27, the branch-point sequence (BPS) of intron 26–27 and several predicted exonic splicing enhancers within exon 27. ASOs targeting either the 5' or 3' splice-site, in combination with the BPS, are the most effective. The splicing of other alternatively spliced genes are not influenced by these ASOs, suggesting that the effects seen are not due to non-specific changes in alternative splicing. The skip 27 mRNA is translated into a truncated isoform, APOB87SKIP27.
Conclusion
The induction of APOB87SKIP27 expression in vivo should lead to decreased LDL and cholesterol levels, by analogy to patients with hypobetalipoproteinemia. As intestinal APOB mRNA editing and APOB48 expression rely on sequences within exon 26, exon 27 skipping should not affect APOB48 expression unlike other methods of down-regulating APOB100 expression which also down-regulate APOB48.
doi:10.1186/1471-2199-8-3
PMCID: PMC1784105  PMID: 17233885
30.  Comprehensive splice-site analysis using comparative genomics 
Nucleic Acids Research  2006;34(14):3955-3967.
We have collected over half a million splice sites from five species—Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans and Arabidopsis thaliana—and classified them into four subtypes: U2-type GT–AG and GC–AG and U12-type GT–AG and AT–AC. We have also found new examples of rare splice-site categories, such as U12-type introns without canonical borders, and U2-dependent AT–AC introns. The splice-site sequences and several tools to explore them are available on a public website (SpliceRack). For the U12-type introns, we find several features conserved across species, as well as a clustering of these introns on genes. Using the information content of the splice-site motifs, and the phylogenetic distance between them, we identify: (i) a higher degree of conservation in the exonic portion of the U2-type splice sites in more complex organisms; (ii) conservation of exonic nucleotides for U12-type splice sites; (iii) divergent evolution of C.elegans 3′ splice sites (3′ss) and (iv) distinct evolutionary histories of 5′ and 3′ss. Our study proves that the identification of broad patterns in naturally-occurring splice sites, through the analysis of genomic datasets, provides mechanistic and evolutionary insights into pre-mRNA splicing.
doi:10.1093/nar/gkl556
PMCID: PMC1557818  PMID: 16914448
31.  Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes 
Nucleic Acids Research  2005;33(16):5053-5062.
Exonic splicing enhancers (ESEs) are pre-mRNA cis-acting elements required for splice-site recognition. We previously developed a web-based program called ESEfinder that scores any sequence for the presence of ESE motifs recognized by the human SR proteins SF2/ASF, SRp40, SRp55 and SC35 (). Using ESEfinder, we have undertaken a large-scale analysis of ESE motif distribution in human protein-coding genes. Significantly higher frequencies of ESE motifs were observed in constitutive internal protein-coding exons, compared with both their flanking intronic regions and with pseudo exons. Statistical analysis of ESE motif frequency distributions revealed a complex relationship between splice-site strength and increased or decreased frequencies of particular SR protein motifs. Comparison of constitutively and alternatively spliced exons demonstrated slightly weaker splice-site scores, as well as significantly fewer ESE motifs, in the alternatively spliced group. Our results underline the importance of ESE-mediated SR protein function in the process of exon definition, in the context of both constitutive splicing and regulated alternative splicing.
doi:10.1093/nar/gki810
PMCID: PMC1201331  PMID: 16147989
32.  Human Immunodeficiency Virus Type 1 hnRNP A/B-Dependent Exonic Splicing Silencer ESSV Antagonizes Binding of U2AF65 to Viral Polypyrimidine Tracts 
Molecular and Cellular Biology  2003;23(23):8762-8772.
Human immunodeficiency virus type 1 (HIV-1) exonic splicing silencers (ESSs) inhibit production of certain spliced viral RNAs by repressing alternative splicing of the viral precursor RNA. Several HIV-1 ESSs interfere with spliceosome assembly by binding cellular hnRNP A/B proteins. Here, we have further characterized the mechanism of splicing repression using a representative HIV-1 hnRNP A/B-dependent ESS, ESSV, which regulates splicing at the vpr 3′ splice site. We show that hnRNP A/B proteins bound to ESSV are necessary to inhibit E complex assembly by competing with the binding of U2AF65 to the polypyrimidine tracts of repressed 3′ splice sites. We further show evidence suggesting that U1 snRNP binds the 5′ splice site despite an almost complete block of splicing by ESSV. Possible splicing-independent functions of U1 snRNP-5′ splice site interactions during virus replication are discussed.
doi:10.1128/MCB.23.23.8762-8772.2003
PMCID: PMC262674  PMID: 14612416
33.  Intrinsic differences between authentic and cryptic 5′ splice sites 
Nucleic Acids Research  2003;31(21):6321-6333.
Cryptic splice sites are used only when use of a natural splice site is disrupted by mutation. To determine the features that distinguish authentic from cryptic 5′ splice sites (5′ss), we systematically analyzed a set of 76 cryptic 5′ss derived from 46 human genes. These cryptic 5′ss have a similar frequency distribution in exons and introns, and are usually located close to the authentic 5′ss. Statistical analysis of the strengths of the 5′ss using the Shapiro and Senapathy matrix revealed that authentic 5′ss have significantly higher score values than cryptic 5′ss, which in turn have higher values than the mutant ones. β-Globin provides an interesting exception to this rule, so we chose it for detailed experimental analysis in vitro. We found that the sequences of the β-globin authentic and cryptic 5′ss, but not their surrounding context, determine the correct 5′ss choice, although their respective scores do not reflect this functional difference. Our analysis provides a statistical basis to explain the competitive advantage of authentic over cryptic 5′ss in most cases, and should facilitate the development of tools to reliably predict the effect of disease-associated 5′ss-disrupting mutations at the mRNA level.
doi:10.1093/nar/gkg830
PMCID: PMC275472  PMID: 14576320
34.  ESEfinder: a web resource to identify exonic splicing enhancers 
Nucleic Acids Research  2003;31(13):3568-3571.
Point mutations frequently cause genetic diseases by disrupting the correct pattern of pre-mRNA splicing. The effect of a point mutation within a coding sequence is traditionally attributed to the deduced change in the corresponding amino acid. However, some point mutations can have much more severe effects on the structure of the encoded protein, for example when they inactivate an exonic splicing enhancer (ESE), thereby resulting in exon skipping. ESEs also appear to be especially important in exons that normally undergo alternative splicing. Different classes of ESE consensus motifs have been described, but they are not always easily identified. ESEfinder (http://exon.cshl.edu/ESE/) is a web-based resource that facilitates rapid analysis of exon sequences to identify putative ESEs responsive to the human SR proteins SF2/ASF, SC35, SRp40 and SRp55, and to predict whether exonic mutations disrupt such elements.
PMCID: PMC169022  PMID: 12824367
35.  Nuclear Export and Retention Signals in the RS Domain of SR Proteins 
Molecular and Cellular Biology  2002;22(19):6871-6882.
Splicing factors of the SR protein family share a modular structure consisting of one or two RNA recognition motifs (RRMs) and a C-terminal RS domain rich in arginine and serine residues. The RS domain, which is extensively phosphorylated, promotes protein-protein interactions and directs subcellular localization and—in certain situations—nucleocytoplasmic shuttling of individual SR proteins. We analyzed mutant versions of human SF2/ASF in which the natural RS repeats were replaced by RD or RE repeats and compared the splicing and subcellular localization properties of these proteins to those of SF2/ASF lacking the entire RS domain or possessing a minimal RS domain consisting of 10 consecutive RS dipeptides (RS10). In vitro splicing of a pre-mRNA that requires an RS domain could take place when the mutant RD, RE, or RS10 domain replaced the natural domain. The RS10 version of SF2/ASF shuttled between the nucleus and the cytoplasm in the same manner as the wild-type protein, suggesting that a tract of consecutive RS dipeptides, in conjunction with the RRMs of SF2/ASF, is necessary and sufficient to direct nucleocytoplasmic shuttling. However, the SR protein SC35 has two long stretches of RS repeats, yet it is not a shuttling protein. We demonstrate the presence of a dominant nuclear retention signal in the RS domain of SC35.
doi:10.1128/MCB.22.19.6871-6882.2002
PMCID: PMC134038  PMID: 12215544
36.  Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1 
Nucleic Acids Research  2002;30(7):1531-1538.
The RNA-recognition motif (RRM) is a common and evolutionarily conserved RNA-binding module. Crystallographic and solution structural studies have shown that RRMs adopt a compact α/β structure, in which four antiparallel β-strands form the major RNA-binding surface. Conserved aromatic residues in the RRM are located on the surface of the β-sheet and are important for RNA binding. To further our understanding of the structural basis of RRM-nucleic acid interaction, we carried out a high resolution analysis of UP1, the N-terminal, two-RRM domain of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), whose structure was previously solved at 1.75–1.9 Å resolution. The two RRMs of hnRNP A1 are closely related but have distinct functions in regulating alternative pre-mRNA splice site selection. Our present 1.1 Å resolution crystal structure reveals that two conserved solvent-exposed phenylalanines in the first RRM have alternative side chain conformations. These conformations are spatially correlated, as the individual amino acids cannot adopt each of the observed conformations independently. These phenylalanines are critical for nucleic acid binding and the observed alternative side chain conformations may serve as a mechanism for regulating nucleic acid binding by RRM-containing proteins.
PMCID: PMC101846  PMID: 11917013
37.  RNA Splicing at Human Immunodeficiency Virus Type 1 3′ Splice Site A2 Is Regulated by Binding of hnRNP A/B Proteins to an Exonic Splicing Silencer Element 
Journal of Virology  2001;75(18):8487-8497.
The synthesis of human immunodeficiency virus type 1 (HIV-1) mRNAs is a complex process by which more than 30 different mRNA species are produced by alternative splicing of a single primary RNA transcript. HIV-1 splice sites are used with significantly different efficiencies, resulting in different levels of mRNA species in infected cells. Splicing of Tat mRNA, which is present at relatively low levels in infected cells, is repressed by the presence of exonic splicing silencers (ESS) within the two tat coding exons (ESS2 and ESS3). These ESS elements contain the consensus sequence PyUAG. Here we show that the efficiency of splicing at 3′ splice site A2, which is used to generate Vpr mRNA, is also regulated by the presence of an ESS (ESSV), which has sequence homology to ESS2 and ESS3. Mutagenesis of the three PyUAG motifs within ESSV increases splicing at splice site A2, resulting in increased Vpr mRNA levels and reduced skipping of the noncoding exon flanked by A2 and D3. The increase in Vpr mRNA levels and the reduced skipping also occur when splice site D3 is mutated toward the consensus sequence. By in vitro splicing assays, we show that ESSV represses splicing when placed downstream of a heterologous splice site. A1, A1B, A2, and B1 hnRNPs preferentially bind to ESSV RNA compared to ESSV mutant RNA. Each of these proteins, when added back to HeLa cell nuclear extracts depleted of ESSV-binding factors, is able to restore splicing repression. The results suggest that coordinate repression of HIV-1 RNA splicing is mediated by members of the hnRNP A/B protein family.
doi:10.1128/JVI.75.18.8487-8497.2001
PMCID: PMC115094  PMID: 11507194
38.  Selection of Alternative 5′ Splice Sites: Role of U1 snRNP and Models for the Antagonistic Effects of SF2/ASF and hnRNP A1 
Molecular and Cellular Biology  2000;20(22):8303-8318.
The first component known to recognize and discriminate among potential 5′ splice sites (5′SSs) in pre-mRNA is the U1 snRNP. However, the relative levels of U1 snRNP binding to alternative 5′SSs do not necessarily determine the splicing outcome. Strikingly, SF2/ASF, one of the essential SR protein-splicing factors, causes a dose-dependent shift in splicing to a downstream (intron-proximal) site, and yet it increases U1 snRNP binding at upstream and downstream sites simultaneously. We show here that hnRNP A1, which shifts splicing towards an upstream 5′SS, causes reduced U1 snRNP binding at both sites. Nonetheless, the importance of U1 snRNP binding is shown by proportionality between the level of U1 snRNP binding to the downstream site and its use in splicing. With purified components, hnRNP A1 reduces U1 snRNP binding to 5′SSs by binding cooperatively and indiscriminately to the pre-mRNA. Mutations in hnRNP A1 and SF2/ASF show that the opposite effects of the proteins on 5′SS choice are correlated with their effects on U1 snRNP binding. Cross-linking experiments show that SF2/ASF and hnRNP A1 compete to bind pre-mRNA, and we conclude that this competition is the basis of their functional antagonism; SF2/ASF enhances U1 snRNP binding at all 5′SSs, the rise in simultaneous occupancy causing a shift in splicing towards the downstream site, whereas hnRNP A1 interferes with U1 snRNP binding such that 5′SS occupancy is lower and the affinities of U1 snRNP for the individual sites determine the site of splicing.
PMCID: PMC102138  PMID: 11046128
39.  The Mkk3/6-p38–Signaling Cascade Alters the Subcellular Distribution of Hnrnp A1 and Modulates Alternative Splicing Regulation 
The Journal of Cell Biology  2000;149(2):307-316.
Individual members of the serine-arginine (SR) and heterogeneous nuclear ribonucleoprotein (hnRNP) A/B families of proteins have antagonistic effects in regulating alternative splicing. Although hnRNP A1 accumulates predominantly in the nucleus, it shuttles continuously between the nucleus and the cytoplasm. Some but not all SR proteins also undergo nucleo-cytoplasmic shuttling, which is affected by phosphorylation of their serine/arginine (RS)–rich domain. The signaling mechanisms that control the subcellular localization of these proteins are unknown. We show that exposure of NIH-3T3 and SV-40 transformed green monkey kidney (COS) cells to stress stimuli such as osmotic shock or UVC irradiation, but not to mitogenic activators such as PDGF or EGF, results in a marked cytoplasmic accumulation of hnRNP A1, concomitant with an increase in its phosphorylation. These effects are mediated by the MKK3/6-p38 pathway, and moreover, p38 activation is necessary and sufficient for the induction of hnRNP A1 cytoplasmic accumulation. The stress-induced increase in the cytoplasmic levels of hnRNP A/B proteins and the concomitant decrease in their nuclear abundance are paralleled by changes in the alternative splicing pattern of an adenovirus E1A pre-mRNA splicing reporter. These results suggest the intriguing possibility that signaling mechanisms regulate pre-mRNA splicing in vivo by influencing the subcellular distribution of splicing factors.
PMCID: PMC2175157  PMID: 10769024
alternative splicing; hnRNP A1; signal transduction; p38 kinase; stress signaling
40.  Exonic Splicing Enhancer Motif Recognized by Human SC35 under Splicing Conditions 
Molecular and Cellular Biology  2000;20(3):1063-1071.
Exonic splicing enhancers (ESEs) are important cis elements required for exon inclusion. Using an in vitro functional selection and amplification procedure, we have identified a novel ESE motif recognized by the human SR protein SC35 under splicing conditions. The selected sequences are functional and specific: they promote splicing in nuclear extract or in S100 extract complemented by SC35 but not by SF2/ASF. They can also function in a different exonic context from the one used for the selection procedure. The selected sequences share one or two close matches to a short and highly degenerate octamer consensus, GRYYcSYR. A score matrix was generated from the selected sequences according to the nucleotide frequency at each position of their best match to the consensus motif. The SC35 score matrix, along with our previously reported SF2/ASF score matrix, was used to search the sequences of two well-characterized splicing substrates derived from the mouse immunoglobulin M (IgM) and human immunodeficiency virus tat genes. Multiple SC35 high-score motifs, but only two widely separated SF2/ASF motifs, were found in the IgM C4 exon, which can be spliced in S100 extract complemented by SC35. In contrast, multiple high-score motifs for both SF2/ASF and SC35 were found in a variant of the Tat T3 exon (lacking an SC35-specific silencer) whose splicing can be complemented by either SF2/ASF or SC35. The motif score matrix can help locate SC35-specific enhancers in natural exon sequences.
PMCID: PMC85223  PMID: 10629063
42.  Serine Phosphorylation of SR Proteins Is Required for Their Recruitment to Sites of Transcription In Vivo  
The Journal of Cell Biology  1998;143(2):297-307.
Expression of most RNA polymerase II transcripts requires the coordinated execution of transcription, splicing, and 3′ processing. We have previously shown that upon transcriptional activation of a gene in vivo, pre-mRNA splicing factors are recruited from nuclear speckles, in which they are concentrated, to sites of transcription (Misteli, T., J.F. Cáceres, and D.L. Spector. 1997. Nature. 387:523–527). This recruitment process appears to spatially coordinate transcription and pre-mRNA splicing within the cell nucleus. Here we have investigated the molecular basis for recruitment by analyzing the recruitment properties of mutant splicing factors. We show that multiple protein domains are required for efficient recruitment of SR proteins from nuclear speckles to nascent RNA. The two types of modular domains found in the splicing factor SF2/ ASF exert distinct functions in this process. In living cells, the RS domain functions in the dissociation of the protein from speckles, and phosphorylation of serine residues in the RS domain is a prerequisite for this event. The RNA binding domains play a role in the association of splicing factors with the target RNA. These observations identify a novel in vivo role for the RS domain of SR proteins and suggest a model in which protein phosphorylation is instrumental for the recruitment of these proteins to active sites of transcription in vivo.
PMCID: PMC2132840  PMID: 9786943
nucleus; phosphorylation; pre-mRNA splicing; recruitment; transcription
43.  Substrate Specificities of SR Proteins in Constitutive Splicing Are Determined by Their RNA Recognition Motifs and Composite Pre-mRNA Exonic Elements 
Molecular and Cellular Biology  1999;19(3):1853-1863.
We report striking differences in the substrate specificities of two human SR proteins, SF2/ASF and SC35, in constitutive splicing. β-Globin pre-mRNA (exons 1 and 2) is spliced indiscriminately with either SR protein. Human immunodeficiency virus tat pre-mRNA (exons 2 and 3) and immunoglobulin μ-chain (IgM) pre-mRNA (exons C3 and C4) are preferentially spliced with SF2/ASF and SC35, respectively. Using in vitro splicing with mutated or chimeric derivatives of the tat and IgM pre-mRNAs, we defined specific combinations of segments in the downstream exons, which mediate either positive or negative effects to confer SR protein specificity. A series of recombinant chimeric proteins consisting of domains of SF2/ASF and SC35 in various combinations was used to localize trans-acting domains responsible for substrate specificity. The RS domains of SF2/ASF and SC35 can be exchanged without effect on substrate specificity. The RNA recognition motifs (RRMs) of SF2/ASF are active only in the context of a two-RRM structure, and RRM2 has a dominant role in substrate specificity. In contrast, the single RRM of SC35 can function alone, but its substrate specificity can be influenced by the presence of an additional RRM. The RRMs behave as modules that, when present in different combinations, can have positive, neutral, or negative effects on splicing, depending upon the specific substrate. We conclude that SR protein-specific recognition of specific positive and negative pre-mRNA exonic elements via one or more RRMs is a crucial determinant of the substrate specificity of SR proteins in constitutive splicing.
PMCID: PMC83978  PMID: 10022872
44.  Role of the Modular Domains of SR Proteins in Subnuclear Localization and Alternative Splicing Specificity 
The Journal of Cell Biology  1997;138(2):225-238.
SR proteins are required for constitutive pre-mRNA splicing and also regulate alternative splice site selection in a concentration-dependent manner. They have a modular structure that consists of one or two RNA-recognition motifs (RRMs) and a COOH-terminal arginine/serine-rich domain (RS domain). We have analyzed the role of the individual domains of these closely related proteins in cellular distribution, subnuclear localization, and regulation of alternative splicing in vivo. We observed striking differences in the localization signals present in several human SR proteins. In contrast to earlier studies of RS domains in the Drosophila suppressor-of-white-apricot (SWAP) and Transformer (Tra) alternative splicing factors, we found that the RS domain of SF2/ASF is neither necessary nor sufficient for targeting to the nuclear speckles. Although this RS domain is a nuclear localization signal, subnuclear targeting to the speckles requires at least two of the three constituent domains of SF2/ASF, which contain additive and redundant signals. In contrast, in two SR proteins that have a single RRM (SC35 and SRp20), the RS domain is both necessary and sufficient as a targeting signal to the speckles. We also show that RRM2 of SF2/ASF plays an important role in alternative splicing specificity: deletion of this domain results in a protein that, although active in alternative splicing, has altered specificity in 5′ splice site selection. These results demonstrate the modularity of SR proteins and the importance of individual domains for their cellular localization and alternative splicing function in vivo.
PMCID: PMC2138183  PMID: 9230067

Results 26-44 (44)