Search tips
Search criteria

Results 26-50 (53)

Clipboard (0)

Select a Filter Below

Year of Publication
more »
26.  Splicing therapeutics in SMN2 and APOB 
Splicing therapeutics are defined as the deliberate modification of RNA splicing to achieve therapeutic goals. Various techniques for splicing therapeutics have been described, and most of these involve the use of antisense oligonucleotide-based compounds that target key elements in the pre-mRNA to control splicing in the nucleus. In this review, recent developments in splicing therapeutics for the treatment of two specific diseases are described: correcting the alternative splicing of survival of motor neuron (SMN)2 pre-mRNA to compensate for the defective SMN1 gene in spinal muscular atrophy, and re-engineering the splicing of apolipoprotein B pre-mRNA to lower circulating cholesterol levels.
PMCID: PMC3140428  PMID: 19330716
Antisense oligonucleotide; APOB; apolipoprotein B; cholesterol; RNA splicing; SMN2; spinal muscular atrophy
27.  Arginine Methylation Controls the Subcellular Localization and Functions of the Oncoprotein Splicing Factor SF2/ASF▿ †  
Molecular and Cellular Biology  2010;30(11):2762-2774.
Alternative splicing and posttranslational modifications (PTMs) are major sources of protein diversity in eukaryotic proteomes. The SR protein SF2/ASF is an oncoprotein that functions in pre-mRNA splicing, with additional roles in other posttranscriptional and translational events. Functional studies of SR protein PTMs have focused exclusively on the reversible phosphorylation of Ser residues in the C-terminal RS domain. We confirmed that human SF2/ASF is methylated at residues R93, R97, and R109, which were identified in a global proteomic analysis of Arg methylation, and further investigated whether these methylated residues regulate the properties of SF2/ASF. We show that the three arginines additively control the subcellular localization of SF2/ASF and that both the positive charge and the methylation state are important. Mutations that block methylation and remove the positive charge result in the cytoplasmic accumulation of SF2/ASF. The consequent decrease in nuclear SF2/ASF levels prevents it from modulating the alternative splicing of target genes, results in higher translation stimulation, and abrogates the enhancement of nonsense-mediated mRNA decay. This study addresses the mechanisms by which Arg methylation and the associated positive charge regulate the activities of SF2/ASF and emphasizes the significance of localization control for an oncoprotein with multiple functions in different cellular compartments.
PMCID: PMC2876523  PMID: 20308322
28.  Tetracyclines That Promote SMN2 Exon 7 Splicing as Therapeutics for Spinal Muscular Atrophy 
There is at present no cure or effective therapy for spinal muscular atrophy (SMA), a neurodegenerative disease that is the leading genetic cause of infant mortality. SMA usually results from loss of the SMN1 (survival of motor neuron 1) gene, which leads to selective motor neuron degeneration. SMN2 is nearly identical to SMN1 but has a nucleotide replacement that causes exon 7 skipping, resulting in a truncated, unstable version of the SMA protein. SMN2 is present in all SMA patients, and correcting SMN2 splicing is a promising approach for SMA therapy. We identified a tetracycline-like compound, PTK-SMA1, which stimulates exon 7 splicing and increases SMN protein levels in vitro and in vivo in mice. Unlike previously identified molecules that stimulate SMN production via SMN2 promoter activation or undefined mechanisms, PTK-SMA1 is a unique therapeutic candidate in that it acts by directly stimulating splicing of exon 7. Synthetic small-molecule compounds such as PTK-SMA1 offer an alternative to antisense oligonucleotide therapies that are being developed as therapeutics for a number of disease-associated splicing defects.
PMCID: PMC2818805  PMID: 20161659
29.  Cooperative-Binding and Splicing-Repressive Properties of hnRNP A1▿ † 
Molecular and Cellular Biology  2009;29(20):5620-5631.
hnRNP A1 binds to RNA in a cooperative manner. Initial hnRNP A1 binding to an exonic splicing silencer at the 3′ end of human immunodeficiency virus type 1 (HIV-1) tat exon 3, which is a high-affinity site, is followed by cooperative spreading in a 3′-to-5′ direction. As hnRNP A1 propagates toward the 5′ end of the exon, it antagonizes binding of a serine/arginine-rich (SR) protein to an exonic splicing enhancer, thereby inhibiting splicing at that exon's alternative 3′ splice site. tat exon 3 and the preceding intron of HIV-1 pre-mRNA can fold into an elaborate RNA secondary structure in solution, which could potentially influence hnRNP A1 binding. We report here that hnRNP A1 binding and splicing repression can occur on an unstructured RNA. Moreover, hnRNP A1 can effectively unwind an RNA hairpin upon binding, displacing a bound protein. We further show that hnRNP A1 can also spread in a 5′-to-3′ direction, although when initial binding takes place in the middle of an RNA, spreading preferentially proceeds in a 3′-to-5′ direction. Finally, when two distant high-affinity sites are present on the same RNA, they facilitate cooperative spreading of hnRNP A1 between the two sites.
PMCID: PMC2756886  PMID: 19667073
30.  Recognition of atypical 5' splice sites by shifted base-pairing to U1 snRNA 
Accurate pre-mRNA splicing is critical for gene expression. The 5' splice site (5' ss) — the highly diverse element at the 5' end of introns — is initially recognized via base-pairing to the 5' end of U1 small nuclear RNA (snRNA). However, many natural 5' ss have a very poor match to the consensus sequence, and are predicted to be very weak. Using genetic suppression experiments in human cells, we demonstrate that some atypical 5' ss are actually efficiently recognized by U1, in an alternative base-pairing register that is shifted by one nucleotide. These atypical 5' ss are phylogenetically widespread, and many of them are conserved. Moreover, shifted base-pairing provides an explanation for the effect of a 5' ss mutation associated with pontocerebellar hypoplasia. The unexpected flexibility in 5' ss/U1 base-pairing challenges an established paradigm, and has broad implications for splice-site prediction algorithms and gene-annotation efforts in genome projects.
PMCID: PMC2719486  PMID: 19169258
31.  Kaposi's Sarcoma-Associated Herpesvirus ORF57 Functions as a Viral Splicing Factor and Promotes Expression of Intron-Containing Viral Lytic Genes in Spliceosome-Mediated RNA Splicing▿  
Journal of Virology  2008;82(6):2792-2801.
Kaposi's sarcoma-associated herpesvirus (KSHV) ORF57 facilitates the expression of both intronless viral ORF59 genes and intron-containing viral K8 and K8.1 genes (V. Majerciak, N. Pripuzova, J. P. McCoy, S. J. Gao, and Z. M. Zheng, J. Virol. 81:1062-1071, 2007). In this study, we showed that disruption of ORF57 in a KSHV genome led to increased accumulation of ORF50 and K8 pre-mRNAs and reduced expression of ORF50 and K-bZIP proteins but had no effect on latency-associated nuclear antigen (LANA). Cotransfection of ORF57 and K8β cDNA, which retains a suboptimal intron of K8 pre-mRNA due to alternative splicing, promoted RNA splicing of K8β and production of K8α (K-bZIP). Although Epstein-Barr virus EB2, a closely related homolog of ORF57, had a similar activity in the cotransfection assays, herpes simplex virus type 1 ICP27 was inactive. This enhancement of RNA splicing by ORF57 correlates with the intact N-terminal nuclear localization signal motifs of ORF57 and takes place in the absence of other viral proteins. In activated KSHV-infected B cells, KSHV ORF57 partially colocalizes with splicing factors in nuclear speckles and assembles into spliceosomal complexes in association with low-abundance viral ORF50 and K8 pre-mRNAs and essential splicing components. The association of ORF57 with snRNAs occurs by ORF57-Sm protein interaction. We also found that ORF57 binds K8β pre-mRNAs in vitro in the presence of nuclear extracts. Collectively our data indicate that KSHV ORF57 functions as a novel splicing factor in the spliceosome-mediated splicing of viral RNA transcripts.
PMCID: PMC2258979  PMID: 18184716
32.  Identification of Synaptic Targets of Drosophila Pumilio 
PLoS Computational Biology  2008;4(2):e1000026.
Drosophila Pumilio (Pum) protein is a translational regulator involved in embryonic patterning and germline development. Recent findings demonstrate that Pum also plays an important role in the nervous system, both at the neuromuscular junction (NMJ) and in long-term memory formation. In neurons, Pum appears to play a role in homeostatic control of excitability via down regulation of para, a voltage gated sodium channel, and may more generally modulate local protein synthesis in neurons via translational repression of eIF-4E. Aside from these, the biologically relevant targets of Pum in the nervous system remain largely unknown. We hypothesized that Pum might play a role in regulating the local translation underlying synapse-specific modifications during memory formation. To identify relevant translational targets, we used an informatics approach to predict Pum targets among mRNAs whose products have synaptic localization. We then used both in vitro binding and two in vivo assays to functionally confirm the fidelity of this informatics screening method. We find that Pum strongly and specifically binds to RNA sequences in the 3′UTR of four of the predicted target genes, demonstrating the validity of our method. We then demonstrate that one of these predicted target sequences, in the 3′UTR of discs large (dlg1), the Drosophila PSD95 ortholog, can functionally substitute for a canonical NRE (Nanos response element) in vivo in a heterologous functional assay. Finally, we show that the endogenous dlg1 mRNA can be regulated by Pumilio in a neuronal context, the adult mushroom bodies (MB), which is an anatomical site of memory storage.
Author Summary
The Drosophila Pumilio (Pum) protein was originally identified as a translational control factor for embryo patterning. Subsequent studies have identified Pum's role in multiple biological processes, including the maintenance of germline stem cell, the proliferation and migration of primordial germ cells, olfactory leaning and memory, and synaptic plasticity. Pum is highly conserved across phyla, i.e., from worm to human; however, the mRNA targets of Pum within each tissue and organism are largely unknown. On the other hand, the prediction of RNA binding sites remains a hard question in the computational field. We were interested in finding Pum targets in the nervous system using fruit flies as a model organism. To accomplish this, we used the few Pum binding sequences that had previously been shown in vivo as “training sequences” to construct bioinformatic models of the Pum binding site. We then predicted a few Pum mRNA targets among the genes known to function in neuronal synapses. We then used a combination of “golden standards” to verify these predictions: a biochemical assay called gel shifts, and in vivo functional assays both in embryo and neurons. With these approaches, we successfully confirmed one of the targets as Dlg, which is the Drosophila ortholog of human PSD95. Therefore, we present a complete story from computational study to real biological functions.
PMCID: PMC2265480  PMID: 18463699
33.  Deletion of the N-terminus of SF2/ASF Permits RS-Domain-Independent Pre-mRNA Splicing 
PLoS ONE  2007;2(9):e854.
Serine/arginine-rich (SR) proteins are essential splicing factors with one or two RNA-recognition motifs (RRMs) and a C-terminal arginine- and serine-rich (RS) domain. SR proteins bind to exonic splicing enhancers via their RRM(s), and from this position are thought to promote splicing by antagonizing splicing silencers, recruiting other components of the splicing machinery through RS-RS domain interactions, and/or promoting RNA base-pairing through their RS domains. An RS domain tethered at an exonic splicing enhancer can function as a splicing activator, and RS domains play prominent roles in current models of SR protein functions. However, we previously reported that the RS domain of the SR protein SF2/ASF is dispensable for in vitro splicing of some pre-mRNAs. We have now extended these findings via the identification of a short inhibitory domain at the SF2/ASF N-terminus; deletion of this segment permits splicing in the absence of this SR protein's RS domain of an IgM pre-mRNA substrate previously classified as RS-domain-dependent. Deletion of the N-terminal inhibitory domain increases the splicing activity of SF2/ASF lacking its RS domain, and enhances its ability to bind pre-mRNA. Splicing of the IgM pre-mRNA in S100 complementation with SF2/ASF lacking its RS domain still requires an exonic splicing enhancer, suggesting that an SR protein RS domain is not always required for ESE-dependent splicing activation. Our data provide additional evidence that the SF2/ASF RS domain is not strictly required for constitutive splicing in vitro, contrary to prevailing models for how the domains of SR proteins function to promote splicing.
PMCID: PMC1952110  PMID: 17786225
34.  Control of Pre-mRNA Splicing by the General Splicing Factors PUF60 and U2AF65 
PLoS ONE  2007;2(6):e538.
Pre-mRNA splicing is a crucial step in gene expression, and accurate recognition of splice sites is an essential part of this process. Splice sites with weak matches to the consensus sequences are common, though it is not clear how such sites are efficiently utilized. Using an in vitro splicing-complementation approach, we identified PUF60 as a factor that promotes splicing of an intron with a weak 3′ splice-site. PUF60 has homology to U2AF65, a general splicing factor that facilitates 3′ splice-site recognition at the early stages of spliceosome assembly. We demonstrate that PUF60 can functionally substitute for U2AF65 in vitro, but splicing is strongly stimulated by the presence of both proteins. Reduction of either PUF60 or U2AF65 in cells alters the splicing pattern of endogenous transcripts, consistent with the idea that regulation of PUF60 and U2AF65 levels can dictate alternative splicing patterns. Our results indicate that recognition of 3′ splice sites involves different U2AF-like molecules, and that modulation of these general splicing factors can have profound effects on splicing.
PMCID: PMC1888729  PMID: 17579712
35.  Aberrant 5′ splice sites in human disease genes: mutation pattern, nucleotide structure and comparison of computational tools that predict their utilization 
Nucleic Acids Research  2007;35(13):4250-4263.
Despite a growing number of splicing mutations found in hereditary diseases, utilization of aberrant splice sites and their effects on gene expression remain challenging to predict. We compiled sequences of 346 aberrant 5′splice sites (5′ss) that were activated by mutations in 166 human disease genes. Mutations within the 5′ss consensus accounted for 254 cryptic 5′ss and mutations elsewhere activated 92 de novo 5′ss. Point mutations leading to cryptic 5′ss activation were most common in the first intron nucleotide, followed by the fifth nucleotide. Substitutions at position +5 were exclusively G>A transitions, which was largely attributable to high mutability rates of C/G>T/A. However, the frequency of point mutations at position +5 was significantly higher than that observed in the Human Gene Mutation Database, suggesting that alterations of this position are particularly prone to aberrant splicing, possibly due to a requirement for sequential interactions with U1 and U6 snRNAs. Cryptic 5′ss were best predicted by computational algorithms that accommodate nucleotide dependencies and not by weight-matrix models. Discrimination of intronic 5′ss from their authentic counterparts was less effective than for exonic sites, as the former were intrinsically stronger than the latter. Computational prediction of exonic de novo 5′ss was poor, suggesting that their activation critically depends on exonic splicing enhancers or silencers. The authentic counterparts of aberrant 5′ss were significantly weaker than the average human 5′ss. The development of an online database of aberrant 5′ss will be useful for studying basic mechanisms of splice-site selection, identifying splicing mutations and optimizing splice-site prediction algorithms.
PMCID: PMC1934990  PMID: 17576681
36.  A novel histone exchange factor, protein phosphatase 2Cγ, mediates the exchange and dephosphorylation of H2A–H2B 
The Journal of Cell Biology  2006;175(3):389-400.
In eukaryotic nuclei, DNA is wrapped around a protein octamer composed of the core histones H2A, H2B, H3, and H4, forming nucleosomes as the fundamental units of chromatin. The modification and deposition of specific histone variants play key roles in chromatin function. In this study, we established an in vitro system based on permeabilized cells that allows the assembly and exchange of histones in situ. H2A and H2B, each tagged with green fluorescent protein (GFP), are incorporated into euchromatin by exchange independently of DNA replication, and H3.1-GFP is assembled into replicated chromatin, as found in living cells. By purifying the cellular factors that assist in the incorporation of H2A–H2B, we identified protein phosphatase (PP) 2C γ subtype (PP2Cγ/PPM1G) as a histone chaperone that binds to and dephosphorylates H2A–H2B. The disruption of PP2Cγ in chicken DT40 cells increased the sensitivity to caffeine, a reagent that disturbs DNA replication and damage checkpoints, suggesting the involvement of PP2Cγ-mediated histone dephosphorylation and exchange in damage response or checkpoint recovery in higher eukaryotes.
PMCID: PMC2064517  PMID: 17074886
37.  Enhancement of SMN2 Exon 7 Inclusion by Antisense Oligonucleotides Targeting the Exon 
PLoS Biology  2007;5(4):e73.
Several strategies have been pursued to increase the extent of exon 7 inclusion during splicing of SMN2 (survival of motor neuron 2) transcripts, for eventual therapeutic use in spinal muscular atrophy (SMA), a genetic neuromuscular disease. Antisense oligonucleotides (ASOs) that target an exon or its flanking splice sites usually promote exon skipping. Here we systematically tested a large number of ASOs with a 2′-O-methoxy-ethyl ribose (MOE) backbone that hybridize to different positions of SMN2 exon 7, and identified several that promote greater exon inclusion, others that promote exon skipping, and still others with complex effects on the accumulation of the two alternatively spliced products. This approach provides positional information about presumptive exonic elements or secondary structures with positive or negative effects on exon inclusion. The ASOs are effective not only in cell-free splicing assays, but also when transfected into cultured cells, where they affect splicing of endogenous SMN transcripts. The ASOs that promote exon 7 inclusion increase full-length SMN protein levels, demonstrating that they do not interfere with mRNA export or translation, despite hybridizing to an exon. Some of the ASOs we identified are sufficiently active to proceed with experiments in SMA mouse models.
Author Summary
Spinal muscular atrophy (SMA) is a severe genetic disease that causes motor-neuron degeneration. SMA patients lack a functional SMN1 (survival of motor neuron 1) gene, but they possess an intact SMN2 gene, which though nearly identical to SMN1, is only partially functional. The defect in SMN2 gene expression is at the level of pre-mRNA splicing (skipping of exon 7), and the presence of this gene in all SMA patients makes it an attractive target for potential therapy. Here we have surveyed a large number of antisense oligonucleotides (ASOs) that are complementary to different regions of exon 7 in the SMN2 mRNA. A few of these ASOs are able to correct the pre-mRNA splicing defect, presumably because they bind to regions of exon 7 that form RNA structures, or provide protein-binding sites, that normally weaken the recognition of this exon by the splicing machinery in the cell nucleus. We describe optimal ASOs that promote correct expression of SMN2 mRNA and, therefore, normal SMN protein, in cultured cells from SMA patients. These ASOs can now be tested in mouse models of SMA, and may be useful for SMA therapy.
Mutations inSMN1 cause spinal muscular atrophy; a nearly identical gene is not functional, but becomes functional in vitro and in vivo after addition of antisense oligos.
PMCID: PMC1820610  PMID: 17355180
38.  Antisense oligonucleotide-induced alternative splicing of the APOB mRNA generates a novel isoform of APOB 
Apolipoprotein B (APOB) is an integral part of the LDL, VLDL, IDL, Lp(a) and chylomicron lipoprotein particles. The APOB pre-mRNA consists of 29 constitutively-spliced exons. APOB exists as two natural isoforms: the full-length APOB100 isoform, assembled into LDL, VLDL, IDL and Lp(a) and secreted by the liver in humans; and the C-terminally truncated APOB48, assembled into chylomicrons and secreted by the intestine in humans. Down-regulation of APOB100 is a potential therapy to lower circulating LDL and cholesterol levels.
We investigated the ability of 2'O-methyl RNA antisense oligonucleotides (ASOs) to induce the skipping of exon 27 in endogenous APOB mRNA in HepG2 cells. These ASOs are directed towards the 5' and 3' splice-sites of exon 27, the branch-point sequence (BPS) of intron 26–27 and several predicted exonic splicing enhancers within exon 27. ASOs targeting either the 5' or 3' splice-site, in combination with the BPS, are the most effective. The splicing of other alternatively spliced genes are not influenced by these ASOs, suggesting that the effects seen are not due to non-specific changes in alternative splicing. The skip 27 mRNA is translated into a truncated isoform, APOB87SKIP27.
The induction of APOB87SKIP27 expression in vivo should lead to decreased LDL and cholesterol levels, by analogy to patients with hypobetalipoproteinemia. As intestinal APOB mRNA editing and APOB48 expression rely on sequences within exon 26, exon 27 skipping should not affect APOB48 expression unlike other methods of down-regulating APOB100 expression which also down-regulate APOB48.
PMCID: PMC1784105  PMID: 17233885
39.  Comprehensive splice-site analysis using comparative genomics 
Nucleic Acids Research  2006;34(14):3955-3967.
We have collected over half a million splice sites from five species—Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans and Arabidopsis thaliana—and classified them into four subtypes: U2-type GT–AG and GC–AG and U12-type GT–AG and AT–AC. We have also found new examples of rare splice-site categories, such as U12-type introns without canonical borders, and U2-dependent AT–AC introns. The splice-site sequences and several tools to explore them are available on a public website (SpliceRack). For the U12-type introns, we find several features conserved across species, as well as a clustering of these introns on genes. Using the information content of the splice-site motifs, and the phylogenetic distance between them, we identify: (i) a higher degree of conservation in the exonic portion of the U2-type splice sites in more complex organisms; (ii) conservation of exonic nucleotides for U12-type splice sites; (iii) divergent evolution of C.elegans 3′ splice sites (3′ss) and (iv) distinct evolutionary histories of 5′ and 3′ss. Our study proves that the identification of broad patterns in naturally-occurring splice sites, through the analysis of genomic datasets, provides mechanistic and evolutionary insights into pre-mRNA splicing.
PMCID: PMC1557818  PMID: 16914448
40.  Distribution of SR protein exonic splicing enhancer motifs in human protein-coding genes 
Nucleic Acids Research  2005;33(16):5053-5062.
Exonic splicing enhancers (ESEs) are pre-mRNA cis-acting elements required for splice-site recognition. We previously developed a web-based program called ESEfinder that scores any sequence for the presence of ESE motifs recognized by the human SR proteins SF2/ASF, SRp40, SRp55 and SC35 (). Using ESEfinder, we have undertaken a large-scale analysis of ESE motif distribution in human protein-coding genes. Significantly higher frequencies of ESE motifs were observed in constitutive internal protein-coding exons, compared with both their flanking intronic regions and with pseudo exons. Statistical analysis of ESE motif frequency distributions revealed a complex relationship between splice-site strength and increased or decreased frequencies of particular SR protein motifs. Comparison of constitutively and alternatively spliced exons demonstrated slightly weaker splice-site scores, as well as significantly fewer ESE motifs, in the alternatively spliced group. Our results underline the importance of ESE-mediated SR protein function in the process of exon definition, in the context of both constitutive splicing and regulated alternative splicing.
PMCID: PMC1201331  PMID: 16147989
41.  Human Immunodeficiency Virus Type 1 hnRNP A/B-Dependent Exonic Splicing Silencer ESSV Antagonizes Binding of U2AF65 to Viral Polypyrimidine Tracts 
Molecular and Cellular Biology  2003;23(23):8762-8772.
Human immunodeficiency virus type 1 (HIV-1) exonic splicing silencers (ESSs) inhibit production of certain spliced viral RNAs by repressing alternative splicing of the viral precursor RNA. Several HIV-1 ESSs interfere with spliceosome assembly by binding cellular hnRNP A/B proteins. Here, we have further characterized the mechanism of splicing repression using a representative HIV-1 hnRNP A/B-dependent ESS, ESSV, which regulates splicing at the vpr 3′ splice site. We show that hnRNP A/B proteins bound to ESSV are necessary to inhibit E complex assembly by competing with the binding of U2AF65 to the polypyrimidine tracts of repressed 3′ splice sites. We further show evidence suggesting that U1 snRNP binds the 5′ splice site despite an almost complete block of splicing by ESSV. Possible splicing-independent functions of U1 snRNP-5′ splice site interactions during virus replication are discussed.
PMCID: PMC262674  PMID: 14612416
42.  Intrinsic differences between authentic and cryptic 5′ splice sites 
Nucleic Acids Research  2003;31(21):6321-6333.
Cryptic splice sites are used only when use of a natural splice site is disrupted by mutation. To determine the features that distinguish authentic from cryptic 5′ splice sites (5′ss), we systematically analyzed a set of 76 cryptic 5′ss derived from 46 human genes. These cryptic 5′ss have a similar frequency distribution in exons and introns, and are usually located close to the authentic 5′ss. Statistical analysis of the strengths of the 5′ss using the Shapiro and Senapathy matrix revealed that authentic 5′ss have significantly higher score values than cryptic 5′ss, which in turn have higher values than the mutant ones. β-Globin provides an interesting exception to this rule, so we chose it for detailed experimental analysis in vitro. We found that the sequences of the β-globin authentic and cryptic 5′ss, but not their surrounding context, determine the correct 5′ss choice, although their respective scores do not reflect this functional difference. Our analysis provides a statistical basis to explain the competitive advantage of authentic over cryptic 5′ss in most cases, and should facilitate the development of tools to reliably predict the effect of disease-associated 5′ss-disrupting mutations at the mRNA level.
PMCID: PMC275472  PMID: 14576320
43.  ESEfinder: a web resource to identify exonic splicing enhancers 
Nucleic Acids Research  2003;31(13):3568-3571.
Point mutations frequently cause genetic diseases by disrupting the correct pattern of pre-mRNA splicing. The effect of a point mutation within a coding sequence is traditionally attributed to the deduced change in the corresponding amino acid. However, some point mutations can have much more severe effects on the structure of the encoded protein, for example when they inactivate an exonic splicing enhancer (ESE), thereby resulting in exon skipping. ESEs also appear to be especially important in exons that normally undergo alternative splicing. Different classes of ESE consensus motifs have been described, but they are not always easily identified. ESEfinder ( is a web-based resource that facilitates rapid analysis of exon sequences to identify putative ESEs responsive to the human SR proteins SF2/ASF, SC35, SRp40 and SRp55, and to predict whether exonic mutations disrupt such elements.
PMCID: PMC169022  PMID: 12824367
44.  Nuclear Export and Retention Signals in the RS Domain of SR Proteins 
Molecular and Cellular Biology  2002;22(19):6871-6882.
Splicing factors of the SR protein family share a modular structure consisting of one or two RNA recognition motifs (RRMs) and a C-terminal RS domain rich in arginine and serine residues. The RS domain, which is extensively phosphorylated, promotes protein-protein interactions and directs subcellular localization and—in certain situations—nucleocytoplasmic shuttling of individual SR proteins. We analyzed mutant versions of human SF2/ASF in which the natural RS repeats were replaced by RD or RE repeats and compared the splicing and subcellular localization properties of these proteins to those of SF2/ASF lacking the entire RS domain or possessing a minimal RS domain consisting of 10 consecutive RS dipeptides (RS10). In vitro splicing of a pre-mRNA that requires an RS domain could take place when the mutant RD, RE, or RS10 domain replaced the natural domain. The RS10 version of SF2/ASF shuttled between the nucleus and the cytoplasm in the same manner as the wild-type protein, suggesting that a tract of consecutive RS dipeptides, in conjunction with the RRMs of SF2/ASF, is necessary and sufficient to direct nucleocytoplasmic shuttling. However, the SR protein SC35 has two long stretches of RS repeats, yet it is not a shuttling protein. We demonstrate the presence of a dominant nuclear retention signal in the RS domain of SC35.
PMCID: PMC134038  PMID: 12215544
45.  Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1 
Nucleic Acids Research  2002;30(7):1531-1538.
The RNA-recognition motif (RRM) is a common and evolutionarily conserved RNA-binding module. Crystallographic and solution structural studies have shown that RRMs adopt a compact α/β structure, in which four antiparallel β-strands form the major RNA-binding surface. Conserved aromatic residues in the RRM are located on the surface of the β-sheet and are important for RNA binding. To further our understanding of the structural basis of RRM-nucleic acid interaction, we carried out a high resolution analysis of UP1, the N-terminal, two-RRM domain of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), whose structure was previously solved at 1.75–1.9 Å resolution. The two RRMs of hnRNP A1 are closely related but have distinct functions in regulating alternative pre-mRNA splice site selection. Our present 1.1 Å resolution crystal structure reveals that two conserved solvent-exposed phenylalanines in the first RRM have alternative side chain conformations. These conformations are spatially correlated, as the individual amino acids cannot adopt each of the observed conformations independently. These phenylalanines are critical for nucleic acid binding and the observed alternative side chain conformations may serve as a mechanism for regulating nucleic acid binding by RRM-containing proteins.
PMCID: PMC101846  PMID: 11917013
46.  RNA Splicing at Human Immunodeficiency Virus Type 1 3′ Splice Site A2 Is Regulated by Binding of hnRNP A/B Proteins to an Exonic Splicing Silencer Element 
Journal of Virology  2001;75(18):8487-8497.
The synthesis of human immunodeficiency virus type 1 (HIV-1) mRNAs is a complex process by which more than 30 different mRNA species are produced by alternative splicing of a single primary RNA transcript. HIV-1 splice sites are used with significantly different efficiencies, resulting in different levels of mRNA species in infected cells. Splicing of Tat mRNA, which is present at relatively low levels in infected cells, is repressed by the presence of exonic splicing silencers (ESS) within the two tat coding exons (ESS2 and ESS3). These ESS elements contain the consensus sequence PyUAG. Here we show that the efficiency of splicing at 3′ splice site A2, which is used to generate Vpr mRNA, is also regulated by the presence of an ESS (ESSV), which has sequence homology to ESS2 and ESS3. Mutagenesis of the three PyUAG motifs within ESSV increases splicing at splice site A2, resulting in increased Vpr mRNA levels and reduced skipping of the noncoding exon flanked by A2 and D3. The increase in Vpr mRNA levels and the reduced skipping also occur when splice site D3 is mutated toward the consensus sequence. By in vitro splicing assays, we show that ESSV represses splicing when placed downstream of a heterologous splice site. A1, A1B, A2, and B1 hnRNPs preferentially bind to ESSV RNA compared to ESSV mutant RNA. Each of these proteins, when added back to HeLa cell nuclear extracts depleted of ESSV-binding factors, is able to restore splicing repression. The results suggest that coordinate repression of HIV-1 RNA splicing is mediated by members of the hnRNP A/B protein family.
PMCID: PMC115094  PMID: 11507194
47.  Selection of Alternative 5′ Splice Sites: Role of U1 snRNP and Models for the Antagonistic Effects of SF2/ASF and hnRNP A1 
Molecular and Cellular Biology  2000;20(22):8303-8318.
The first component known to recognize and discriminate among potential 5′ splice sites (5′SSs) in pre-mRNA is the U1 snRNP. However, the relative levels of U1 snRNP binding to alternative 5′SSs do not necessarily determine the splicing outcome. Strikingly, SF2/ASF, one of the essential SR protein-splicing factors, causes a dose-dependent shift in splicing to a downstream (intron-proximal) site, and yet it increases U1 snRNP binding at upstream and downstream sites simultaneously. We show here that hnRNP A1, which shifts splicing towards an upstream 5′SS, causes reduced U1 snRNP binding at both sites. Nonetheless, the importance of U1 snRNP binding is shown by proportionality between the level of U1 snRNP binding to the downstream site and its use in splicing. With purified components, hnRNP A1 reduces U1 snRNP binding to 5′SSs by binding cooperatively and indiscriminately to the pre-mRNA. Mutations in hnRNP A1 and SF2/ASF show that the opposite effects of the proteins on 5′SS choice are correlated with their effects on U1 snRNP binding. Cross-linking experiments show that SF2/ASF and hnRNP A1 compete to bind pre-mRNA, and we conclude that this competition is the basis of their functional antagonism; SF2/ASF enhances U1 snRNP binding at all 5′SSs, the rise in simultaneous occupancy causing a shift in splicing towards the downstream site, whereas hnRNP A1 interferes with U1 snRNP binding such that 5′SS occupancy is lower and the affinities of U1 snRNP for the individual sites determine the site of splicing.
PMCID: PMC102138  PMID: 11046128
48.  The Mkk3/6-p38–Signaling Cascade Alters the Subcellular Distribution of Hnrnp A1 and Modulates Alternative Splicing Regulation 
The Journal of Cell Biology  2000;149(2):307-316.
Individual members of the serine-arginine (SR) and heterogeneous nuclear ribonucleoprotein (hnRNP) A/B families of proteins have antagonistic effects in regulating alternative splicing. Although hnRNP A1 accumulates predominantly in the nucleus, it shuttles continuously between the nucleus and the cytoplasm. Some but not all SR proteins also undergo nucleo-cytoplasmic shuttling, which is affected by phosphorylation of their serine/arginine (RS)–rich domain. The signaling mechanisms that control the subcellular localization of these proteins are unknown. We show that exposure of NIH-3T3 and SV-40 transformed green monkey kidney (COS) cells to stress stimuli such as osmotic shock or UVC irradiation, but not to mitogenic activators such as PDGF or EGF, results in a marked cytoplasmic accumulation of hnRNP A1, concomitant with an increase in its phosphorylation. These effects are mediated by the MKK3/6-p38 pathway, and moreover, p38 activation is necessary and sufficient for the induction of hnRNP A1 cytoplasmic accumulation. The stress-induced increase in the cytoplasmic levels of hnRNP A/B proteins and the concomitant decrease in their nuclear abundance are paralleled by changes in the alternative splicing pattern of an adenovirus E1A pre-mRNA splicing reporter. These results suggest the intriguing possibility that signaling mechanisms regulate pre-mRNA splicing in vivo by influencing the subcellular distribution of splicing factors.
PMCID: PMC2175157  PMID: 10769024
alternative splicing; hnRNP A1; signal transduction; p38 kinase; stress signaling
49.  Exonic Splicing Enhancer Motif Recognized by Human SC35 under Splicing Conditions 
Molecular and Cellular Biology  2000;20(3):1063-1071.
Exonic splicing enhancers (ESEs) are important cis elements required for exon inclusion. Using an in vitro functional selection and amplification procedure, we have identified a novel ESE motif recognized by the human SR protein SC35 under splicing conditions. The selected sequences are functional and specific: they promote splicing in nuclear extract or in S100 extract complemented by SC35 but not by SF2/ASF. They can also function in a different exonic context from the one used for the selection procedure. The selected sequences share one or two close matches to a short and highly degenerate octamer consensus, GRYYcSYR. A score matrix was generated from the selected sequences according to the nucleotide frequency at each position of their best match to the consensus motif. The SC35 score matrix, along with our previously reported SF2/ASF score matrix, was used to search the sequences of two well-characterized splicing substrates derived from the mouse immunoglobulin M (IgM) and human immunodeficiency virus tat genes. Multiple SC35 high-score motifs, but only two widely separated SF2/ASF motifs, were found in the IgM C4 exon, which can be spliced in S100 extract complemented by SC35. In contrast, multiple high-score motifs for both SF2/ASF and SC35 were found in a variant of the Tat T3 exon (lacking an SC35-specific silencer) whose splicing can be complemented by either SF2/ASF or SC35. The motif score matrix can help locate SC35-specific enhancers in natural exon sequences.
PMCID: PMC85223  PMID: 10629063

Results 26-50 (53)