PMCC PMCC

Search tips
Search criteria

Advanced
Results 26-50 (58)
 

Clipboard (0)
None

Select a Filter Below

Journals
more »
Authors
more »
Year of Publication
Document Types
26.  The Genomics of Autoimmune Disease in the Era of Genome-Wide Association Studies and Beyond 
Autoimmunity Reviews  2011;11(4):267-275.
Recent advances in the field of genetics have dramatically changed our understanding of autoimmune disease. Candidate gene and, more recently, genome-wide association (GWA) studies have led to an explosion in the number of loci and pathways known to contribute to autoimmune phenotypes. Since the 1970s, researchers have known that several alleles in the MHC region play a role in the pathogenesis of many autoimmune diseases. More recent work has identified numerous risk loci involving both the innate and adaptive immune responses. However, much remains to be learned about the heritability of autoimmune conditions. Most regions found through GWA scans have yet to isolate the association to the causal allele(s) responsible for conferring disease risk. A role for rare variants (allele frequencies of <1%) has begun to emerge. Future research will use next generation sequencing (NGS) technology to comprehensively evaluate the human genome for risk variants. Whole transcriptome sequencing is now possible, which will provide much more detailed gene expression data. The dramatic drop in the cost and time required to sequence the entire human genome will ultimately make it possible for this technology to be used as a clinical diagnostic tool.
doi:10.1016/j.autrev.2011.10.003
PMCID: PMC3288956  PMID: 22001415
Genetics; Genomics; Genome-wide association study; Autoimmune disease
27.  Meta-analysis and Imputation Identifies a 109 kb Risk Haplotype Spanning TNFAIP3 Associated with Lupus Nephritis and Hematologic Manifestations 
Genes and immunity  2009;10(5):470-477.
TNFAIP3 encodes the ubiquitin modifying enzyme, A20, a key regulator of inflammatory signaling pathways. We previously reported association between TNFAIP3 variants and systemic lupus erythematosus (SLE). In order to further localize the risk variant(s), we performed a meta-analysis using genetic data available from two Caucasian case/control datasets (1453 total cases, 3381 total controls) and 713 SLE trio families. The best result was found at rs5029939 (P = 1.67 × 10−14, OR = 2.09, 95% CI 1.68–2.60). We then imputed SNPs from the CEU Phase II HapMap using genotypes from 431 SLE cases and 2155 controls. Imputation identified eleven SNPs in addition to three observed SNPs, which together, defined a 109 kb SLE risk segment surrounding TNFAIP3. When evaluating whether the rs5029939 risk allele was associated with SLE clinical manifestations, we observed that heterozygous carriers of the TNFAIP3 risk allele at rs5029939 have a two-fold increased risk of developing renal or hematologic manifestations compared to homozygous non-risk subjects. In summary, our study strengthens the genetic evidence that variants in the region of TNFAIP3 influence risk for SLE, particularly in patients with renal and hematologic manifestations, and narrows the risk effect to a 109 kb DNA segment that spans the TNFAIP3 gene.
doi:10.1038/gene.2009.31
PMCID: PMC2714405  PMID: 19387456
systemic lupus erythematosus; TNFAIP3; imputation; meta-analysis
28.  Genetic Variants Near TNFAIP3 on 6q23 are Associated with Systemic Lupus Erythematosus (SLE) 
Nature genetics  2008;40(9):1059-1061.
SLE is an autoimmune disease influenced by genetic and environmental components. We performed a genome-wide association scan (GWAS) and observed novel association evidence with a variant inTNFAIP3(rs5029939, P = 2.89×10−12, OR = 2.29). We also found evidence of two independent signals of association to SLE risk, including one described in Rheumatoid Arthritis. These results establish that genetic variation inTNFAIP3contributes to differential risk for SLE and RA.
doi:10.1038/ng.200
PMCID: PMC2772171  PMID: 19165918
29.  Identification of novel coding mutation in C1qA gene in an African-American pedigree with lupus and C1q deficiency 
Lupus  2012;21(10):1113-1118.
Objectives
Homozygous C1q deficiency is an extremely rare condition and strongly associated with systemic lupus erythematosus. To assess and characterize C1q deficiency in an African-American lupus pedigree, C1q genomic region was evaluated in the lupus cases and family members.
Methods
Genomic DNA from patient was obtained and C1q A, B and C gene cluster was sequenced using next generation sequencing method. The identified mutation was further confirmed by direct Sanger sequencing method in the patient and all blood relatives. C1q levels in serum were measured using sandwich ELISA method.
Results
In an African-American patient with lupus and C1q deficiency, we identified and confirmed a novel homozygote start codon mutation in C1qA gene that changes amino acid Methionine to Arginine at position 1. The Met1Arg mutation prevents protein translation (Met1Arg). Mutation analyses of the patient’s family members also revealed the Met1Arg homozygote mutation in her deceased brother who also had lupus with absence of total complement activity consistent with a recessive pattern of inheritance.
Conclusion
The identification of new mutation in C1qA gene that disrupts the start codon (ATG to AGG (Met1Arg)), has not been reported previously and it expands the knowledge and importance of the C1q gene in the pathogenesis of lupus especially in high risk African-American population.
doi:10.1177/0961203312443993
PMCID: PMC3508769  PMID: 22472776
30.  Identification of novel genetic susceptibility loci in African-American lupus patients using a candidate gene association study 
Arthritis and rheumatism  2011;63(11):3493-3501.
Objective
Candidate gene and genome-wide association studies have identified several disease susceptibility loci in lupus patients. These studies have been largely performed in European-derived and Asian lupus patients. In this study, we examine if some of these same susceptibility loci increase lupus risk in African-American individuals.
Methods
Single nucleotide polymorphisms tagging 15 independent lupus susceptibility loci were genotyped in a set of 1,724 lupus patients and 2,024 normal healthy controls of African-American descent. The loci examined included: PTPN22, FCGR2A, TNFSF4, STAT4, CTLA4, PDCD1, PXK, BANK1, MSH5 (HLA region), CFB (HLA region), C8orf13-BLK region, MBL2, KIAA1542, ITGAM, and MECP2/IRAK1.
Results
We provide the first evidence for genetic association between lupus and five susceptibility loci in African-American patients (C8orf13-BLK, BANK1, TNFSF4, KIAA1542 andCTLA4; P values= 8.0 × 10−6, 1.9 × 10−5, 5.7 × 10−5, 0.00099, 0.0045, respectively). Further, we confirm the genetic association between lupus and five additional lupus susceptibility loci (ITGAM, MSH5, CFB, STAT4, and FCGR2A; P values= 7.5 × 10−11, 5.2 × 10−8, 8.7 × 10−7, 0.0058, and 0.0070, respectively), and provide evidence for a genome-wide significance for the association between ITGAM and MSH5 (HLA region) for the first time in African-American lupus patients.
Conclusion
These findings provide evidence for novel genetic susceptibility loci for lupus in African-Americans and demonstrate that the majority of lupus susceptibility loci examined confer lupus risk across multiple ethnicities.
doi:10.1002/art.30563
PMCID: PMC3205224  PMID: 21792837
31.  Variation in the ICAM1–ICAM4–ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries 
Annals of the rheumatic diseases  2012;71(11):1809-1814.
Objective
Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin αΜ (complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM.
Methods
The authors examined several markers in the ICAM1–ICAM4–ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case–control study of 17 481 unrelated participants from four ancestry populations. The single marker association and gene–gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed.
Results
The A-allele of ICAM1–ICAM4–ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (ORmeta=1.16, 95% CI 1.11 to 1.22; p=4.88×10−10 and ORmeta=1.67, 95% CI 1.55 to 1.79; p=3.32×10−46, respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91×10−5).
Conclusion
These findings are the first to suggest that an ICAM–integrin-mediated pathway contributes to susceptibility to SLE.
doi:10.1136/annrheumdis-2011-201110
PMCID: PMC3466387  PMID: 22523428
32.  Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus 
Annals of the rheumatic diseases  2011;70(10):1752-1757.
Objective
Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus.
Materials and methods
4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria.
Results
Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0×10−6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing.
Conclusion
Significant associations were found between lupus clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future.
doi:10.1136/ard.2011.154104
PMCID: PMC3232181  PMID: 21719445
33.  Association of PPP2CA polymorphisms with SLE susceptibility in multiple ethnic groups 
Arthritis and rheumatism  2011;63(9):2755-2763.
Objective
T cells from patients with SLE express increased amounts of PP2Ac which contribute to decreased production of IL-2. Because IL-2 is important in the regulation of several aspects of the immune response, it has been proposed that PP2Ac contributes to the expression of SLE. This study was designed to determine whether genetic variants of PPP2AC are linked to the expression of SLE and specific clinical manifestations and account for the increased expression of PP2Ac.
Methods
We conducted a trans-ethnic study consisting of 8,695 SLE cases and 7,308 controls from four different ancestries. Eighteen single-nucleotide polymorphisms (SNPs) across the PPP2CA were genotyped using an Illumina custom array. PPP2CA expression in SLE and control T cells was analyzed by real-time PCR.
Results
A 32-kb haplotype comprised of multiple SNPs of PPP2CA showed significant association with SLE in Hispanic Americans (HA), European Americans (EA) and Asians but not in African-Americans (AA). Conditional analyses revealed that SNP rs7704116 in intron 1 showed consistently strong association with SLE across Asian, EA and HA populations (pmeta=3.8×10−7, OR=1.3[1.14–1.31]). In EA, the largest ethnic dataset, the risk A allele of rs7704116 was associated with the presence of renal disease, anti-dsDNA and anti-RNP antibodies. PPP2CA expression was approximately 2-fold higher in SLE patients carrying the rs7704116 AG genotype than those carrying GG genotype (p = 0.008).
Conclusion
Our data provide the first evidence for an association between PPP2CA polymorphisms and elevated PP2Ac transcript levels in T cells, which implicates a new molecular pathway for SLE susceptibility in EA, HA and Asians.
doi:10.1002/art.30452
PMCID: PMC3163110  PMID: 21590681
34.  Contributions of mass spectrometry-based proteomics to defining cellular mechanisms and diagnostic markers for systemic lupus erythematosus 
Systematic lupus erythematosus (SLE) is a complex disease for which molecular diagnostics are limited and pathogenesis is not clearly understood. Important information is provided in this regard by identification and characterization of more specific molecular and cellular targets in SLE immune cells and target tissue and markers of early-onset and effective response to treatment of SLE complications. In recent years, advances in proteomic technologies and applications have facilitated such discoveries. Here we provide a review of insights into SLE pathogenesis, diagnosis and treatment that have been provided by mass spectrometry-based proteomic approaches.
doi:10.1186/ar3701
PMCID: PMC3392812  PMID: 22364570
35.  The rs4774 CIITA missense variant is associated with risk of systemic lupus erythematosus 
Genes and Immunity  2011;12(8):667-671.
The major histocompatibility complex (MHC) class II transactivator gene (CIITA) encodes an important transcription factor required for HLA class II MHC-restricted antigen presentation. MHC genes, including the HLA class II DRB1*03:01 allele, are strongly associated with systemic lupus erythematosus (SLE). Recently the rs4774 CIITA missense variant (+1632G/C) was reported to be associated with susceptibility to multiple sclerosis. In the current study, we investigated CIITA, DRB1*03:01 and risk of SLE using a multi-stage analysis. In stage 1, 9 CIITA variants were tested in 658 cases and 1,363 controls (N = 2,021). In stage 2, rs4774 was tested in 684 cases and 2,938 controls (N = 3,622). We also performed a meta-analysis of the pooled 1,342 cases and 4,301 controls (N = 5,643). In stage 1, rs4774*C was associated with SLE (odds ratio [OR] = 1.24, 95% confidence interval [95% CI] = 1.07–1.44, P = 4.2 × 10−3). Similar results were observed in stage 2 (OR = 1.16, 95% CI = 1.02–1.33, P = 8.5×10−3) and the meta-analysis of the combined dataset (OR = 1.20, 95% CI = 1.09–1.33, Pmeta = 2.5×10−4). In all three analyses, the strongest evidence for association between rs4774*C and SLE was present in individuals who carried at least one copy of DRB1*03:01 (Pmeta= 1.9×10−3). Results support a role for CIITA in SLE, which appears to be stronger in the presence of DRB1*03:01.
doi:10.1038/gene.2011.36
PMCID: PMC3387803  PMID: 21614020
systemic lupus erythematosus; autoimmunity; major histocompatibility complex; HLA; CIITA; MHC2TA
36.  Genetic Analyses of Interferon Pathway-Related Genes Reveals Multiple New Loci Associated with Systemic Lupus Erythematosus (SLE) 
Arthritis and rheumatism  2011;63(7):2049-2057.
Objective
The overexpression of interferon (IFN)-inducible genes is a prominent feature of SLE, serves as a marker for active and more severe disease, and is also observed in other autoimmune and inflammatory conditions. The genetic variations responsible for sustained activation of IFN responsive genes are unknown.
Methods
We systematically evaluated association of SLE with a total of 1,754 IFN-pathway related genes, including IFN-inducible genes known to be differentially expressed in SLE patients and their direct regulators. We performed a three-stage design where two cohorts (total n=939 SLE cases, 3,398 controls) were analyzed independently and jointly for association with SLE, and the results were adjusted for the number of comparisons.
Results
A total of 16,137 SNPs passed all quality control filters of which 316 demonstrated replicated association with SLE in both cohorts. Nine variants were further genotyped for confirmation in an average of 1,316 independent SLE cases and 3,215 independent controls. Association with SLE was confirmed for several genes, including the transmembrane receptor CD44 (rs507230, P = 3.98×10−12), cytokine pleiotrophin (PTN) (rs919581, P = 5.38×10−04), the heat-shock DNAJA1 (rs10971259, P = 6.31×10−03), and the nuclear import protein karyopherin alpha 1 (KPNA1) (rs6810306, P = 4.91×10−02).
Conclusion
This study expands the number of candidate genes associated with SLE and highlights the potential of pathway-based approaches for gene discovery. Identification of the causal alleles will help elucidate the molecular mechanisms responsible for activation of the IFN system in SLE.
doi:10.1002/art.30356
PMCID: PMC3128183  PMID: 21437871
37.  Fine mapping and trans-ethnic genotyping establish IL2/IL21 genetic association with lupus and localize this genetic effect to IL21 
Arthritis and rheumatism  2011;63(6):1689-1697.
Objective
Genetic association of the IL2/IL21 region at 4q27 has been previously reported in lupus and a number of autoimmune and inflammatory diseases. Herein, using a very large cohort of lupus patients and controls, we localize this genetic effect to the IL21 gene.
Methods
We genotyped 45 tag SNPs across the IL2/IL21 locus in two large independent lupus sample sets. We studied a European-derived set consisting of 4,248 lupus patients and 3,818 healthy controls, and an African-American set of 1,569 patients and 1,893 healthy controls. Imputation in 3,004 WTCCC additional control individuals was also performed. Genetic association between the genotyped markers was determined, and pair-wise conditional analysis was performed to localize the independent genetic effect in the IL2/IL21 locus in lupus.
Results
We established and confirmed the genetic association between IL2/IL21 and lupus. Using conditional analysis and trans-ethnic mapping, we localized the genetic effect in this locus to two SNPs in high linkage disequilibrium; rs907715 located within IL21 (OR=1.16 (1.10–1.22), P= 2.17 ×10−8), and rs6835457 located in the 3’-UTR flanking region of IL21 (OR= 1.11 (1.05–1.17), P= 9.35×10−5).
Conclusion
We have established the genetic association between lupus and IL2/IL21 with a genome-wide level of significance. Further, we localized this genetic association within the IL2/IL21 linkage disequilibrium block to IL21. If other autoimmune IL2/IL21 genetic associations are similarly localized, then the IL21 risk alleles would be predicted to operate in a fundamental mechanism that influences the course of a number of autoimmune disease processes.
doi:10.1002/art.30320
PMCID: PMC3106139  PMID: 21425124
38.  Role of MYH9 and APOL1 in African and non-African populations with Lupus Nephritis 
Genes and Immunity  2011;13(3):232-238.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by autoantibody production and organ damage. Lupus nephritis (LN) is one of the most severe manifestations of SLE. Multiple studies reported associations between renal diseases and variants in the non-muscle myosin heavy chain 9 (MYH9) and the neighboring apolipoprotein L 1 (APOL1) genes. We evaluated 167 variants spanning MYH9 for association with LN in a multiethnic sample. The two previously identified risk variants in APOL1 were also tested for association with LN in European-Americans (EAs) (N = 579) and African-Americans (AAs) (N = 407). Multiple peaks of association exceeding a Bonferroni corrected p-value of p < 2.03 × 10−3 were observed between LN and MYH9 in EAs (N=4620), with the most pronounced association at rs2157257 (p = 4.7 × 10−4; odds ratio [OR]=1.205). A modest effect with MYH9 was also detected in Gullah (rs8136069, p = 0.0019, OR = 2.304). No association between LN and MYH9 was found in AAs, Asians, Amerindians or Hispanics. This study provides the first investigation of MYH9 in LN in non-Africans and of APOL1 in LN in any population and presents novel insight into the potential role of MYH9 in LN in EAs.
doi:10.1038/gene.2011.82
PMCID: PMC3330160  PMID: 22189356
MYH9; APOL1; lupus nephritis; systemic lupus erythematosus; multiethnic association study
39.  Effects of IRF5 Lupus Risk Haplotype on Pathways Predicted to Influence B Cell Functions 
Both genetic and environmental interactions affect systemic lupus erythematosus (SLE) development and pathogenesis. One known genetic factor associated with lupus is a haplotype of the interferon regulatory factor 5 (IRF5) gene. Analysis of global gene expression microarray data using gene set enrichment analysis identified multiple interferon- and inflammation-related gene sets significantly overrepresented in cells with the risk haplotype. Pathway analysis using expressed genes from the significant gene sets impacted by the IRF5 risk haplotype confirmed significant correlation with the interferon pathway, Toll-like receptor pathway, and the B-cell receptor pathway. SLE patients with the IRF5 risk haplotype have a heightened interferon signature, even in an unstimulated state (P = 0.011), while patients with the IRF5 protective haplotype have a B cell interferon signature similar to that of controls. These results identify multiple genes in functionally significant pathways which are affected by IRF5 genotype. They also establish the IRF5 risk haplotype as a key determinant of not only the interferon response, but also other B-cell pathways involved in SLE.
doi:10.1155/2012/594056
PMCID: PMC3304673  PMID: 22500098
40.  Peripheral blood gene expression profiling in Sjögren’s syndrome 
Genes and Immunity  2009;10(4):285-296.
Sjögren’s syndrome (SS) is a common chronic autoimmune disease characterized by lymphocytic infiltration of exocrine glands. Affected cases commonly present with oral and ocular dryness, thought to be the result of inflammatory cell-mediated gland dysfunction. To identify important molecular pathways involved in SS, we used high-density microarrays to define global gene expression profiles in peripheral blood. We first analyzed 21 SS cases and 23 controls and identified a prominent pattern of overexpressed genes that are inducible by interferons (IFNs). These results were confirmed by evaluation of a second independent dataset of 17 SS cases and 22 controls. Additional inflammatory and immune-related pathways with altered expression patterns in SS cases included B and T cell receptor, IGF-1, GM-CSF, PPARα/RXRα, and PI3/AKT signaling. Exploration of these data for relationships to clinical features of disease revealed that expression levels for most IFN-inducible genes were positively correlated with titers of anti-Ro/SSA (P<0.001) and anti-La/SSB (P<0.001) autoantibodies. Diagnostic and therapeutic approaches targeting IFN signaling pathway may prove most effective in the subset of SS cases who produce anti-Ro/SSA and anti-La/SSB autoantibodies. Our results strongly support innate and adaptive immune processes in the pathogenesis of SS and provide numerous candidate disease markers for further study.
doi:10.1038/gene.2009.20
PMCID: PMC3273959  PMID: 19404300
41.  A Comprehensive Analysis of Shared Loci between Systemic Lupus Erythematosus (SLE) and Sixteen Autoimmune Diseases Reveals Limited Genetic Overlap 
PLoS Genetics  2011;7(12):e1002406.
In spite of the well-known clustering of multiple autoimmune disorders in families, analyses of specific shared genes and polymorphisms between systemic lupus erythematosus (SLE) and other autoimmune diseases (ADs) have been limited. Therefore, we comprehensively tested autoimmune variants for association with SLE, aiming to identify pleiotropic genetic associations between these diseases. We compiled a list of 446 non–Major Histocompatibility Complex (MHC) variants identified in genome-wide association studies (GWAS) of populations of European ancestry across 17 ADs. We then tested these variants in our combined Caucasian SLE cohorts of 1,500 cases and 5,706 controls. We tested a subset of these polymorphisms in an independent Caucasian replication cohort of 2,085 SLE cases and 2,854 controls, allowing the computation of a meta-analysis between all cohorts. We have uncovered novel shared SLE loci that passed multiple comparisons adjustment, including the VTCN1 (rs12046117, P = 2.02×10−06) region. We observed that the loci shared among the most ADs include IL23R, OLIG3/TNFAIP3, and IL2RA. Given the lack of a universal autoimmune risk locus outside of the MHC and variable specificities for different diseases, our data suggests partial pleiotropy among ADs. Hierarchical clustering of ADs suggested that the most genetically related ADs appear to be type 1 diabetes with rheumatoid arthritis and Crohn's disease with ulcerative colitis. These findings support a relatively distinct genetic susceptibility for SLE. For many of the shared GWAS autoimmune loci, we found no evidence for association with SLE, including IL23R. Also, several established SLE loci are apparently not associated with other ADs, including the ITGAM-ITGAX and TNFSF4 regions. This study represents the most comprehensive evaluation of shared autoimmune loci to date, supports a relatively distinct non–MHC genetic susceptibility for SLE, provides further evidence for previously and newly identified shared genes in SLE, and highlights the value of studies of potentially pleiotropic genes in autoimmune diseases.
Author Summary
It is well known that multiple autoimmune disorders cluster in families. However, all of the genetic variants that explain this clustering have not been discovered, and the specific genetic variants shared between systemic lupus erythematosus (SLE) and other autoimmune diseases (ADs) are not known. In order to better understand the genetic factors that explain this predisposition to autoimmunity, we performed a comprehensive evaluation of shared autoimmune genetic variants. First we considered results from 17 ADs and compiled a list with 446 significant genetic variants from these studies. We identified some genetic variants extensively shared between ADs, as well as the ADs that share the most variants. The genetic overlap between SLE and other ADs was modest. Next we tested how important all the 446 genetic variants were in our collection with a minimum of 1,500 SLE patients. Among the most significant variants in SLE, the majority had already been identified in previous studies, but we also discovered variants in two important immune genes. In summary, our data identified diseases with common genetic risk factors and novel SLE effects, and this supports a relatively distinct genetic susceptibility for SLE. This study helps delineate the genetic architecture of ADs.
doi:10.1371/journal.pgen.1002406
PMCID: PMC3234215  PMID: 22174698
42.  Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort 
Genes and immunity  2011;12(4):270-279.
Systemic Lupus Erythematosus (SLE) is a prototypic autoimmune disorder with a complex pathogenesis in which genetic, hormonal and environmental factors play a role. Rare mutations in the TREX1 gene, the major mammalian 3′-5′ exonuclease, have been reported in sporadic SLE cases. Some of these mutations have also been identified in a rare pediatric neurologic condition featuring an inflammatory encephalopathy known as Aicardi-Goutières syndrome (AGS). We sought to investigate the frequency of these mutations in a large multi-ancestral cohort of SLE cases and controls.
Methods
Forty single-nucleotide polymorphisms (SNPs), including both common and rare variants, across the TREX1 gene were evaluated in ∼8370 patients with SLE and ∼7490 control subjects. Stringent quality control procedures were applied and principal components and admixture proportions were calculated to identify outliers for removal from analysis. Population-based case-control association analyses were performed. P values, false discovery rate q values, and odds ratios with 95% confidence intervals were calculated.
Results
The estimated frequency of TREX1 mutations in our lupus cohort was 0.5%. Five heterozygous mutations were detected at the Y305C polymorphism in European lupus cases but none were observed in European controls. Five African cases incurred heterozygous mutations at the E266G polymorphism and, again, none were observed in the African controls. A rare homozygous R114H mutation was identified in one Asian SLE patient whereas all genotypes at this mutation in previous reports for SLE were heterozygous. Analysis of common TREX1 SNPs (MAF >10%) revealed a relatively common risk haplotype in European SLE patients with neurologic manifestations, especially seizures, with a frequency of 58% in lupus cases compared to 45% in normal controls (p=0.0008, OR=1.73, 95% CI=1.25-2.39). Finally, the presence or absence of specific autoantibodies in certain populations produced significant genetic associations. For example, a strong association with anti-nRNP was observed in the European cohort at a coding synonymous variant rs56203834 (p=2.99E-13, OR=5.2, 95% CI=3.18-8.56).
Conclusion
Our data confirm and expand previous reports and provide additional support for the involvement of TREX1 in lupus pathogenesis.
doi:10.1038/gene.2010.73
PMCID: PMC3107387  PMID: 21270825
43.  Exon 6 variants carried on systemic lupus erythematosus (SLE) risk haplotypes modulate IRF5 function 
Autoimmunity  2010;44(2):82-89.
Interferon response factor 5 (IRF5) regulates innate immune responses to viral infection. IRF5 genetic variants have been shown to be strongly associated with risk for systemic lupus erythematosus (SLE). Functional roles of IRF5 exon 6 structural variants that occur as part of a SLE risk-associated haplotype, including a 30-bp in/del (in/del-10) and a 48-bp splice-site variant (SV-16), have not been established. In this study, we used IRF5 deficient cells overexpressing human IRF5 variants to investigate the roles of exon 6 in/del-10 and SV-16 in regulation of the apoptosis response, nuclear translocation, and ability to transactivate IRF5 responsive cytokines. We found that expression of IRF5 isoforms including either SV-16 or in/del-10 confers ability of IRF5 to impair the apoptotic response and correlates with reduced capacity for IRF5 nuclear translocation in MEFs after a DNA-damaging stimulus treatment. Interestingly, the presence or absence of both SV-16 and in/del-10 results in abrogation of both the anti-apoptotic and enhanced nuclear translocation effects of IRF5 expression. Only cells expressing IRF5 bearing SV-16 show increased IL-6 production upon LPS stimulation. MEFs expressing hIRF5 variants containing in/del-10 showed no significant difference from the control; however, cells carrying hIRF5 lacking both SV-16 and in/del-10 showed reduced IL-6 production. Our overall findings suggest that exon 6 SV-16 is more potent than in/del-10 for IRF5-driven resistance to apoptosis and promotion of cytokine production; however, in/del-10 co-expression can neutralize these effects of SV-16.
doi:10.3109/08916934.2010.491842
PMCID: PMC3104271  PMID: 20695768
SLE; IRF5 variants; exon 6; apoptosis; nuclear translocation
44.  Association of Genetic Variants in Complement Factor H and Factor H-Related Genes with Systemic Lupus Erythematosus Susceptibility 
PLoS Genetics  2011;7(5):e1002079.
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.
Author Summary
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, associated with increased complement activation. Previous studies have provided evidence for the presence of SLE susceptibility gene(s) in the chromosome 1q31-32 locus. Within 1q32, genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) may contribute to the development of SLE, because genetic variants of these genes impair complement regulation and predispose to various human diseases. In this study, we tested association of genetic variants in the region containing CFH and CFHRs with SLE. We identified genetic variants predisposing to SLE in European American, African American, and Asian populations, which might be attributed to the deletion of CFHR3 and CFHR1 genes but not previously identified disease-associated exonic variants of CFH. This study provides the first evidence for consistent association between CFH/CFHRs and SLE across multi-ancestral SLE datasets, providing new insights into the role of complement regulators in the pathogenesis of SLE.
doi:10.1371/journal.pgen.1002079
PMCID: PMC3102741  PMID: 21637784
45.  Differential Genetic Associations for Systemic Lupus Erythematosus Based on Anti–dsDNA Autoantibody Production 
PLoS Genetics  2011;7(3):e1001323.
Systemic lupus erythematosus (SLE) is a clinically heterogeneous, systemic autoimmune disease characterized by autoantibody formation. Previously published genome-wide association studies (GWAS) have investigated SLE as a single phenotype. Therefore, we conducted a GWAS to identify genetic factors associated with anti–dsDNA autoantibody production, a SLE–related autoantibody with diagnostic and clinical importance. Using two independent datasets, over 400,000 single nucleotide polymorphisms (SNPs) were studied in a total of 1,717 SLE cases and 4,813 healthy controls. Anti–dsDNA autoantibody positive (anti–dsDNA +, n = 811) and anti–dsDNA autoantibody negative (anti–dsDNA –, n = 906) SLE cases were compared to healthy controls and to each other to identify SNPs associated specifically with these SLE subtypes. SNPs in the previously identified SLE susceptibility loci STAT4, IRF5, ITGAM, and the major histocompatibility complex were strongly associated with anti–dsDNA + SLE. Far fewer and weaker associations were observed for anti–dsDNA – SLE. For example, rs7574865 in STAT4 had an OR for anti–dsDNA + SLE of 1.77 (95% CI 1.57–1.99, p = 2.0E-20) compared to an OR for anti–dsDNA – SLE of 1.26 (95% CI 1.12–1.41, p = 2.4E-04), with pheterogeneity<0.0005. SNPs in the SLE susceptibility loci BANK1, KIAA1542, and UBE2L3 showed evidence of association with anti–dsDNA + SLE and were not associated with anti–dsDNA – SLE. In conclusion, we identified differential genetic associations with SLE based on anti–dsDNA autoantibody production. Many previously identified SLE susceptibility loci may confer disease risk through their role in autoantibody production and be more accurately described as autoantibody propensity loci. Lack of strong SNP associations may suggest that other types of genetic variation or non-genetic factors such as environmental exposures have a greater impact on susceptibility to anti–dsDNA – SLE.
Author Summary
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that can involve virtually any organ system. SLE patients produce antibodies that bind to their own cells and proteins (autoantibodies) which can cause irreversible organ damage. One particular SLE–related autoantibody directed at double-stranded DNA (anti–dsDNA) is associated with kidney involvement and more severe disease. Previous genome-wide association studies (GWAS) in SLE have studied SLE itself, not particular SLE manifestations. Therefore, we conducted this GWAS of anti–dsDNA autoantibody production to identify genetic associations with this clinically important autoantibody. We found that many previously identified SLE–associated genes are more strongly associated with anti–dsDNA autoantibody production than SLE itself, and they may be more accurately described as autoantibody propensity genes. No strong genetic associations were observed for SLE patients who do not produce anti–dsDNA autoantibodies, suggesting that other factors may have more influence in developing this type of SLE. Further investigation of these autoantibody propensity genes may lead to greater insight into the causes of autoantibody production and organ damage in SLE.
doi:10.1371/journal.pgen.1001323
PMCID: PMC3048371  PMID: 21408207
46.  Risk Alleles for Systemic Lupus Erythematosus in a Large Case-Control Collection and Associations with Clinical Subphenotypes 
PLoS Genetics  2011;7(2):e1001311.
Systemic lupus erythematosus (SLE) is a genetically complex disease with heterogeneous clinical manifestations. Recent studies have greatly expanded the number of established SLE risk alleles, but the distribution of multiple risk alleles in cases versus controls and their relationship to subphenotypes have not been studied. We studied 22 SLE susceptibility polymorphisms with previous genome-wide evidence of association (p<5×10−8) in 1919 SLE cases from 9 independent Caucasian SLE case series and 4813 independent controls. The mean number of risk alleles in cases was 15.1 (SD 3.1) while the mean in controls was 13.1 (SD 2.8), with trend p = 4×10−128. We defined a genetic risk score (GRS) for SLE as the number of risk alleles with each weighted by the SLE risk odds ratio (OR). The OR for high-low GRS tertiles, adjusted for intra-European ancestry, sex, and parent study, was 4.4 (95% CI 3.8–5.1). We studied associations of individual SNPs and the GRS with clinical manifestations for the cases: age at diagnosis, the 11 American College of Rheumatology classification criteria, and double-stranded DNA antibody (anti-dsDNA) production. Six subphenotypes were significantly associated with the GRS, most notably anti-dsDNA (ORhigh-low = 2.36, p = 9e−9), the immunologic criterion (ORhigh-low = 2.23, p = 3e−7), and age at diagnosis (ORhigh-low = 1.45, p = 0.0060). Finally, we developed a subphenotype-specific GRS (sub-GRS) for each phenotype with more power to detect cumulative genetic associations. The sub-GRS was more strongly associated than any single SNP effect for 5 subphenotypes (the above plus hematologic disorder and oral ulcers), while single loci are more significantly associated with renal disease (HLA-DRB1, OR = 1.37, 95% CI 1.14–1.64) and arthritis (ITGAM, OR = 0.72, 95% CI 0.59–0.88). We did not observe significant associations for other subphenotypes, for individual loci or the sub-GRS. Thus our analysis categorizes SLE subphenotypes into three groups: those having cumulative, single, and no known genetic association with respect to the currently established SLE risk loci.
Author Summary
Systemic lupus erythematosus is a chronic disabling autoimmune disease, most commonly striking women in their thirties or forties. It can cause a wide variety of clinical manifestations, including kidney disease, arthritis, and skin disorders. Prognosis varies greatly depending on these clinical features, with kidney disease and related characteristics leading to greater morbidity and mortality. It is also complex genetically; while lupus runs in families, genes increase one's risk for lupus but do not fully determine the outcome. The interactions of multiple genes and/or interactions between genes and environmental factors may cause lupus, but the causes and disease pathways of this very heterogeneous disease are not well understood. By examining relationships between the presence of multiple lupus risk genes, lupus susceptibility, and clinical manifestations, we hope to better understand how lupus is triggered and by what biological pathways it progresses. We show in this work that certain clinical manifestations of lupus are highly associated with cumulative genetic variations, i.e. multiple risk alleles, while others are associated with a single variation or none at all.
doi:10.1371/journal.pgen.1001311
PMCID: PMC3040652  PMID: 21379322
47.  Analysis of Maternal–Offspring HLA Compatibility, Parent-of-Origin Effects, and Noninherited Maternal Antigen Effects for HLA–DRB1 in Systemic Lupus Erythematosus 
Arthritis and rheumatism  2010;62(6):1712-1717.
Objective
Genetic susceptibility to systemic lupus erythematosus (SLE) is well established, with the HLA class II DRB1 and DQB1 loci demonstrating the strongest association. However, HLA may also influence SLE through novel biologic mechanisms in addition to genetic transmission of risk alleles. Evidence for increased maternal–offspring HLA class II compatibility in SLE and differences in maternal versus paternal transmission rates (parent-of-origin effects) and nontransmission rates (noninherited maternal antigen [NIMA] effects) in other autoimmune diseases have been reported. Thus, we investigated maternal–offspring HLA compatibility, parent-of-origin effects, and NIMA effects at DRB1 in SLE.
Methods
The cohort comprised 707 SLE families and 188 independent healthy maternal–offspring pairs (total of 2,497 individuals). Family-based association tests were conducted to compare transmitted versus nontransmitted alleles (transmission disequilibrium test) and both maternally versus paternally transmitted (parent-of-origin) and nontransmitted alleles (using the chi-square test of heterogeneity). Analyses were stratified according to the sex of the offspring. Maternally affected offspring DRB1 compatibility in SLE families was compared with paternally affected offspring compatibility and with independent control maternal–offspring pairs (using Fisher’s test) and was restricted to male and nulligravid female offspring with SLE.
Results
As expected, DRB1 was associated with SLE (P < 1 × 10−4). However, mothers of children with SLE had similar transmission and nontransmission frequencies for DRB1 alleles when compared with fathers, including those for the known SLE risk alleles HLA–DRB1*0301, *1501, and *0801. No association between maternal–offspring compatibility and SLE was observed.
Conclusion
Maternal–offspring HLA compatibility, parent-of-origin effects, and NIMA effects at DRB1 are unlikely to play a role in SLE.
doi:10.1002/art.27426
PMCID: PMC2948464  PMID: 20191587
48.  Fragmentation of the large subunit ribosomal RNA gene in oyster mitochondrial genomes 
BMC Genomics  2010;11:485.
Background
Discontinuous genes have been observed in bacteria, archaea, and eukaryotic nuclei, mitochondria and chloroplasts. Gene discontinuity occurs in multiple forms: the two most frequent forms result from introns that are spliced out of the RNA and the resulting exons are spliced together to form a single transcript, and fragmented gene transcripts that are not covalently attached post-transcriptionally. Within the past few years, fragmented ribosomal RNA (rRNA) genes have been discovered in bilateral metazoan mitochondria, all within a group of related oysters.
Results
In this study, we have characterized this fragmentation with comparative analysis and experimentation. We present secondary structures, modeled using comparative sequence analysis of the discontinuous mitochondrial large subunit rRNA genes of the cupped oysters C. virginica, C. gigas, and C. hongkongensis. Comparative structure models for the large subunit rRNA in each of the three oyster species are generally similar to those for other bilateral metazoans. We also used RT-PCR and analyzed ESTs to determine if the two fragmented LSU rRNAs are spliced together. The two segments are transcribed separately, and not spliced together although they still form functional rRNAs and ribosomes.
Conclusions
Although many examples of discontinuous ribosomal genes have been documented in bacteria and archaea, as well as the nuclei, chloroplasts, and mitochondria of eukaryotes, oysters are some of the first characterized examples of fragmented bilateral animal mitochondrial rRNA genes. The secondary structures of the oyster LSU rRNA fragments have been predicted on the basis of previous comparative metazoan mitochondrial LSU rRNA structure models.
doi:10.1186/1471-2164-11-485
PMCID: PMC2996981  PMID: 20813041
49.  European population substructure is associated with mucocutaneous manifestations and autoantibody production in systemic lupus erythematosus 
Arthritis and rheumatism  2009;60(8):2448-2456.
Objective
To determine whether genetic substructure in European-derived populations is associated with specific manifestations of systemic lupus erythematosus (SLE), including mucocutaneous phenotypes, autoantibody production, and renal disease.
Methods
SLE patients of European descent (n=1754) from 8 case collections were genotyped for over 1,400 ancestry informative markers that define a north/south gradient of European substructure. Based on these genetic markers, we used the STRUCTURE program to characterize each SLE patient in terms of percent northern (vs. southern) European ancestry. Non-parametric methods, including tests of trend, were used to identify associations between northern European ancestry and specific SLE manifestations.
Results
In multivariate analyses, increasing levels of northern European ancestry were significantly associated with photosensitivity (ptrend=0.0021, OR for highest quartile of northern European ancestry compared to lowest quartile 1.64, 95% CI 1.13–2.35) and discoid rash (ptrend=0.014, ORhigh-low 1.93, 95% CI 0.98–3.83). In contrast, northern European ancestry was protective for anticardiolipin (ptrend=1.6 × 10−4, ORhigh-low 0.46, 95% CI 0.30–0.69) and anti-dsDNA (ptrend=0.017, ORhigh-low 0.67, 95% CI 0.46–0.96) autoantibody production.
Conclusions
This study demonstrates that specific SLE manifestations vary according to northern vs. southern European ancestry. Thus, genetic ancestry may contribute to the clinical heterogeneity and variation in disease outcomes among SLE patients of European descent. Moreover, these results suggest that genetic studies of SLE subphenotypes will need to carefully address issues of population substructure due to genetic ancestry.
doi:10.1002/art.24707
PMCID: PMC2739103  PMID: 19644962
50.  A polymorphism within interleukin-21 receptor (IL21R) confers risk for systemic lupus erythematosus 
Arthritis and rheumatism  2009;60(8):2402-2407.
Objective
Interleukin (IL) 21 is a member of the type I cytokine superfamily that exerts a variety of effects on the immune system including B cell activation, plasma cell differentiation, and immunoglobulin production. The expression of IL21R is reduced in B cells from lupus patients, while IL21 serum levels are increased in both lupus patients and some lupus-murine models. We recently reported that polymorphisms within the IL21 gene are associated with increased susceptibility to lupus. Herein, we examined the genetic association between SNPs within IL21R and lupus.
Methods
We genotyped 17 SNPs in the IL21R gene in two large cohorts of lupus patients and ethnically-matched healthy controls. Genotyping was performed with the Illumina BeadStation 500GX instrument using Illumina Infinum II genotyping assays.
Results
We identified and confirmed the association between rs3093301 within the IL21R gene and lupus in two independent European-derived and Hispanic cohorts (meta analysis odds ratio= 1.16, 95% CI= 1.08-1.25, meta analysis p=1.0×10-4).
Conclusion
We identified IL21R as a novel susceptibility gene for lupus.
doi:10.1002/art.24658
PMCID: PMC2782592  PMID: 19644854

Results 26-50 (58)