Search tips
Search criteria

Results 26-50 (69)

Clipboard (0)

Select a Filter Below

more »
Year of Publication
more »
26.  Admixture Mapping in Lupus Identifies Multiple Functional Variants within IFIH1 Associated with Apoptosis, Inflammation, and Autoantibody Production 
PLoS Genetics  2013;9(2):e1003222.
Systemic lupus erythematosus (SLE) is an inflammatory autoimmune disease with a strong genetic component. African-Americans (AA) are at increased risk of SLE, but the genetic basis of this risk is largely unknown. To identify causal variants in SLE loci in AA, we performed admixture mapping followed by fine mapping in AA and European-Americans (EA). Through genome-wide admixture mapping in AA, we identified a strong SLE susceptibility locus at 2q22–24 (LOD = 6.28), and the admixture signal is associated with the European ancestry (ancestry risk ratio ∼1.5). Large-scale genotypic analysis on 19,726 individuals of African and European ancestry revealed three independently associated variants in the IFIH1 gene: an intronic variant, rs13023380 [Pmeta = 5.20×10−14; odds ratio, 95% confidence interval = 0.82 (0.78–0.87)], and two missense variants, rs1990760 (Ala946Thr) [Pmeta = 3.08×10−7; 0.88 (0.84–0.93)] and rs10930046 (Arg460His) [Pdom = 1.16×10−8; 0.70 (0.62–0.79)]. Both missense variants produced dramatic phenotypic changes in apoptosis and inflammation-related gene expression. We experimentally validated function of the intronic SNP by DNA electrophoresis, protein identification, and in vitro protein binding assays. DNA carrying the intronic risk allele rs13023380 showed reduced binding efficiency to a cellular protein complex including nucleolin and lupus autoantigen Ku70/80, and showed reduced transcriptional activity in vivo. Thus, in SLE patients, genetic susceptibility could create a biochemical imbalance that dysregulates nucleolin, Ku70/80, or other nucleic acid regulatory proteins. This could promote antibody hypermutation and auto-antibody generation, further destabilizing the cellular network. Together with molecular modeling, our results establish a distinct role for IFIH1 in apoptosis, inflammation, and autoantibody production, and explain the molecular basis of these three risk alleles for SLE pathogenesis.
Author Summary
African-Americans (AA) are at increased risk of systemic lupus erythematosus (SLE), but the genetic basis of this risk increase is largely unknown. We used admixture mapping to localize disease-causing genetic variants that differ in frequency across populations. This approach is advantageous for localizing susceptibility genes in recently admixed populations like AA. Our genome-wide admixture scan identified seven admixture signals, and we followed the best signal at 2q22–24 with fine-mapping, imputation-based association analysis and experimental validation. We identified two independent coding variants and a non-coding variant within the IFIH1 gene associated with SLE. Together with molecular modeling, our results establish a distinct role for IFIH1 in apoptosis, inflammation, and autoantibody production, and explain the molecular basis of these three risk alleles for SLE pathogenesis.
PMCID: PMC3575474  PMID: 23441136
27.  Evidence for gene-gene epistatic interactions among susceptibility loci for systemic lupus erythematosus 
Arthritis and Rheumatism  2012;64(2):485-492.
Several confirmed genetic susceptibility loci for lupus have been described. To date, no clear evidence for genetic epistasis is established in lupus. We test for gene-gene interactions in a number of known lupus susceptibility loci.
Eighteen SNPs tagging independent and confirmed lupus susceptibility loci were genotyped in a set of 4,248 lupus patients and 3,818 normal healthy controls of European descent. Epistasis was tested using a 2-step approach utilizing both parametric and non-parametric methods. The false discovery rate (FDR) method was used to correct for multiple testing.
We detected and confirmed gene-gene interactions between the HLA region and CTLA4, IRF5, and ITGAM, and between PDCD1 and IL21 in lupus patients. The most significant interaction detected by parametric analysis was between rs3131379 in the HLA region and rs231775 in CTLA4 (Interaction odds ratio=1.19, z-score= 3.95, P= 7.8×10−5 (FDR≤0.05), PMDR= 5.9×10−45). Importantly, our data suggest that in lupus patients the presence of the HLA lupus-risk alleles in rs1270942 and rs3131379 increases the odds of also carrying the lupus-risk allele in IRF5 (rs2070197) by 17% and 16%, respectively (P= 0.0028 and 0.0047).
We provide evidence for gene-gene epistasis in systemic lupus erythematosus. These findings support a role for genetic interaction contributing to the complexity of lupus heritability.
PMCID: PMC3268866  PMID: 21952918
28.  A functional haplotype of UBE2L3 confers risk for Systemic Lupus Erythematosus 
Genes and immunity  2012;13(5):380-387.
Systemic lupus erythematosus (SLE) is an autoimmune disease with diverse clinical manifestations characterized by the development of pathogenic autoantibodies manifesting in inflammation of target organs such as the kidneys, skin and joints. Genome-wide association studies have identified genetic variants in the UBE2L3 region that are associated with SLE in subjects of European and Asian ancestry. UBE2L3 encodes an ubiquitin-conjugating enzyme, UBCH7, involved in cell proliferation and immune function. In this study, we sought to further characterize the genetic association in the region of UBE2L3 and use molecular methods to determine the functional effect of the risk haplotype. We identified significant associations between variants in the region of UBE2L3 and SLE in individuals of European and Asian ancestry that exceeded a Bonferroni corrected threshold (P < 1 × 10−4). A single risk haplotype was observed in all associated populations. Individuals harboring the risk haplotype display a significant increase in both UBE2L3 mRNA expression (P = 0.0004) and UBCH7 protein expression (P = 0.0068). The results suggest that variants carried on the SLE associated UBE2L3 risk haplotype influence autoimmunity by modulating UBCH7 expression.
PMCID: PMC3411915  PMID: 22476155
Systemic Lupus Erythematosus; UBE2L3; Multi Ethnic Association Study; UBCH7 Expression
29.  FAS mRNA editing in human Systemic Lupus Erythematosus 
Human mutation  2011;32(11):1268-1277.
FAS/FASL system plays a central role in maintaining peripheral immune tolerance. Human SLE is a prototypic systemic autoimmune disease characterized by expansion of autoreactive lymphocytes. It remains unclear whether a defective FAS/FASL system is involved in the pathogenesis of SLE. In this study, we have discovered a novel nucleotide insertion in FAS mRNA. We demonstrate that this novel FAS mutation occurs at mRNA levels, likely through a site-specific mRNA editing process. The mRNA editing mutation is unique for human FAS because the similar mRNA editing event is absent in other human TNFR family genes with death domains (DR5, DR6, and TNFR1) and in murine FAS. The adenine insertion mutation in the coding region message causes the alteration of human FAS mRNA reading frame. Functionally, cells expressing the edited FAS (edFAS) were refractory to FAS-mediated apoptosis. Surprisingly, cells from SLE patients produced significantly more edFAS products compared to cells from normal healthy controls. Additionally, we demonstrated that persistent engagement of T cell receptor increases human FAS mRNA editing in human T cells. Our data suggest that the site-specific FAS mRNA editing mutation may play a critical role in human immune responses and in the pathogenesis of human chronic inflammatory diseases.
PMCID: PMC3196739  PMID: 21793106
FAS; mRNA editing; apoptosis; Systemic Lupus Erythematosus
30.  Identification of novel genetic susceptibility loci in African-American lupus patients using a candidate gene association study 
Arthritis and rheumatism  2011;63(11):3493-3501.
Candidate gene and genome-wide association studies have identified several disease susceptibility loci in lupus patients. These studies have been largely performed in European-derived and Asian lupus patients. In this study, we examine if some of these same susceptibility loci increase lupus risk in African-American individuals.
Single nucleotide polymorphisms tagging 15 independent lupus susceptibility loci were genotyped in a set of 1,724 lupus patients and 2,024 normal healthy controls of African-American descent. The loci examined included: PTPN22, FCGR2A, TNFSF4, STAT4, CTLA4, PDCD1, PXK, BANK1, MSH5 (HLA region), CFB (HLA region), C8orf13-BLK region, MBL2, KIAA1542, ITGAM, and MECP2/IRAK1.
We provide the first evidence for genetic association between lupus and five susceptibility loci in African-American patients (C8orf13-BLK, BANK1, TNFSF4, KIAA1542 andCTLA4; P values= 8.0 × 10−6, 1.9 × 10−5, 5.7 × 10−5, 0.00099, 0.0045, respectively). Further, we confirm the genetic association between lupus and five additional lupus susceptibility loci (ITGAM, MSH5, CFB, STAT4, and FCGR2A; P values= 7.5 × 10−11, 5.2 × 10−8, 8.7 × 10−7, 0.0058, and 0.0070, respectively), and provide evidence for a genome-wide significance for the association between ITGAM and MSH5 (HLA region) for the first time in African-American lupus patients.
These findings provide evidence for novel genetic susceptibility loci for lupus in African-Americans and demonstrate that the majority of lupus susceptibility loci examined confer lupus risk across multiple ethnicities.
PMCID: PMC3205224  PMID: 21792837
31.  Variation in the ICAM1–ICAM4–ICAM5 locus is associated with systemic lupus erythematosus susceptibility in multiple ancestries 
Annals of the rheumatic diseases  2012;71(11):1809-1814.
Systemic lupus erythematosus (SLE; OMIM 152700) is a chronic autoimmune disease for which the aetiology includes genetic and environmental factors. ITGAM, integrin αΜ (complement component 3 receptor 3 subunit) encoding a ligand for intracellular adhesion molecule (ICAM) proteins, is an established SLE susceptibility locus. This study aimed to evaluate the independent and joint effects of genetic variations in the genes that encode ITGAM and ICAM.
The authors examined several markers in the ICAM1–ICAM4–ICAM5 locus on chromosome 19p13 and the single ITGAM polymorphism (rs1143679) using a large-scale case–control study of 17 481 unrelated participants from four ancestry populations. The single marker association and gene–gene interaction were analysed for each ancestry, and a meta-analysis across the four ancestries was performed.
The A-allele of ICAM1–ICAM4–ICAM5 rs3093030, associated with elevated plasma levels of soluble ICAM1, and the A-allele of ITGAM rs1143679 showed the strongest association with increased SLE susceptibility in each of the ancestry populations and the trans-ancestry meta-analysis (ORmeta=1.16, 95% CI 1.11 to 1.22; p=4.88×10−10 and ORmeta=1.67, 95% CI 1.55 to 1.79; p=3.32×10−46, respectively). The effect of the ICAM single-nucleotide polymorphisms (SNPs) was independent of the effect of the ITGAM SNP rs1143679, and carriers of both ICAM rs3093030-AA and ITGAM rs1143679-AA had an OR of 4.08 compared with those with no risk allele in either SNP (95% CI 2.09 to 7.98; p=3.91×10−5).
These findings are the first to suggest that an ICAM–integrin-mediated pathway contributes to susceptibility to SLE.
PMCID: PMC3466387  PMID: 22523428
32.  Phenotypic associations of genetic susceptibility loci in systemic lupus erythematosus 
Annals of the rheumatic diseases  2011;70(10):1752-1757.
Systemic lupus erythematosus is a clinically heterogeneous autoimmune disease. A number of genetic loci that increase lupus susceptibility have been established. This study examines if these genetic loci also contribute to the clinical heterogeneity in lupus.
Materials and methods
4001 European-derived, 1547 Hispanic, 1590 African-American and 1191 Asian lupus patients were genotyped for 16 confirmed lupus susceptibility loci. Ancestry informative markers were genotyped to calculate and adjust for admixture. The association between the risk allele in each locus was determined and compared in patients with and without the various clinical manifestations included in the ACR criteria.
Renal disorder was significantly correlated with the lupus risk allele in ITGAM (p=5.0×10−6, OR 1.25, 95% CI 1.12 to 1.35) and in TNFSF4 (p=0.0013, OR 1.14, 95% CI 1.07 to 1.25). Other significant findings include the association between risk alleles in FCGR2A and malar rash (p=0.0031, OR 1.11, 95% CI 1.17 to 1.33), ITGAM and discoid rash (p=0.0020, OR 1.20, 95% CI 1.06 to 1.33), STAT4 and protection from oral ulcers (p=0.0027, OR 0.89, 95% CI 0.83 to 0.96) and IL21 and haematological disorder (p=0.0027, OR 1.13, 95% CI 1.04 to 1.22). All these associations are significant with a false discovery rate of <0.05 and pass the significance threshold using Bonferroni correction for multiple testing.
Significant associations were found between lupus clinical manifestations and the FCGR2A, ITGAM, STAT4, TNSF4 and IL21 genes. The findings suggest that genetic profiling might be a useful tool to predict disease manifestations in lupus patients in the future.
PMCID: PMC3232181  PMID: 21719445
33.  Functional FcγRIIB Gene Variants Influence Intravenous Immunoglobulin (IVIG) Response in Kawasaki Disease (KD) Patients 
Capsule Summary
In Kawasaki Disease patients, the authors show associations between high-dose intravenous immunoglobulin (IVIG) response and a polymorphism in the FCγRIIB. This provides basis for defining the IVIG regulatory mechanisms and pharmacogenomic approach to IVIG therapy.
PMCID: PMC3444515  PMID: 21601260
Kawasaki disease; IVIG treatment response; FcγR
34.  Association of PPP2CA polymorphisms with SLE susceptibility in multiple ethnic groups 
Arthritis and rheumatism  2011;63(9):2755-2763.
T cells from patients with SLE express increased amounts of PP2Ac which contribute to decreased production of IL-2. Because IL-2 is important in the regulation of several aspects of the immune response, it has been proposed that PP2Ac contributes to the expression of SLE. This study was designed to determine whether genetic variants of PPP2AC are linked to the expression of SLE and specific clinical manifestations and account for the increased expression of PP2Ac.
We conducted a trans-ethnic study consisting of 8,695 SLE cases and 7,308 controls from four different ancestries. Eighteen single-nucleotide polymorphisms (SNPs) across the PPP2CA were genotyped using an Illumina custom array. PPP2CA expression in SLE and control T cells was analyzed by real-time PCR.
A 32-kb haplotype comprised of multiple SNPs of PPP2CA showed significant association with SLE in Hispanic Americans (HA), European Americans (EA) and Asians but not in African-Americans (AA). Conditional analyses revealed that SNP rs7704116 in intron 1 showed consistently strong association with SLE across Asian, EA and HA populations (pmeta=3.8×10−7, OR=1.3[1.14–1.31]). In EA, the largest ethnic dataset, the risk A allele of rs7704116 was associated with the presence of renal disease, anti-dsDNA and anti-RNP antibodies. PPP2CA expression was approximately 2-fold higher in SLE patients carrying the rs7704116 AG genotype than those carrying GG genotype (p = 0.008).
Our data provide the first evidence for an association between PPP2CA polymorphisms and elevated PP2Ac transcript levels in T cells, which implicates a new molecular pathway for SLE susceptibility in EA, HA and Asians.
PMCID: PMC3163110  PMID: 21590681
35.  Genetic Analyses of Interferon Pathway-Related Genes Reveals Multiple New Loci Associated with Systemic Lupus Erythematosus (SLE) 
Arthritis and rheumatism  2011;63(7):2049-2057.
The overexpression of interferon (IFN)-inducible genes is a prominent feature of SLE, serves as a marker for active and more severe disease, and is also observed in other autoimmune and inflammatory conditions. The genetic variations responsible for sustained activation of IFN responsive genes are unknown.
We systematically evaluated association of SLE with a total of 1,754 IFN-pathway related genes, including IFN-inducible genes known to be differentially expressed in SLE patients and their direct regulators. We performed a three-stage design where two cohorts (total n=939 SLE cases, 3,398 controls) were analyzed independently and jointly for association with SLE, and the results were adjusted for the number of comparisons.
A total of 16,137 SNPs passed all quality control filters of which 316 demonstrated replicated association with SLE in both cohorts. Nine variants were further genotyped for confirmation in an average of 1,316 independent SLE cases and 3,215 independent controls. Association with SLE was confirmed for several genes, including the transmembrane receptor CD44 (rs507230, P = 3.98×10−12), cytokine pleiotrophin (PTN) (rs919581, P = 5.38×10−04), the heat-shock DNAJA1 (rs10971259, P = 6.31×10−03), and the nuclear import protein karyopherin alpha 1 (KPNA1) (rs6810306, P = 4.91×10−02).
This study expands the number of candidate genes associated with SLE and highlights the potential of pathway-based approaches for gene discovery. Identification of the causal alleles will help elucidate the molecular mechanisms responsible for activation of the IFN system in SLE.
PMCID: PMC3128183  PMID: 21437871
36.  Fine mapping and trans-ethnic genotyping establish IL2/IL21 genetic association with lupus and localize this genetic effect to IL21 
Arthritis and rheumatism  2011;63(6):1689-1697.
Genetic association of the IL2/IL21 region at 4q27 has been previously reported in lupus and a number of autoimmune and inflammatory diseases. Herein, using a very large cohort of lupus patients and controls, we localize this genetic effect to the IL21 gene.
We genotyped 45 tag SNPs across the IL2/IL21 locus in two large independent lupus sample sets. We studied a European-derived set consisting of 4,248 lupus patients and 3,818 healthy controls, and an African-American set of 1,569 patients and 1,893 healthy controls. Imputation in 3,004 WTCCC additional control individuals was also performed. Genetic association between the genotyped markers was determined, and pair-wise conditional analysis was performed to localize the independent genetic effect in the IL2/IL21 locus in lupus.
We established and confirmed the genetic association between IL2/IL21 and lupus. Using conditional analysis and trans-ethnic mapping, we localized the genetic effect in this locus to two SNPs in high linkage disequilibrium; rs907715 located within IL21 (OR=1.16 (1.10–1.22), P= 2.17 ×10−8), and rs6835457 located in the 3’-UTR flanking region of IL21 (OR= 1.11 (1.05–1.17), P= 9.35×10−5).
We have established the genetic association between lupus and IL2/IL21 with a genome-wide level of significance. Further, we localized this genetic association within the IL2/IL21 linkage disequilibrium block to IL21. If other autoimmune IL2/IL21 genetic associations are similarly localized, then the IL21 risk alleles would be predicted to operate in a fundamental mechanism that influences the course of a number of autoimmune disease processes.
PMCID: PMC3106139  PMID: 21425124
37.  A higher degree of LINE-1 methylation in peripheral blood mononuclear cells, a one-carbon nutrient related epigenetic alteration, is associated with a lower risk of developing cervical intraepithelial neoplasia 
The objective of the study was to evaluate LINE-1 methylation as an intermediate biomarker for the effect of folate and vitamin B12 on the occurrence of higher grades of cervical intraepithelial neoplasia (CIN 2+).
Study included 376 women who tested positive for HR-HPVs and were diagnosed with CIN 2+ (cases) or ≤ CIN 1 (non-cases). CIN 2+ (yes/no) was the dependent variable in logistic regression models that specified the degree of LINE-1 methylation of peripheral blood mononuclear cells (PBMCs) and of exfoliated cervical cells (CCs) as the independent predictors of primary interest. In analyses restricted to non-cases, PBMC LINE-1 methylation (≥70% vs. <70%) and CC LINE-1 methylation (≥54% vs. <54%) were the dependent variables in logistic regression models that specified the circulating concentrations of folate and vitamin B12 as the primary independent predictors.
Women in the highest tertile of PBMC LINE-1 methylation had 56% lower odds of being diagnosed with CIN 2+ (OR = 0.44; 95% CI, 0.24-0.83; P = 0.011) while there was no significant association between degree of CC LINE-1 methylation and CIN 2+ (OR = 0.86; 95% CI, 0.51-1.46; P = 0.578). Among non-cases, women with supra-physiologic concentrations of folate (>19.8 ng/mL) and sufficient concentrations of plasma vitamin B12 (≥ 200.6 ng/mL) were significantly more likely to have highly methylated PBMCs compared to women with lower folate and lower vitamin B12 (OR = 3.92; 95% CI, 1.06-14.52; P = 0.041). None of the variables including folate and vitamin B12 were significantly associated with CC LINE-1 methylation.
These results suggest that a higher degree of LINE-1 methylation in peripheral blood mononuclear cells, a one-carbon nutrient related epigenetic alteration, is associated with a lower risk of developing cervical intraepithelial neoplasia.
PMCID: PMC3070926  PMID: 21463750
methylation; cervical; neoplasia
38.  Role of MYH9 and APOL1 in African and non-African populations with Lupus Nephritis 
Genes and Immunity  2011;13(3):232-238.
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by autoantibody production and organ damage. Lupus nephritis (LN) is one of the most severe manifestations of SLE. Multiple studies reported associations between renal diseases and variants in the non-muscle myosin heavy chain 9 (MYH9) and the neighboring apolipoprotein L 1 (APOL1) genes. We evaluated 167 variants spanning MYH9 for association with LN in a multiethnic sample. The two previously identified risk variants in APOL1 were also tested for association with LN in European-Americans (EAs) (N = 579) and African-Americans (AAs) (N = 407). Multiple peaks of association exceeding a Bonferroni corrected p-value of p < 2.03 × 10−3 were observed between LN and MYH9 in EAs (N=4620), with the most pronounced association at rs2157257 (p = 4.7 × 10−4; odds ratio [OR]=1.205). A modest effect with MYH9 was also detected in Gullah (rs8136069, p = 0.0019, OR = 2.304). No association between LN and MYH9 was found in AAs, Asians, Amerindians or Hispanics. This study provides the first investigation of MYH9 in LN in non-Africans and of APOL1 in LN in any population and presents novel insight into the potential role of MYH9 in LN in EAs.
PMCID: PMC3330160  PMID: 22189356
MYH9; APOL1; lupus nephritis; systemic lupus erythematosus; multiethnic association study
39.  Most Common SNPs Associated with Rheumatoid Arthritis in Subjects of European Ancestry Confer Risk of Rheumatoid Arthritis in African-Americans 
Arthritis and Rheumatism  2010;62(12):3547-3553.
Large-scale genetic association studies have identified over 20 rheumatoid arthritis (RA) risk alleles among individuals of European ancestry. The influence of these risk alleles has not been comprehensively studied in African-Americans. We therefore sought to examine whether these validated RA risk alleles are associated with RA in an African-American population.
27 candidate SNPs were genotyped in 556 autoantibody-positive African-Americans with RA and 791 healthy African-American controls. Odds ratios (OR) and 95% confidence intervals (CI) for each SNP were compared to previously published ORs of RA patients of European ancestry. We then calculated a composite Genetic Risk Score (GRS) for each individual based on the sum of all risk alleles.
There was overlap in the OR and 95% CI between the European and African-American populations in 24 of the 27 candidate SNPs. Conversely, 3 of the 27 SNPs (CCR6 rs3093023, TAGAP rs394581, TNFAIP3 rs6920220) demonstrated an OR in the opposite direction from those reported in RA patients of European ancestry. The GRS analysis indicated a small but highly significant probability that African-American cases were enriched for the European RA risk alleles relative to controls (p=0.00005).
The majority of RA risk alleles previously validated among European ancestry RA patients showed similar ORs in our population of African-Americans with RA. Furthermore, the aggregate GRS supports the hypothesis that these SNPs are risk alleles for RA in the African-American population. Future large-scale genetic studies are needed to validate these risk alleles and identify novel risk alleles for RA in African-Americans.
PMCID: PMC3030622  PMID: 21120996
40.  The Role of HLA DR-DQ Haplotypes in Variable Antibody Responses to Anthrax Vaccine Adsorbed 
Genes and immunity  2011;12(6):457-465.
Host genetic variation, particularly within the human leukocyte antigen (HLA) loci, reportedly mediates heterogeneity in immune response to certain vaccines; however, no large study of genetic determinants of anthrax vaccine response has been described. We searched for associations between the IgG antibody to protective antigen (AbPA) response to Anthrax Vaccine Adsorbed (AVA) in humans and polymorphisms at HLA class I (HLA-A, -B, and -C) and class II (HLA-DRB1, -DQA1, -DQB1, -DPB1) loci. The study included 794 European-Americans and 200 African-Americans participating in a 43-month, double-blind, placebo-controlled, clinical trial of AVA ( identifier NCT00119067). Among European-Americans, genes from tightly linked HLA-DRB1-DQA1-DQB1 haplotypes displayed significant overall associations with longitudinal variation in AbPA levels at 4, 8, 26, and 30 weeks from baseline in response to vaccination with 3 or 4 doses of AVA (global p=6.53×10−4). In particular, carriage of the DRB1-DQA1-DQB1 haplotypes *1501-*0102-*0602 (p=1.17×10−5), *0101-*0101-*0501 (p=0.009), and *0102-*0101-*0501 (p=0.006) was associated with significantlylower AbPA levels. In carriers of two copies of these haplotypes, lower AbPA levels persisted following subsequent vaccinations. No significant associations were observed amongst African-Americans or for any HLA class I allele/haplotype. Further studies will be required to replicate these findings and to explore the role of host genetic variation outside of the HLA region.
PMCID: PMC3165112  PMID: 21368772
Anthrax vaccines; Bacillus anthracis; Bacterial vaccines; Vaccination; HLA Antigens
41.  A higher degree of methylation of the HPV 16 E6 gene is associated with a lower likelihood of being diagnosed with cervical intraepithelial neoplasia 
Cancer  2010;117(5):957-963.
Even though HPV 16 is the most common HPV genotype associated with cancerous lesions of the cervix, only a fraction of HPV 16 infected women are diagnosed with pre-cancerous lesions of the cervix. Therefore, molecular changes in HPV 16 rather than infections per se may serve as better screening or diagnostic biomarkers. The purpose of the study was to evaluate whether methylation status of specific regions of the HPV E6 gene promoter and enhancer is independently associated with the likelihood of being diagnosed with higher grades of cervical intraepithelial neoplasia (CIN 2+).
The study included 75 HPV 16 positive women diagnosed with CIN 2+ or ≤ CIN 1. Pyrosequencing technology was applied to quantify methylation at 6 cytosine guanine dinucleotide (CpG) sites of the HPV 16 E6 promoter and enhancer. CIN 2+ (yes/no) was the dependent variable in logistic regression models that specified the degree of methylation of the CpG sites of the HPV 16 E6 gene as the primary independent predictors. All models were adjusted for demographic, lifestyle, known risk factors for cervical cancer and circulating concentrations of “cancer-protective” micronutrients.
The odds of being diagnosed with CIN 2+ was 79% lower when the degree of methylation of the HPV 16 enhancer and promoter sites were ≥9.5% (OR= 0.21; 95% CI, 0.06–0.79; P=0.02).
Results suggested that CpG methylation is independently involved in the biology of HPV-16 as well as in the development of higher grades of CIN.
PMCID: PMC3023831  PMID: 20945322
HPV 16; methylation; cervical; neoplasia
42.  Alpha1-Antitrypsin Deficiency–Related Alleles Z and S and the Risk of Wegener’s Granulomatosis 
Arthritis and rheumatism  2010;62(12):3760-3767.
Deficiency of α1-antitrypsin (α1AT) may be a determinant of susceptibility to Wegener’s granulomatosis (WG). Several previous, mainly small, case–control studies have shown that 5–27% of patients with WG carried the α1AT deficiency Z allele. It is not clear whether the S allele, the other major α1AT deficiency variant, is associated with WG. This study investigated the relationship of the α1AT deficiency Z and S alleles with the risk of developing WG in a large cohort.
We studied the distribution of the α1AT deficiency alleles Z and S in 433 unrelated Caucasian patients with WG and 421 ethnically matched controls. Genotyping was performed using an allele discrimination assay. Results were compared between cases and controls using exact statistical methods.
Among the patients with WG, the allele carriage frequencies of Z and S were 7.4% and 11.5%, respectively. The frequencies of the 6 possible genotypes differed in a statistically significant manner between cases and controls (P = 0.01). The general genetic 2-parameter codominant model provided the best fit to the data. Compared with the normal MM genotype, the odds ratio (OR) for MZ or MS genotypes was 1.47 (95% confidence interval [95% CI] 0.98–2.22), and the OR for ZZ, SS, or SZ genotypes was 14.58 (95% CI 2.33–∞). ORs of similar direction and magnitude were observed within the restricted cohorts that excluded cases and controls carrying ≥1 Z or ≥1 S allele.
Both Z and S alleles display associations with risk of WG in a codominant genetic pattern. These findings strengthen the evidence of a causal link between α1AT deficiency and susceptibility to WG.
PMCID: PMC3123032  PMID: 20827781
43.  Human FasL Gene Is a Target of β-Catenin/T-Cell Factor Pathway and Complex FasL Haplotypes Alter Promoter Functions 
PLoS ONE  2011;6(10):e26143.
FasL expression on human immune cells and cancer cells plays important roles in immune homeostasis and in cancer development. Our previous study suggests that polymorphisms in the FasL promoter can significantly affect the gene expression in human cells. In addition to the functional FasL SNP -844C>T (rs763110), three other SNPs (SNP -756A>G or rs2021837, SNP -478A>T or rs41309790, and SNP -205 C>G or rs74124371) exist in the proximal FasL promoter. In the current study, we established three major FasL hyplotypes in humans. Interestingly, a transcription motif search revealed that the FasL promoter possessed two consensus T-cell factor (TCF/LEF1) binding elements (TBEs), which is either polymorphic (SNP -205C>G) or close to the functional SNP -844C>T. Subsequently, we demonstrate that both FasL TBEs formed complexes with the TCF-4 and β-catenin transcription factors in vitro and in vivo. Co-transfection of LEF-1 and β-catenin transcription factors significantly increased FasL promoter activities, suggesting that FasL is a target gene of the β-catenin/T-cell factor pathway. More importantly, we found that the rare allele (-205G) of the polymorphic FasL TBE (SNP -205C>G) failed to bind the TCF-4 transcription factor and that SNP -205 C>G significantly affected the promoter activity. Furthermore, promoter reporter assays revealed that FasL SNP haplotypes influenced promoter activities in human colon cancer cells and in human T cells. Finally, β-catenin knockdown significantly decreased the FasL expression in human SW480 colon cancer cells. Collectively, our data suggest that β-catenin may be involved in FasL gene regulation and that FasL expression is influenced by FasL SNP haplotypes, which may have significant implications in immune response and tumorigenesis.
PMCID: PMC3191176  PMID: 22022540
45.  The Non-Muscle Myosin Heavy Chain 9 Gene (MYH9) Is Not Associated with Lupus Nephritis in African Americans 
American Journal of Nephrology  2010;32(1):66-72.
African Americans (AA) disproportionately develop lupus nephritis (LN) relative to European Americans and familial clustering supports causative genes. Since MYH9 underlies approximately 40% of end-stage renal disease (ESRD) in AA, we tested for genetic association with LN.
Seven MYH9 single nucleotide polymorphisms (SNPs) and the E1 risk haplotype were tested for association with LN in three cohorts of AA.
A preliminary analysis revealed that the MYH9 E1 risk haplotype was associated with ESRD in 25 cases with presumed systemic lupus erythematosus (SLE)-associated ESRD, compared to 735 non-SLE controls (odds ratio 3.1; p = 0.010 recessive). Replication analyses were performed in 583 AA with SLE in the PROFILE cohort (318 with LN; 265 with SLE but without nephropathy) and 60 AA from the NIH (39 with LN; 21 with SLE but without nephropathy). Analysis of the NIH and larger PROFILE cohorts, as well as a combined analysis, did not support this association.
These results suggest that AA with ESRD and coincident SLE who were recruited from dialysis clinics more likely have kidney diseases in the MYH9-associated spectrum of focal segmental glomerulosclerosis. PROFILE and NIH participants, recruited from rheumatology practices, demonstrate that MYH9 does not contribute substantially to the development of LN in AA.
PMCID: PMC2914393  PMID: 20523037
African Americans; Genetics; Lupus nephritis; Kidney; MYH9; Systemic lupus erythematosus
46.  Evaluation of the TREX1 gene in a large multi-ancestral lupus cohort 
Genes and immunity  2011;12(4):270-279.
Systemic Lupus Erythematosus (SLE) is a prototypic autoimmune disorder with a complex pathogenesis in which genetic, hormonal and environmental factors play a role. Rare mutations in the TREX1 gene, the major mammalian 3′-5′ exonuclease, have been reported in sporadic SLE cases. Some of these mutations have also been identified in a rare pediatric neurologic condition featuring an inflammatory encephalopathy known as Aicardi-Goutières syndrome (AGS). We sought to investigate the frequency of these mutations in a large multi-ancestral cohort of SLE cases and controls.
Forty single-nucleotide polymorphisms (SNPs), including both common and rare variants, across the TREX1 gene were evaluated in ∼8370 patients with SLE and ∼7490 control subjects. Stringent quality control procedures were applied and principal components and admixture proportions were calculated to identify outliers for removal from analysis. Population-based case-control association analyses were performed. P values, false discovery rate q values, and odds ratios with 95% confidence intervals were calculated.
The estimated frequency of TREX1 mutations in our lupus cohort was 0.5%. Five heterozygous mutations were detected at the Y305C polymorphism in European lupus cases but none were observed in European controls. Five African cases incurred heterozygous mutations at the E266G polymorphism and, again, none were observed in the African controls. A rare homozygous R114H mutation was identified in one Asian SLE patient whereas all genotypes at this mutation in previous reports for SLE were heterozygous. Analysis of common TREX1 SNPs (MAF >10%) revealed a relatively common risk haplotype in European SLE patients with neurologic manifestations, especially seizures, with a frequency of 58% in lupus cases compared to 45% in normal controls (p=0.0008, OR=1.73, 95% CI=1.25-2.39). Finally, the presence or absence of specific autoantibodies in certain populations produced significant genetic associations. For example, a strong association with anti-nRNP was observed in the European cohort at a coding synonymous variant rs56203834 (p=2.99E-13, OR=5.2, 95% CI=3.18-8.56).
Our data confirm and expand previous reports and provide additional support for the involvement of TREX1 in lupus pathogenesis.
PMCID: PMC3107387  PMID: 21270825
47.  Association Between a Functional Variant Downstream of TNFAIP3 and Systemic Lupus Erythematosus 
Nature genetics  2011;43(3):253-258.
Systemic Lupus Erythematosus (SLE, OMIM 152700) is an autoimmune disease characterized by self-reactive antibodies resulting in systemic inflammation and organ failure. TNFAIP3, encoding the ubiquitin-modifying enzyme A20, is an established susceptibility locus for SLE. By fine mapping and genomic resequencing in ethnically diverse populations we fully characterized the TNFAIP3 risk haplotype and isolated a novel TT>A polymorphic dinucleotide associated with SLE in subjects of European (P = 1.58 × 10−8; odds ratio (OR) = 1.70) and Korean (P = 8.33 × 10−10; OR = 2.54) ancestry. This variant, located in a region of high conservation and regulatory potential, bound a nuclear protein complex comprised of NF-κB subunits with reduced avidity. Furthermore, compared with the non-risk haplotype, the haplotype carrying this variant resulted in reduced TNFAIP3 mRNA and A20 protein expression. These results establish this TT>A variant as the most likely functional polymorphism responsible for the association between TNFAIP3 and SLE.
PMCID: PMC3103780  PMID: 21336280
48.  Association of Genetic Variants in Complement Factor H and Factor H-Related Genes with Systemic Lupus Erythematosus Susceptibility 
PLoS Genetics  2011;7(5):e1002079.
Systemic lupus erythematosus (SLE), a complex polygenic autoimmune disease, is associated with increased complement activation. Variants of genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) within the chromosome 1q32 locus linked to SLE, have been associated with multiple human diseases and may contribute to dysregulated complement activation predisposing to SLE. We assessed 60 SNPs covering the CFH-CFHRs region for association with SLE in 15,864 case-control subjects derived from four ethnic groups. Significant allelic associations with SLE were detected in European Americans (EA) and African Americans (AA), which could be attributed to an intronic CFH SNP (rs6677604, in intron 11, Pmeta = 6.6×10−8, OR = 1.18) and an intergenic SNP between CFHR1 and CFHR4 (rs16840639, Pmeta = 2.9×10−7, OR = 1.17) rather than to previously identified disease-associated CFH exonic SNPs, including I62V, Y402H, A474A, and D936E. In addition, allelic association of rs6677604 with SLE was subsequently confirmed in Asians (AS). Haplotype analysis revealed that the underlying causal variant, tagged by rs6677604 and rs16840639, was localized to a ∼146 kb block extending from intron 9 of CFH to downstream of CFHR1. Within this block, the deletion of CFHR3 and CFHR1 (CFHR3-1Δ), a likely causal variant measured using multiplex ligation-dependent probe amplification, was tagged by rs6677604 in EA and AS and rs16840639 in AA, respectively. Deduced from genotypic associations of tag SNPs in EA, AA, and AS, homozygous deletion of CFHR3-1Δ (Pmeta = 3.2×10−7, OR = 1.47) conferred a higher risk of SLE than heterozygous deletion (Pmeta = 3.5×10−4, OR = 1.14). These results suggested that the CFHR3-1Δ deletion within the SLE-associated block, but not the previously described exonic SNPs of CFH, might contribute to the development of SLE in EA, AA, and AS, providing new insights into the role of complement regulators in the pathogenesis of SLE.
Author Summary
Systemic lupus erythematosus (SLE) is a complex autoimmune disease, associated with increased complement activation. Previous studies have provided evidence for the presence of SLE susceptibility gene(s) in the chromosome 1q31-32 locus. Within 1q32, genes encoding complement regulator factor H (CFH) and five CFH-related proteins (CFHR1-CFHR5) may contribute to the development of SLE, because genetic variants of these genes impair complement regulation and predispose to various human diseases. In this study, we tested association of genetic variants in the region containing CFH and CFHRs with SLE. We identified genetic variants predisposing to SLE in European American, African American, and Asian populations, which might be attributed to the deletion of CFHR3 and CFHR1 genes but not previously identified disease-associated exonic variants of CFH. This study provides the first evidence for consistent association between CFH/CFHRs and SLE across multi-ancestral SLE datasets, providing new insights into the role of complement regulators in the pathogenesis of SLE.
PMCID: PMC3102741  PMID: 21637784
49.  Pathways: Strategies for Susceptibility Genes in SLE 
Autoimmunity reviews  2010;9(7):473-476.
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder marked by an inappropriate immune response to nuclear antigens. Recent whole genome association and more focused studies have revealed numerous genes implicated in this disease process, including ITGAM, Fc gamma receptors, complement components, C-reactive protein, and others. One common feature of these molecules is their involvement in the immune opsonins pathway and phagocytic clearing of nuclear antigens and apoptotic debris which provide excessive exposure of lupus-related antigens to immune cells. Analysis of gene-gene interactions in the opsonin pathway and its relationship to SLE may provide a systems-based approach to identify additional candidate genes associated with disease able to account for a larger part of lupus susceptibility.
PMCID: PMC2868085  PMID: 20144911
SLE; opsonin; pathway; genetic association
50.  Wegener's Granulomatosis: A Model of Auto-antibodies in Mucosal Autoimmunity 
Wegener's granulomatosis (WG) is an autoimmune condition marked by vasculitis of small and medium sized vessels particularly affecting the upper respiratory tract and kidneys. There is a strong mucosal component similar to other autoimmune conditions such as systemic lupus erythematosus and Behçet's disease. While the pathogenesis of WG is not completely known, auto-antibodies such as IgG ANCAs have been implicated in endovascular damage and modulation of neutrophil / monocyte responses by Fc receptor (FcR) signaling. Due to the substantial mucosal involvement in WG (oral, nasal, and upper respiratory tract involvement), it is probable that IgA antibodies (perhaps IgA ANCAs) play a role in disease. Given discrepancies in associating ANCA levels with disease activity, future work should determine if IgA ANCAs are present in WG patients and examine the biology underlying the ANCAs' signaling partners - the FcRs.
PMCID: PMC2817984  PMID: 19482554

Results 26-50 (69)