PMCC PMCC

Search tips
Search criteria

Advanced
Results 26-50 (106)
 

Clipboard (0)
None

Select a Filter Below

Year of Publication
more »
26.  RNApathwaysDB—a database of RNA maturation and decay pathways 
Nucleic Acids Research  2012;41(Database issue):D268-D272.
Many RNA molecules undergo complex maturation, involving e.g. excision from primary transcripts, removal of introns, post-transcriptional modification and polyadenylation. The level of mature, functional RNAs in the cell is controlled not only by the synthesis and maturation but also by degradation, which proceeds via many different routes. The systematization of data about RNA metabolic pathways and enzymes taking part in RNA maturation and degradation is essential for the full understanding of these processes. RNApathwaysDB, available online at http://iimcb.genesilico.pl/rnapathwaysdb, is an online resource about maturation and decay pathways involving RNA as the substrate. The current release presents information about reactions and enzymes that take part in the maturation and degradation of tRNA, rRNA and mRNA, and describes pathways in three model organisms: Escherichia coli, Saccharomyces cerevisiae and Homo sapiens. RNApathwaysDB can be queried with keywords, and sequences of protein enzymes involved in RNA processing can be searched with BLAST. Options for data presentation include pathway graphs and tables with enzymes and literature data. Structures of macromolecular complexes involving RNA and proteins that act on it are presented as ‘potato models’ using DrawBioPath—a new javascript tool.
doi:10.1093/nar/gks1052
PMCID: PMC3531052  PMID: 23155061
27.  The utility of comparative models and the local model quality for protein crystal structure determination by Molecular Replacement 
BMC Bioinformatics  2012;13:289.
Background
Computational models of protein structures were proved to be useful as search models in Molecular Replacement (MR), a common method to solve the phase problem faced by macromolecular crystallography. The success of MR depends on the accuracy of a search model. Unfortunately, this parameter remains unknown until the final structure of the target protein is determined. During the last few years, several Model Quality Assessment Programs (MQAPs) that predict the local accuracy of theoretical models have been developed. In this article, we analyze whether the application of MQAPs improves the utility of theoretical models in MR.
Results
For our dataset of 615 search models, the real local accuracy of a model increases the MR success ratio by 101% compared to corresponding polyalanine templates. On the contrary, when local model quality is not utilized in MR, the computational models solved only 4.5% more MR searches than polyalanine templates. For the same dataset of the 615 models, a workflow combining MR with predicted local accuracy of a model found 45% more correct solution than polyalanine templates. To predict such accuracy MetaMQAPclust, a “clustering MQAP” was used.
Conclusions
Using comparative models only marginally increases the MR success ratio in comparison to polyalanine structures of templates. However, the situation changes dramatically once comparative models are used together with their predicted local accuracy. A new functionality was added to the GeneSilico Fold Prediction Metaserver in order to build models that are more useful for MR searches. Additionally, we have developed a simple method, AmIgoMR (Am I good for MR?), to predict if an MR search with a template-based model for a given template is likely to find the correct solution.
doi:10.1186/1471-2105-13-289
PMCID: PMC3534383  PMID: 23126528
Molecular replacement; MR; MQAP; Model quality assessment; Protein structure prediction
28.  MODOMICS: a database of RNA modification pathways—2013 update 
Nucleic Acids Research  2012;41(Database issue):D262-D267.
MODOMICS is a database of RNA modifications that provides comprehensive information concerning the chemical structures of modified ribonucleosides, their biosynthetic pathways, RNA-modifying enzymes and location of modified residues in RNA sequences. In the current database version, accessible at http://modomics.genesilico.pl, we included new features: a census of human and yeast snoRNAs involved in RNA-guided RNA modification, a new section covering the 5′-end capping process, and a catalogue of ‘building blocks’ for chemical synthesis of a large variety of modified nucleosides. The MODOMICS collections of RNA modifications, RNA-modifying enzymes and modified RNAs have been also updated. A number of newly identified modified ribonucleosides and more than one hundred functionally and structurally characterized proteins from various organisms have been added. In the RNA sequences section, snRNAs and snoRNAs with experimentally mapped modified nucleosides have been added and the current collection of rRNA and tRNA sequences has been substantially enlarged. To facilitate literature searches, each record in MODOMICS has been cross-referenced to other databases and to selected key publications. New options for database searching and querying have been implemented, including a BLAST search of protein sequences and a PARALIGN search of the collected nucleic acid sequences.
doi:10.1093/nar/gks1007
PMCID: PMC3531130  PMID: 23118484
29.  Identification and modeling of a phosphatase-like domain in a tRNA 2′-O-ribosyl phosphate transferase Rit1p 
Cell Cycle  2011;10(20):3566-3570.
Cytoplasmic initiator tRNAs from plants and fungi are excluded from participating in translational elongation by the presence of a unique 2′-phosphoribosyl modification of purine 64, introduced posttranscriptionally by the enzyme Rit1p. Members of the Rit1p family show no obvious similarity to other proteins or domains, there is no structural information available to guide experimental analyses, and the mechanism of action of this enzyme remains a mystery. Using protein fold recognition, we identified a phosphatase-like domain in the C-terminal part of Rit1p. A comparative model of the C-terminal domain was constructed and used to predict the function of conserved residues and to propose the mechanism of action of Rit1p. The model will facilitate experimental analyses of Rit1p and its interactions with the initiator tRNA substrate.
doi:10.4161/cc.10.20.17857
PMCID: PMC3266182  PMID: 22030622
fold recognition; homology modeling; tRNA modification; Rit1p; bioinformatics
30.  Sequence-specific cleavage of the RNA strand in DNA–RNA hybrids by the fusion of ribonuclease H with a zinc finger 
Nucleic Acids Research  2012;40(22):11563-11570.
Ribonucleases (RNases) are valuable tools applied in the analysis of RNA sequence, structure and function. Their substrate specificity is limited to recognition of single bases or distinct secondary structures in the substrate. Currently, there are no RNases available for purely sequence-dependent fragmentation of RNA. Here, we report the development of a new enzyme that cleaves the RNA strand in DNA–RNA hybrids 5 nt from a nonanucleotide recognition sequence. The enzyme was constructed by fusing two functionally independent domains, a RNase HI, that hydrolyzes RNA in DNA–RNA hybrids in processive and sequence-independent manner, and a zinc finger that recognizes a sequence in DNA–RNA hybrids. The optimization of the fusion enzyme’s specificity was guided by a structural model of the protein-substrate complex and involved a number of steps, including site-directed mutagenesis of the RNase moiety and optimization of the interdomain linker length. Methods for engineering zinc finger domains with new sequence specificities are readily available, making it feasible to acquire a library of RNases that recognize and cleave a variety of sequences, much like the commercially available assortment of restriction enzymes. Potentially, zinc finger-RNase HI fusions may, in addition to in vitro applications, be used in vivo for targeted RNA degradation.
doi:10.1093/nar/gks885
PMCID: PMC3526281  PMID: 23042681
31.  Intrinsic Disorder in the Human Spliceosomal Proteome 
PLoS Computational Biology  2012;8(8):e1002641.
The spliceosome is a molecular machine that performs the excision of introns from eukaryotic pre-mRNAs. This macromolecular complex comprises in human cells five RNAs and over one hundred proteins. In recent years, many spliceosomal proteins have been found to exhibit intrinsic disorder, that is to lack stable native three-dimensional structure in solution. Building on the previous body of proteomic, structural and functional data, we have carried out a systematic bioinformatics analysis of intrinsic disorder in the proteome of the human spliceosome. We discovered that almost a half of the combined sequence of proteins abundant in the spliceosome is predicted to be intrinsically disordered, at least when the individual proteins are considered in isolation. The distribution of intrinsic order and disorder throughout the spliceosome is uneven, and is related to the various functions performed by the intrinsic disorder of the spliceosomal proteins in the complex. In particular, proteins involved in the secondary functions of the spliceosome, such as mRNA recognition, intron/exon definition and spliceosomal assembly and dynamics, are more disordered than proteins directly involved in assisting splicing catalysis. Conserved disordered regions in spliceosomal proteins are evolutionarily younger and less widespread than ordered domains of essential spliceosomal proteins at the core of the spliceosome, suggesting that disordered regions were added to a preexistent ordered functional core. Finally, the spliceosomal proteome contains a much higher amount of intrinsic disorder predicted to lack secondary structure than the proteome of the ribosome, another large RNP machine. This result agrees with the currently recognized different functions of proteins in these two complexes.
Author Summary
In eukaryotic cells, introns are spliced out of proteincoding mRNAs by a highly dynamic and extraordinarily plastic molecular machine called the spliceosome. In recent years, multiple regions of intrinsic structural disorder were found in spliceosomal proteins. Intrinsically disordered regions lack stable native three-dimensional structure in solutions, which makes them structurally flexible and/or able to switch between different conformations. Hence, intrinsically disordered regions are the ideal candidate responsible for the spliceosome's plasticity. Intrinsically disordered regions are also frequently the sites of post-translational modifications, which were also proven to be important in spliceosome dynamics. In this article, we describe the results of a structural bioinformatics analysis focused on intrinsic disorder in the spliceosomal proteome. We systematically analyzed all known human spliceosomal proteins with regards to the presence and type of intrinsic disorder. Almost a half of the combined sequence of these spliceosomal proteins is predicted to be intrinsically disordered, and the type of intrinsic disorder in a protein varies with its function and its location in the spliceosome. The parts of the spliceosome that act earlier in the process are more disordered, which corresponds to their role in establishing a network of interactions, while the parts that act later are more ordered.
doi:10.1371/journal.pcbi.1002641
PMCID: PMC3415423  PMID: 22912569
32.  Molecular evolution of dihydrouridine synthases 
BMC Bioinformatics  2012;13:153.
Background
Dihydrouridine (D) is a modified base found in conserved positions in the D-loop of tRNA in Bacteria, Eukaryota, and some Archaea. Despite the abundant occurrence of D, little is known about its biochemical roles in mediating tRNA function. It is assumed that D may destabilize the structure of tRNA and thus enhance its conformational flexibility. D is generated post-transcriptionally by the reduction of the 5,6-double bond of a uridine residue in RNA transcripts. The reaction is carried out by dihydrouridine synthases (DUS). DUS constitute a conserved family of enzymes encoded by the orthologous gene family COG0042. In protein sequence databases, members of COG0042 are typically annotated as “predicted TIM-barrel enzymes, possibly dehydrogenases, nifR3 family”.
Results
To elucidate sequence-structure-function relationships in the DUS family, a comprehensive bioinformatic analysis was carried out. We performed extensive database searches to identify all members of the currently known DUS family, followed by clustering analysis to subdivide it into subfamilies of closely related sequences. We analyzed phylogenetic distributions of all members of the DUS family and inferred the evolutionary tree, which suggested a scenario for the evolutionary origin of dihydrouridine-forming enzymes. For a human representative of the DUS family, the hDus2 protein suggested as a potential drug target in cancer, we generated a homology model. While this article was under review, a crystal structure of a DUS representative has been published, giving us an opportunity to validate the model.
Conclusions
We compared sequences and phylogenetic distributions of all members of the DUS family and inferred the phylogenetic tree, which provides a framework to study the functional differences among these proteins and suggests a scenario for the evolutionary origin of dihydrouridine formation. Our evolutionary and structural classification of the DUS family provides a background to study functional differences among these proteins that will guide experimental analyses.
doi:10.1186/1471-2105-13-153
PMCID: PMC3674756  PMID: 22741570
Dihydrouridine synthases; Protein structure prediction; Fold recognition; Remote homology; RNA modification; Molecular evolution; Enzymes acting on RNA
33.  Delineation of structural domains and identification of functionally important residues in DNA repair enzyme exonuclease VII 
Nucleic Acids Research  2012;40(16):8163-8174.
Exonuclease VII (ExoVII) is a bacterial nuclease involved in DNA repair and recombination that hydrolyses single-stranded DNA. ExoVII is composed of two subunits: large XseA and small XseB. Thus far, little was known about the molecular structure of ExoVII, the interactions between XseA and XseB, the architecture of the nuclease active site or its mechanism of action. We used bioinformatics methods to predict the structure of XseA, which revealed four domains: an N-terminal OB-fold domain, a middle putatively catalytic domain, a coiled-coil domain and a short C-terminal segment. By series of deletion and site-directed mutagenesis experiments on XseA from Escherichia coli, we determined that the OB-fold domain is responsible for DNA binding, the coiled-coil domain is involved in binding multiple copies of the XseB subunit and residues D155, R205, H238 and D241 of the middle domain are important for the catalytic activity but not for DNA binding. Altogether, we propose a model of sequence–structure–function relationships in ExoVII.
doi:10.1093/nar/gks547
PMCID: PMC3439923  PMID: 22718974
34.  Crystal structure and mechanism of action of the N6-methyladenine-dependent type IIM restriction endonuclease R.DpnI 
Nucleic Acids Research  2012;40(15):7563-7572.
DNA methylation-dependent restriction enzymes have many applications in genetic engineering and in the analysis of the epigenetic state of eukaryotic genomes. Nevertheless, high-resolution structures have not yet been reported, and therefore mechanisms of DNA methylation-dependent cleavage are not understood. Here, we present a biochemical analysis and high-resolution DNA co-crystal structure of the N6-methyladenine (m6A)-dependent restriction enzyme R.DpnI. Our data show that R.DpnI consists of an N-terminal catalytic PD-(D/E)XK domain and a C-terminal winged helix (wH) domain. Surprisingly, both domains bind DNA in a sequence- and methylation-sensitive manner. The crystal contains R.DpnI with fully methylated target DNA bound to the wH domain, but distant from the catalytic domain. Independent readout of DNA sequence and methylation by the two domains might contribute to R.DpnI specificity or could help the monomeric enzyme to cut the second strand after introducing a nick.
doi:10.1093/nar/gks428
PMCID: PMC3424567  PMID: 22610857
35.  MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins 
BMC Bioinformatics  2012;13:111.
Background
Intrinsically unstructured proteins (IUPs) lack a well-defined three-dimensional structure. Some of them may assume a locally stable structure under specific conditions, e.g. upon interaction with another molecule, while others function in a permanently unstructured state. The discovery of IUPs challenged the traditional protein structure paradigm, which stated that a specific well-defined structure defines the function of the protein. As of December 2011, approximately 60 methods for computational prediction of protein disorder from sequence have been made publicly available. They are based on different approaches, such as utilizing evolutionary information, energy functions, and various statistical and machine learning methods.
Results
Given the diversity of existing intrinsic disorder prediction methods, we decided to test whether it is possible to combine them into a more accurate meta-prediction method. We developed a method based on arbitrarily chosen 13 disorder predictors, in which the final consensus was weighted by the accuracy of the methods. We have also developed a disorder predictor GSmetaDisorder3D that used no third-party disorder predictors, but alignments to known protein structures, reported by the protein fold-recognition methods, to infer the potentially structured and unstructured regions. Following the success of our disorder predictors in the CASP8 benchmark, we combined them into a meta-meta predictor called GSmetaDisorderMD, which was the top scoring method in the subsequent CASP9 benchmark.
Conclusions
A series of disorder predictors described in this article is available as a MetaDisorder web server at http://iimcb.genesilico.pl/metadisorder/. Results are presented both in an easily interpretable, interactive mode and in a simple text format suitable for machine processing.
doi:10.1186/1471-2105-13-111
PMCID: PMC3465245  PMID: 22624656
36.  Structural bioinformatics of the human spliceosomal proteome 
Nucleic Acids Research  2012;40(15):7046-7065.
In this work, we describe the results of a comprehensive structural bioinformatics analysis of the spliceosomal proteome. We used fold recognition analysis to complement prior data on the ordered domains of 252 human splicing proteins. Examples of newly identified domains include a PWI domain in the U5 snRNP protein 200K (hBrr2, residues 258–338), while examples of previously known domains with a newly determined fold include the DUF1115 domain of the U4/U6 di-snRNP protein 90K (hPrp3, residues 540–683). We also established a non-redundant set of experimental models of spliceosomal proteins, as well as constructed in silico models for regions without an experimental structure. The combined set of structural models is available for download. Altogether, over 90% of the ordered regions of the spliceosomal proteome can be represented structurally with a high degree of confidence. We analyzed the reduced spliceosomal proteome of the intron-poor organism Giardia lamblia, and as a result, we proposed a candidate set of ordered structural regions necessary for a functional spliceosome. The results of this work will aid experimental and structural analyses of the spliceosomal proteins and complexes, and can serve as a starting point for multiscale modeling of the structure of the entire spliceosome.
doi:10.1093/nar/gks347
PMCID: PMC3424538  PMID: 22573172
37.  Related bifunctional restriction endonuclease-methyltransferase triplets: TspDTI, Tth111II/TthHB27I and TsoI with distinct specificities 
BMC Molecular Biology  2012;13:13.
Background
We previously defined a family of restriction endonucleases (REases) from Thermus sp., which share common biochemical and biophysical features, such as the fusion of both the nuclease and methyltransferase (MTase) activities in a single polypeptide, cleavage at a distance from the recognition site, large molecular size, modulation of activity by S-adenosylmethionine (SAM), and incomplete cleavage of the substrate DNA. Members include related thermophilic REases with five distinct specificities: TspGWI, TaqII, Tth111II/TthHB27I, TspDTI and TsoI.
Results
TspDTI, TsoI and isoschizomers Tth111II/TthHB27I recognize different, but related sequences: 5'-ATGAA-3', 5'-TARCCA-3' and 5'-CAARCA-3' respectively. Their amino acid sequences are similar, which is unusual among REases of different specificity. To gain insight into this group of REases, TspDTI, the prototype member of the Thermus sp. enzyme family, was cloned and characterized using a recently developed method for partially cleaving REases.
Conclusions
TspDTI, TsoI and isoschizomers Tth111II/TthHB27I are closely related bifunctional enzymes. They comprise a tandem arrangement of Type I-like domains, like other Type IIC enzymes (those with a fusion of a REase and MTase domains), e.g. TspGWI, TaqII and MmeI, but their sequences are only remotely similar to these previously characterized enzymes. The characterization of TspDTI, a prototype member of this group, extends our understanding of sequence-function relationships among multifunctional restriction-modification enzymes.
doi:10.1186/1471-2199-13-13
PMCID: PMC3384240  PMID: 22489904
38.  Statins Impair Glucose Uptake in Tumor Cells1 
Neoplasia (New York, N.Y.)  2012;14(4):311-323.
Statins, HMG-CoA reductase inhibitors, are used in the prevention and treatment of cardiovascular diseases owing to their lipid-lowering effects. Previous studies revealed that, by modulating membrane cholesterol content, statins could induce conformational changes in cluster of differentiation 20 (CD20) tetraspanin. The aim of the presented study was to investigate the influence of statins on glucose transporter 1 (GLUT1)-mediated glucose uptake in tumor cells. We observed a significant concentration- and time-dependent decrease in glucose analogs' uptake in several tumor cell lines incubated with statins. This effect was reversible with restitution of cholesterol synthesis pathway with mevalonic acid as well as with supplementation of plasma membrane with exogenous cholesterol. Statins did not change overall GLUT1 expression at either transcriptional or protein levels. An exploratory clinical trial revealed that statin treatment decreased glucose uptake in peripheral blood leukocytes and lowered 18F-fluorodeoxyglucose (18F-FDG) uptake by tumor masses in a mantle cell lymphoma patient. A bioinformatics analysis was used to predict the structure of human GLUT1 and to identify putative cholesterol-binding motifs in its juxtamembrane fragment. Altogether, the influence of statins on glucose uptake seems to be of clinical significance. By inhibiting 18F-FDG uptake, statins can negatively affect the sensitivity of positron emission tomography, a diagnostic procedure frequently used in oncology.
PMCID: PMC3349257  PMID: 22577346
39.  Crystal structures of the tRNA:m2G6 methyltransferase Trm14/TrmN from two domains of life 
Nucleic Acids Research  2012;40(11):5149-5161.
Methyltransferases (MTases) form a major class of tRNA-modifying enzymes needed for the proper functioning of tRNA. Recently, RNA MTases from the TrmN/Trm14 family that are present in Archaea, Bacteria and Eukaryota have been shown to specifically modify tRNAPhe at guanosine 6 in the tRNA acceptor stem. Here, we report the first X-ray crystal structures of the tRNA m2G6 (N2-methylguanosine) MTase TTCTrmN from Thermus thermophilus and its ortholog PfTrm14 from Pyrococcus furiosus. Structures of PfTrm14 were solved in complex with the methyl donor S-adenosyl-l-methionine (SAM or AdoMet), as well as the reaction product S-adenosyl-homocysteine (SAH or AdoHcy) and the inhibitor sinefungin. TTCTrmN and PfTrm14 consist of an N-terminal THUMP domain fused to a catalytic Rossmann-fold MTase (RFM) domain. These results represent the first crystallographic structure analysis of proteins containing both THUMP and RFM domain, and hence provide further insight in the contribution of the THUMP domain in tRNA recognition and catalysis. Electrostatics and conservation calculations suggest a main tRNA binding surface in a groove between the THUMP domain and the MTase domain. This is further supported by a docking model of TrmN in complex with tRNAPhe of T. thermophilus and via site-directed mutagenesis.
doi:10.1093/nar/gks163
PMCID: PMC3367198  PMID: 22362751
41.  RIBER/DIBER: a software suite for crystal content analysis in the studies of protein–nucleic acid complexes 
Bioinformatics  2012;28(6):880-881.
Summary: Co-crystallization experiments of proteins with nucleic acids do not guarantee that both components are present in the crystal. We have previously developed DIBER to predict crystal content when protein and DNA are present in the crystallization mix. Here, we present RIBER, which should be used when protein and RNA are in the crystallization drop. The combined RIBER/DIBER suite builds on machine learning techniques to make reliable, quantitative predictions of crystal content for non-expert users and high-throughput crystallography.
Availability: The program source code, Linux binaries and a web server are available at http://diber.iimcb.gov.pl/ RIBER/DIBER requires diffraction data to at least 3.0 Å resolution in MTZ or CIF (web server only) format. The RIBER/DIBER code is subject to the GNU Public License.
Contact: gchojnowski@genesilico.pl
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/bts003
PMCID: PMC3307108  PMID: 22238259
42.  FILTREST3D: discrimination of structural models using restraints from experimental data 
Bioinformatics  2010;26(23):2986-2987.
Summary: Automatic methods for macromolecular structure prediction (fold recognition, de novo folding and docking programs) produce large sets of alternative models. These large model sets often include many native-like structures, which are often scored as false positives. Such native-like models can be more easily identified based on data from experimental analyses used as structural restraints (e.g. identification of nearby residues by cross-linking, chemical modification, site-directed mutagenesis, deuterium exchange coupled with mass spectrometry, etc.). We present a simple server for scoring and ranking of models according to their agreement with user-defined restraints.
Availability: FILTREST3D is freely available for users as a web server and standalone software at: http://filtrest3d.genesilico.pl/
Contact: iamb@genesilico.pl
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btq582
PMCID: PMC2982159  PMID: 20956242
43.  MetalionRNA: computational predictor of metal-binding sites in RNA structures 
Bioinformatics  2011;28(2):198-205.
Motivation: Metal ions are essential for the folding of RNA molecules into stable tertiary structures and are often involved in the catalytic activity of ribozymes. However, the positions of metal ions in RNA 3D structures are difficult to determine experimentally. This motivated us to develop a computational predictor of metal ion sites for RNA structures.
Results: We developed a statistical potential for predicting positions of metal ions (magnesium, sodium and potassium), based on the analysis of binding sites in experimentally solved RNA structures. The MetalionRNA program is available as a web server that predicts metal ions for RNA structures submitted by the user.
Availability: The MetalionRNA web server is accessible at http://metalionrna.genesilico.pl/.
Contact: iamb@genesilico.pl
Supplementary information: Supplementary data are available at Bioinformatics online.
doi:10.1093/bioinformatics/btr636
PMCID: PMC3259437  PMID: 22110243
44.  Novel non-specific DNA adenine methyltransferases 
Nucleic Acids Research  2011;40(5):2119-2130.
The mom gene of bacteriophage Mu encodes an enzyme that converts adenine to N6-(1-acetamido)-adenine in the phage DNA and thereby protects the viral genome from cleavage by a wide variety of restriction endonucleases. Mu-like prophage sequences present in Haemophilus influenzae Rd (FluMu), Neisseria meningitidis type A strain Z2491 (Pnme1) and H. influenzae biotype aegyptius ATCC 11116 do not possess a Mom-encoding gene. Instead, at the position occupied by mom in Mu they carry an unrelated gene that encodes a protein with homology to DNA adenine N6-methyltransferases (hin1523, nma1821, hia5, respectively). Products of the hin1523, hia5 and nma1821 genes modify adenine residues to N6-methyladenine, both in vitro and in vivo. All of these enzymes catalyzed extensive DNA methylation; most notably the Hia5 protein caused the methylation of 61% of the adenines in λ DNA. Kinetic analysis of oligonucleotide methylation suggests that all adenine residues in DNA, with the possible exception of poly(A)-tracts, constitute substrates for the Hia5 and Hin1523 enzymes. Their potential ‘sequence specificity’ could be summarized as AB or BA (where B = C, G or T). Plasmid DNA isolated from Escherichia coli cells overexpressing these novel DNA methyltransferases was resistant to cleavage by many restriction enzymes sensitive to adenine methylation.
doi:10.1093/nar/gkr1039
PMCID: PMC3299994  PMID: 22102579
45.  DARS-RNP and QUASI-RNP: New statistical potentials for protein-RNA docking 
BMC Bioinformatics  2011;12:348.
Background
Protein-RNA interactions play fundamental roles in many biological processes. Understanding the molecular mechanism of protein-RNA recognition and formation of protein-RNA complexes is a major challenge in structural biology. Unfortunately, the experimental determination of protein-RNA complexes is tedious and difficult, both by X-ray crystallography and NMR. For many interacting proteins and RNAs the individual structures are available, enabling computational prediction of complex structures by computational docking. However, methods for protein-RNA docking remain scarce, in particular in comparison to the numerous methods for protein-protein docking.
Results
We developed two medium-resolution, knowledge-based potentials for scoring protein-RNA models obtained by docking: the quasi-chemical potential (QUASI-RNP) and the Decoys As the Reference State potential (DARS-RNP). Both potentials use a coarse-grained representation for both RNA and protein molecules and are capable of dealing with RNA structures with posttranscriptionally modified residues. We compared the discriminative power of DARS-RNP and QUASI-RNP for selecting rigid-body docking poses with the potentials previously developed by the Varani and Fernandez groups.
Conclusions
In both bound and unbound docking tests, DARS-RNP showed the highest ability to identify native-like structures. Python implementations of DARS-RNP and QUASI-RNP are freely available for download at http://iimcb.genesilico.pl/RNP/
doi:10.1186/1471-2105-12-348
PMCID: PMC3179970  PMID: 21851628
RNA; protein; RNP; macromolecular docking; complex modeling; structural bioinformatics
46.  Identification of Lynch syndrome mutations in the MLH1-PMS2 interface that disturb dimerization and mismatch repair 
Human mutation  2010;31(8):975-982.
Missense alterations of the mismatch repair gene MLH1 have been identified in a significant proportion of individuals suspected of having Lynch syndrome, a hereditary syndrome which predisposes for cancer of colon and endometrium. The pathogenicity of many of these alterations, however, is unclear. A number of MLH1 alterations are located in the C-terminal domain (CTD) of MLH1, which is responsible for constitutive dimerization with PMS2. We analyzed which alterations may result in pathogenic effects due to interference with dimerization. We used a structural model of CTD of MLH1-PMS2 heterodimer to select 19 MLH1 alterations located inside and outside two candidate dimerization interfaces in the MLH1-CTD. Three alterations (p.Gln542Leu, p.Leu749Pro, p.Tyr750X) caused decreased co-expression of PMS2, which is unstable in the absence of interaction with MLH1, suggesting that these alterations interfere with dimerization. All three alterations are located within the dimerization interface suggested by our model. They also compromised mismatch repair, suggesting that defects in dimerization abrogate repair and confirming that all three alterations are pathogenic. Additionally, we provided biochemical evidence that four alterations with uncertain pathogenicity (p.Ala586Pro, p.Leu636Pro, p.Thr662Pro, and p.Arg755Trp) are deleterious because of poor expression or poor repair efficiency, and confirm the deleterious effect of eight further alterations.
doi:10.1002/humu.21301
PMCID: PMC2908215  PMID: 20533529
Lynch syndrome; HNPCC; MLH1; PMS2; MutL; missense mutation; dimerization
47.  Evidence for an evolutionary antagonism between Mrr and Type III modification systems 
Nucleic Acids Research  2011;39(14):5991-6001.
The Mrr protein of Escherichia coli is a laterally acquired Type IV restriction endonuclease with specificity for methylated DNA. While Mrr nuclease activity can be elicited by high-pressure stress in E. coli MG1655, its (over)expression per se does not confer any obvious toxicity. In this study, however, we discovered that Mrr of E. coli MG1655 causes distinct genotoxicity when expressed in Salmonella typhimurium LT2. Genetic screening enabled us to contribute this toxicity entirely to the presence of the endogenous Type III restriction modification system (StyLTI) of S. typhimurium LT2. The StyLTI system consists of the Mod DNA methyltransferase and the Res restriction endonuclease, and we revealed that expression of the LT2 mod gene was sufficient to trigger Mrr activity in E. coli MG1655. Moreover, we could demonstrate that horizontal acquisition of the MG1655 mrr locus can drive the loss of endogenous Mod functionality present in S. typhimurium LT2 and E. coli ED1a, and observed a strong anti-correlation between close homologues of MG1655 mrr and LT2 mod in the genome database. This apparent evolutionary antagonism is further discussed in the light of a possible role for Mrr as defense mechanism against the establishment of epigenetic regulation by foreign DNA methyltransferases.
doi:10.1093/nar/gkr219
PMCID: PMC3152355  PMID: 21504983
48.  2′-O-ribose methylation of cap2 in human: function and evolution in a horizontally mobile family 
Nucleic Acids Research  2011;39(11):4756-4768.
The 5′ cap of human messenger RNA consists of an inverted 7-methylguanosine linked to the first transcribed nucleotide by a unique 5′–5′ triphosphate bond followed by 2′-O-ribose methylation of the first and often the second transcribed nucleotides, likely serving to modify efficiency of transcript processing, translation and stability. We report the validation of a human enzyme that methylates the ribose of the second transcribed nucleotide encoded by FTSJD1, henceforth renamed HMTR2 to reflect function. Purified recombinant hMTr2 protein transfers a methyl group from S-adenosylmethionine to the 2′-O-ribose of the second nucleotide of messenger RNA and small nuclear RNA. Neither N7 methylation of the guanosine cap nor 2′-O-ribose methylation of the first transcribed nucleotide are required for hMTr2, but the presence of cap1 methylation increases hMTr2 activity. The hMTr2 protein is distributed throughout the nucleus and cytosol, in contrast to the nuclear hMTr1. The details of how and why specific transcripts undergo modification with these ribose methylations remains to be elucidated. The 2′-O-ribose RNA cap methyltransferases are present in varying combinations in most eukaryotic and many viral genomes. With the capping enzymes in hand their biological purpose can be ascertained.
doi:10.1093/nar/gkr038
PMCID: PMC3113572  PMID: 21310715
49.  ModeRNA: a tool for comparative modeling of RNA 3D structure 
Nucleic Acids Research  2011;39(10):4007-4022.
RNA is a large group of functionally important biomacromolecules. In striking analogy to proteins, the function of RNA depends on its structure and dynamics, which in turn is encoded in the linear sequence. However, while there are numerous methods for computational prediction of protein three-dimensional (3D) structure from sequence, with comparative modeling being the most reliable approach, there are very few such methods for RNA. Here, we present ModeRNA, a software tool for comparative modeling of RNA 3D structures. As an input, ModeRNA requires a 3D structure of a template RNA molecule, and a sequence alignment between the target to be modeled and the template. It must be emphasized that a good alignment is required for successful modeling, and for large and complex RNA molecules the development of a good alignment usually requires manual adjustments of the input data based on previous expertise of the respective RNA family. ModeRNA can model post-transcriptional modifications, a functionally important feature analogous to post-translational modifications in proteins. ModeRNA can also model DNA structures or use them as templates. It is equipped with many functions for merging fragments of different nucleic acid structures into a single model and analyzing their geometry. Windows and UNIX implementations of ModeRNA with comprehensive documentation and a tutorial are freely available.
doi:10.1093/nar/gkq1320
PMCID: PMC3105415  PMID: 21300639
50.  RNA and protein 3D structure modeling: similarities and differences 
Journal of Molecular Modeling  2011;17(9):2325-2336.
In analogy to proteins, the function of RNA depends on its structure and dynamics, which are encoded in the linear sequence. While there are numerous methods for computational prediction of protein 3D structure from sequence, there have been very few such methods for RNA. This review discusses template-based and template-free approaches for macromolecular structure prediction, with special emphasis on comparison between the already tried-and-tested methods for protein structure modeling and the very recently developed “protein-like” modeling methods for RNA. We highlight analogies between many successful methods for modeling of these two types of biological macromolecules and argue that RNA 3D structure can be modeled using “protein-like” methodology. We also highlight the areas where the differences between RNA and proteins require the development of RNA-specific solutions.
FigureApproaches for predicting RNA structure. Top: Template-free modeling. Bottom: Template-based modeling
doi:10.1007/s00894-010-0951-x
PMCID: PMC3168752  PMID: 21258831
Assessment; Prediction; RNA; Structure; Tertiary

Results 26-50 (106)