PMCC PMCC

Conseils de recherche
Les critères de recherche

Avancée
Résultats 1-25 (219)
 

Notices sélectionnées (0)
Aucune

Sélectionner un filtre

Revues
Année de publication
plus »
1.  Reductions in expression of growth regulating genes in skeletal muscle with age in wild type and myostatin null mice 
BMC Physiology  2014;14:3.
Background
Genes that decline in expression with age and are thought to coordinate growth cessation have been identified in various organs, but their expression in skeletal muscle is unknown. Therefore, our objective was to determine expression of these genes (Ezh2, Gpc3, Mdk, Mest, Mycn, Peg3, and Plagl1) in skeletal muscle from birth to maturity. We hypothesized that expression of these genes would decline with age in skeletal muscle but differ between sexes and between wild type and myostatin null mice.
Results
Female and male wild type and myostatin null mice (C57BL/6J background) were sacrificed by carbon dioxide asphyxiation followed by decapitation at d -7, 0, 21, 42, and 70 days of age. Whole bodies at d -7, all muscles from both hind limbs at d 0, and bicep femoris muscle from d 21, 42 and 70 were collected. Gene expression was determined by quantitative real-time PCR. In general, expression of these growth-regulating genes was reduced at d 21 compared with day 0 and d -7. Expression of Gpc3, Mest, and Peg3 was further reduced at d 42 and 70 compared with d 21, however the expression of Mycn increased from d 21 to d 42 and 70. Myostatin null mice, as expected, were heavier with increased biceps femoris weight at d 70. However, with respect to sex and genotype, there were few differences in expression. Expression of Ezh2 was increased at d 70 and expression of Mdk was increased at d 21 in myostatin null mice compared with wild type, but no other genotype effects were present. Expression of Mdk was increased in females compared to males at d 70, but no other sex effects were present.
Conclusions
Overall, these data suggest the downregulation of these growth-regulating genes with age might play a role in the coordinated cessation of muscle growth similar to organ growth but likely have a limited role in the differences between sexes or genotypes.
doi:10.1186/1472-6793-14-3
PMCID: PMC3986603  PMID: 24678801
Ezh2; Gpc3; Mdk; Mest; Mycn; Peg3; Plagl1; Muscle growth; Myostatin
2.  Cardiac responses to elevated seawater temperature in Atlantic salmon 
BMC Physiology  2014;14:2.
Background
Atlantic salmon aquaculture operations in the Northern hemisphere experience large seasonal fluctuations in seawater temperature. With summer temperatures often peaking around 18-20°C there is growing concern about the effects on fish health and performance. Since the heart has a major role in the physiological plasticity and acclimation to different thermal conditions in fish, we wanted to investigate how three and eight weeks exposure of adult Atlantic salmon to 19°C, previously shown to significantly reduce growth performance, affected expression of relevant genes and proteins in cardiac tissues under experimental conditions.
Results
Transcriptional responses in cardiac tissues after three and eight weeks exposure to 19°C (compared to thermal preference, 14°C) were analyzed with cDNA microarrays and validated by expression analysis of selected genes and proteins using real-time qPCR and immunofluorescence microscopy. Up-regulation of heat shock proteins and cell signaling genes may indicate involvement of the unfolded protein response in long-term acclimation to elevated temperature. Increased immunofluorescence staining of inducible nitric oxide synthase in spongy and compact myocardium as well as increased staining of vascular endothelial growth factor in epicardium could reflect induced vascularization and vasodilation, possibly related to increased oxygen demand. Increased staining of collagen I in the compact myocardium of 19°C fish may be indicative of a remodeling of connective tissue with long-term warm acclimation. Finally, higher abundance of transcripts for genes involved in innate cellular immunity and lower abundance of transcripts for humoral immune components implied altered immune competence in response to elevated temperature.
Conclusions
Long-term exposure of Atlantic salmon to 19°C resulted in cardiac gene and protein expression changes indicating that the unfolded protein response, vascularization, remodeling of connective tissue and altered innate immune responses were part of the cardiac acclimation or response to elevated temperature.
doi:10.1186/1472-6793-14-2
PMCID: PMC3944800  PMID: 24581386
Temperature; Thermal acclimation; Cardiac tissue; Gene expression; Microarray; Immunofluorescence microscopy; iNOS; VEGF; Collagen I; Immune response
3.  Kcnq1-5 (Kv7.1-5) potassium channel expression in the adult zebrafish 
BMC Physiology  2014;14:1.
Background
KCNQx genes encode slowly activating-inactivating K+ channels, are linked to physiological signal transduction pathways, and mutations in them underlie diseases such as long QT syndrome (KCNQ1), epilepsy in adults (KCNQ2/3), benign familial neonatal convulsions in children (KCNQ3), and hearing loss or tinnitus in humans (KCNQ4, but not KCNQ5). Identification of kcnqx potassium channel transcripts in zebrafish (Danio rerio) remains to be fully characterized although some genes have been mapped to the genome. Using zebrafish genome resources as the source of putative kcnq sequences, we investigated the expression of kcnq1-5 in heart, brain and ear tissues.
Results
Overall expression of the kcnqx channel transcripts is similar to that found in mammals. We found that kcnq1 expression was highest in the heart, and also present in the ear and brain. kcnq2 was lowest in the heart, while kcnq3 was highly expressed in the brain, heart and ear. kcnq5 expression was highest in the ear. We analyzed zebrafish genomic clones containing putative kcnq4 sequences to identify transcripts and protein for this highly conserved member of the Kcnq channel family. The zebrafish appears to have two kcnq4 genes that produce distinct mRNA species in brain, ear, and heart tissues.
Conclusions
We conclude that the zebrafish is an attractive model for the study of the KCNQ (Kv7) superfamily of genes, and are important to processes involved in neuronal excitability, cardiac anomalies, epileptic seizures, and hearing loss or tinnitus.
doi:10.1186/1472-6793-14-1
PMCID: PMC4016485  PMID: 24555524
Zebrafish (Danio rerio); kcnq1-5; RNA transcripts; Kcnq protein; Zebrafish genome; qRTPCR; Tinnitus
5.  Inference of mechanical states of intestinal motor activity using hidden Markov models 
BMC Physiology  2013;13:14.
Background
Contractions and relaxations of the muscle layers within the digestive tract alter the external diameter and the internal pressures. These changes in diameter and pressure move digesting food and waste products. Defining these complex relationships is a fundamental step for neurogastroenterologists to be able define normal and abnormal gut motility.
Results
Utilising an in vitro technique that allows for the simultaneous recording of intraluminal pressure (manometry) and gut diameter (video) in an isolated section of rabbit colon, we developed a technique to help define the mechanical states of the muscle at any point in space and time during actual peristaltic movements. This was achieved by directly relating the changes in pressure to the changes in diameter along the length of the gut studied. For each individual measure of pressure or diameter, 3 dynamic state components were identified; increasing or decreasing changes or a stable period. Two additional static state components, fully contracted and fully distended, were defined for the diameter. Then qualitative mechanical states of the muscle activity were defined as combinations of these state components. A hidden Markov model was used to correlate adjacent-in-time samples, and the Viterbi algorithm was used to infer the most likely sequence of mechanical states based on the observed data. From this a spatiotemporal map of the mechanical states was produced, showing the regions of active contractions, active relaxations, or passive states along the length of the gut throughout the entire recording period.
Conclusions
The identification of mechanical muscles states based on gut diameter and intraluminal pressure was possible by modelling muscle activation with a hidden Markov model.
doi:10.1186/1472-6793-13-14
PMCID: PMC3909344  PMID: 24330642
Manometry; Peristalsis; Time-series analysis; Muscle mechanics
6.  The endotoxin/toll-like receptor-4 axis mediates gut microvascular dysfunction associated with post-prandial lipidemia 
BMC Physiology  2013;13:12.
Background
Postprandial lipidemia is important in the development of coronary artery disease (CAD). Consumption of a meal high in monounsaturated fat was correlated with acute impairment of endothelial function. However, the mechanisms underlying impaired endothelial function in the postprandial state have not yet been elucidated. The effects of polyunsaturated fat (corn oil) and monounsaturated fat (olive oil) on vascular dysfunction in intestinal postcapillary venules and arterioles were examined in wild-type (WT) mice, mice genetically deficient in TLR4 (TLR4-/-) and mice pre-treated with antibiotics by intravital microscopy which was performed 1.0, 1.5, 2.0, 2.5 hours after oil administration. After intravital microscopy, samples of jejunum were therefore collected to test TLR4, pNF-kB p65 and SIRT1 protein expression by western blotting.
Results
Our findings showed that feeding mono-unsaturated olive oil or polyunsaturated corn oil promoted leukocyte and platelet trafficking in the gut microvasculature, and impaired endothelium-dependent arteriolar vasodilator responses during postprandial lipidemia. The expression of TLR4, pNF-kB p65 was significantly increased in mice gavaged with olive oil at 2 h and was significantly reduced in mice gavaged for 7 days with antibiotics and in TLR4 knockout (TLR4-/-) mice. At the same time, SIRT1 protein expression is diminished by feeding olive oil for 2 h, a phenomenon that is attenuated in mice pre-treated with antibiotics and in TLR4-/- mice. Corn oil treated mice exhibited a pattern of response similar to olive oil.
Conclusions
Dietary oils may be negative regulators of SIRT1 which activate the innate immune response through the endotoxin/TLR4 axis. Our findings establish a link between innate immunity (i.e. the endotoxin/TLR4 axis) and epigenetic controls mediated by SIRT1 in the genesis of diet associated vascular stress.
doi:10.1186/1472-6793-13-12
PMCID: PMC3833857  PMID: 24219792
Microcirculation; Post-prandial lipidemia; TLR4; SIRT1
7.  Overtraining is associated with DNA damage in blood and skeletal muscle cells of Swiss mice 
BMC Physiology  2013;13:11.
Background
The alkaline version of the single-cell gel (comet) assay is a useful method for quantifying DNA damage. Although some studies on chronic and acute effects of exercise on DNA damage measured by the comet assay have been performed, it is unknown if an aerobic training protocol with intensity, volume, and load clearly defined will improve performance without leading to peripheral blood cell DNA damage. In addition, the effects of overtraining on DNA damage are unknown. Therefore, this study aimed to examine the effects of aerobic training and overtraining on DNA damage in peripheral blood and skeletal muscle cells in Swiss mice. To examine possible changes in these parameters with oxidative stress, we measured reduced glutathione (GSH) levels in total blood, and GSH levels and lipid peroxidation in muscle samples.
Results
Performance evaluations (i.e., incremental load and exhaustive tests) showed significant intra and inter-group differences. The overtrained (OTR) group showed a significant increase in the percentage of DNA in the tail compared with the control (C) and trained (TR) groups. GSH levels were significantly lower in the OTR group than in the C and TR groups. The OTR group had significantly higher lipid peroxidation levels compared with the C and TR groups.
Conclusions
Aerobic and anaerobic performance parameters can be improved in training at maximal lactate steady state during 8 weeks without leading to DNA damage in peripheral blood and skeletal muscle cells or to oxidative stress in skeletal muscle cells. However, overtraining induced by downhill running training sessions is associated with DNA damage in peripheral blood and skeletal muscle cells, and with oxidative stress in skeletal muscle cells and total blood.
doi:10.1186/1472-6793-13-11
PMCID: PMC3852772  PMID: 24099482
DNA damage; Aerobic training; Overtraining; Oxidative stress
8.  Estrogen-related receptor β deficiency alters body composition and response to restraint stress 
BMC Physiology  2013;13:10.
Background
Estrogen-related receptors (ERRs) are orphan nuclear hormone receptors expressed in metabolically active tissues and modulate numerous homeostatic processes. ERRs do not bind the ligand estrogen, but they are able to bind the estrogen response element (ERE) embedded within the ERR response elements (ERREs) to regulate transcription of genes. Previous work has demonstrated that adult mice lacking Errβ have altered metabolism and meal patterns. To further understand the biological role of Errβ, we characterized the stress response of mice deficient for one or both alleles of Errβ.
Results
Sox2-Cre:Errβ mice lack Errβ expression in all tissues of the developing embryo. Sox2-Cre:Errβ+/lox heterozygotes were obese, had increased Npy and Agrp gene expression in the arcuate nucleus of the hypothalamus, and secreted more corticosterone in response to stress. In contrast, Sox2-Cre:Errβlox/lox homozygotes were lean and, despite increased Npy and Agrp gene expression, did not secrete more corticosterone in response to stress. Sox2-Cre:Errβ+/lox and Sox2-Cre:Errβlox/lox mice treated with the Errβ and Errγ agonist DY131 demonstrated increased corticotropin-releasing hormone (Crh) expression in the paraventricular nucleus of the hypothalamus, although corticosterone levels were not affected. Nes-Cre:Errβlox/lox mice, which selectively lack Errβ expression in the nervous system, also demonstrated elevated stress response during an acoustic startle response test and decreased expression of both Crh and corticotropin-releasing hormone receptor 2 (Crhr2).
Conclusions
Loss of Errβ affects body composition, neuropeptide levels, stress hormones, and centrally-modulated startle responses of mice. These results indicate that Errβ alters the function of the hypothalamic-pituitary-adrenocortical axis and indicates a role for Errβ in regulating stress response.
doi:10.1186/1472-6793-13-10
PMCID: PMC3850731  PMID: 24053666
9.  Dynamically regulated miRNA-mRNA networks revealed by exercise 
BMC Physiology  2013;13:9.
Background
MiRNAs are essential mediators of many biological processes. The aim of this study was to investigate the dynamics of miRNA-mRNA regulatory networks during exercise and the subsequent recovery period.
Results
Here we monitored the transcriptome changes using microarray analysis of the whole blood of eight highly trained athletes before and after 30 min of moderate exercise followed by 30 min and 60 min of recovery period. We combined expression profiling and bioinformatics and analysed metabolic pathways enriched with differentially expressed mRNAs and mRNAs which are known to be validated targets of differentially expressed miRNAs. Finally we revealed four dynamically regulated networks comprising differentially expressed miRNAs and their known target mRNAs with anti-correlated expression profiles over time. The data suggest that hsa-miR-21-5p regulated TGFBR3, PDGFD and PPM1L mRNAs. Hsa-miR-24-2-5p was likely to be responsible for MYC and KCNJ2 genes and hsa-miR-27a-5p for ST3GAL6. The targets of hsa-miR-181a-5p included ROPN1L and SLC37A3. All these mRNAs are involved in processes highly relevant to exercise response, including immune function, apoptosis, membrane traffic of proteins and transcription regulation.
Conclusions
We have identified metabolic pathways involved in response to exercise and revealed four miRNA-mRNA networks dynamically regulated following exercise. This work is the first study to monitor miRNAs and mRNAs in parallel into the recovery period. The results provide a novel insight into the regulatory role of miRNAs in stress adaptation.
doi:10.1186/1472-6793-13-9
PMCID: PMC3681679  PMID: 24219008
Exercise; Regulation; miRNA-mRNA networks
10.  Significance of KATP channels, L-type Ca2+ channels and CYP450-4A enzymes in oxygen sensing in mouse cremaster muscle arterioles In vivo 
BMC Physiology  2013;13:8.
Background
ATP-sensitive K+ channels (KATP channels), NO, prostaglandins, 20-HETE and L-type Ca2+ channels have all been suggested to be involved in oxygen sensing in skeletal muscle arterioles, but the role of the individual mechanisms remain controversial. We aimed to establish the importance of these mechanisms for oxygen sensing in arterioles in an in vivo model of metabolically active skeletal muscle. For this purpose we utilized the exteriorized cremaster muscle of anesthetized mice, in which the cremaster muscle was exposed to controlled perturbation of tissue PO2.
Results
Change from “high” oxygen tension (PO2 = 153.4 ± 3.4 mmHg) to “low” oxygen tension (PO2 = 13.8 ± 1.3 mmHg) dilated cremaster muscle arterioles from 11.0 ± 0.4 μm to 32.9 ± 0.9 μm (n = 28, P < 0.05). Glibenclamide (KATP channel blocker) caused maximal vasoconstriction, and abolished the dilation to low oxygen, whereas the KATP channel opener cromakalim caused maximal dilation and prevented the constriction to high oxygen. When adding cromakalim on top of glibenclamide or vice versa, the reactivity to oxygen was gradually restored. Inhibition of L-type Ca2+ channels using 3 μM nifedipine did not fully block basal tone in the arterioles, but rendered them unresponsive to changes in PO2. Inhibition of the CYP450-4A enzyme using DDMS blocked vasoconstriction to an increase in PO2, but had no effect on dilation to low PO2.
Conclusions
We conclude that: 1) L-type Ca2+ channels are central to oxygen sensing, 2) KATP channels are permissive for the arteriolar response to oxygen, but are not directly involved in the oxygen sensing mechanism and 3) CYP450-4A mediated 20-HETE production is involved in vasoconstriction to high PO2.
doi:10.1186/1472-6793-13-8
PMCID: PMC3663688  PMID: 23663730
Hypoxic vasodilation; Hyperoxic vasoconstriction; Oxygen sensing; ATP-sensitive K+ channels; 20-HETE; L-type Ca2+ channels; Prostaglandin; NO-synthase; Skeletal muscle; Arterioles
11.  Liver-derived endocrine IGF-I is not critical for activation of skeletal muscle protein synthesis following oral feeding 
BMC Physiology  2013;13:7.
Background
Insulin-like growth factor-1 (IGF-1) is produced in various tissues to stimulate protein synthesis under different conditions. It is however, difficult to distinguish effects by locally produced IGF-1 compared to liver-derived IGF-1 appearing in the circulation. In the present study the role of liver-derived endocrine IGF-I for activation of skeletal muscle protein synthesis following feeding was evaluated.
Results
Transgenic female mice with selective knockout of the IGF-I gene in hepatocytes were freely fed, starved overnight and subsequently refed for 3 hours and compared to wild types (wt). Liver IGF-I knockout mice had 70% reduced plasma IGF-I. Starvation decreased and refeeding increased muscle protein synthesis (p < 0.01), similarly in both IGF-I knockouts and wt mice. Phosphorylation of p70s6k and mTOR increased and 4EBP1 bound to eIF4E decreased in both IGF-I knockouts and wt mice after refeeding (p < 0.05). Muscle transcripts of IGF-I decreased and IGF-I receptor increased (p < 0.01) in wild types during starvation but similar alterations did not reach significance in knockouts (p>0.05). mTOR mRNA increased in knockouts only during starvation. Plasma glucose decreased during starvation in all groups in parallel to insulin, while plasma IGF-I and GH did not change significantly among the groups during starvation-refeeding. Plasma amino acids declined and increased during starvation-refeeding in wild type mice (p < 0.05), but less so in IGF-I (−/−) knockouts (p < 0.08).
Conclusion
This study demonstrates that re-synthesis of muscle proteins following starvation is not critically dependent on endocrine liver-derived IGF-I.
doi:10.1186/1472-6793-13-7
PMCID: PMC3659091  PMID: 23657003
IGF-I; Muscle protein synthesis; Cell signaling; Amino acid
12.  cAMP-stimulated Cl- secretion is increased by glucocorticoids and inhibited by bumetanide in semicircular canal duct epithelium 
BMC Physiology  2013;13:6.
Background
The vestibular system controls the ion composition of its luminal fluid through several epithelial cell transport mechanisms under hormonal regulation. The semicircular canal duct (SCCD) epithelium has been shown to secrete Cl- under β2-adrenergic stimulation. In the current study, we sought to determine the ion transporters involved in Cl- secretion and whether secretion is regulated by PKA and glucocorticoids.
Results
Short circuit current (Isc) from rat SCCD epithelia demonstrated stimulation by forskolin (EC50: 0.8 μM), 8-Br-cAMP (EC50: 180 μM), 8-pCPT-cAMP (100 μM), IBMX (250 μM), and RO-20-1724 (100 μM). The PKA activator N6-BNZ-cAMP (0.1, 0.3 & 1 mM) also stimulated Isc. Partial inhibition of stimulated Isc individually by bumetanide (10 & 50 μM), and [(dihydroindenyl)oxy]alkanoic acid (DIOA, 100 μM) were additive and complete. Stimulated Isc was also partially inhibited by CFTRinh-172 (5 & 30 μM), flufenamic acid (5 μM) and diphenylamine-2,2′-dicarboxylic acid (DPC; 1 mM). Native canals of CFTR+/− mice showed a stimulation of Isc from isoproterenol and forskolin+IBMX but not in the presence of both bumetanide and DIOA, while canals from CFTR−/− mice had no responses. Nonetheless, CFTR−/− mice showed no difference from CFTR+/− mice in their ability to balance (rota-rod). Stimulated Isc was greater after chronic incubation (24 hr) with the glucocorticoids dexamethasone (0.1 & 0.3 μM), prednisolone (0.3, 1 & 3 μM), hydrocortisone (0.01, 0.1 & 1 μM), and corticosterone (0.1 & 1 μM) and mineralocorticoid aldosterone (1 μM). Steroid action was blocked by mifepristone but not by spironolactone, indicating all the steroids activated the glucocorticoid, but not mineralocorticoid, receptor. Expression of transcripts for CFTR; for KCC1, KCC3a, KCC3b and KCC4, but not KCC2; for NKCC1 but not NKCC2 and for WNK1 but only very low WNK4 was determined.
Conclusions
These results are consistent with a model of Cl- secretion whereby Cl- is taken up across the basolateral membrane by a Na+-K+-2Cl- cotransporter (NKCC) and potentially another transporter, is secreted across the apical membrane via a Cl- channel, likely CFTR, and demonstrate the regulation of Cl- secretion by protein kinase A and glucocorticoids.
doi:10.1186/1472-6793-13-6
PMCID: PMC3622586  PMID: 23537040
Chloride secretion; Rat; Knockout mouse; Primary culture; Epithelium; Inner ear; Bumetanide; DIOA; Glucocorticoid; NKCC; KCC
13.  Quinine controls body weight gain without affecting food intake in male C57BL6 mice 
BMC Physiology  2013;13:5.
Background
Quinine is a natural molecule commonly used as a flavouring agent in tonic water. Diet supplementation with quinine leads to decreased body weight and food intake in rats. Quinine is an in vitro inhibitor of Trpm5, a cation channel expressed in taste bud cells, the gastrointestinal tract and pancreas. The objective of this work is to determine the effect of diet supplementation with quinine on body weight and body composition in male mice, to investigate its mechanism of action, and whether the effect is mediated through Trpm5.
Results
Compared with mice consuming AIN, a regular balanced diet, mice consuming AIN diet supplemented with 0.1% quinine gained less weight (2.89 ± 0.30 g vs 5.39 ± 0.50 g) and less fat mass (2.22 ± 0.26 g vs 4.33 ± 0.43 g) after 13 weeks of diet, and had lower blood glucose and plasma triglycerides. There was no difference in food intake between the mice consuming quinine supplemented diet and those consuming control diet. Trpm5 knockout mice gained less fat mass than wild-type mice. There was a trend for a diet-genotype interaction for body weight and body weight gain, with the effect of quinine less pronounced in the Trpm5 KO than in the WT background. Faecal weight, energy and lipid contents were higher in quinine fed mice compared to regular AIN fed mice and in Trpm5 KO mice compared to wild type mice.
Conclusion
Quinine contributes to weight control in male C57BL6 mice without affecting food intake. A partial contribution of Trpm5 to quinine dependent body weight control is suggested.
doi:10.1186/1472-6793-13-5
PMCID: PMC3575391  PMID: 23394313
Obesity; Food intake; Fat; Body composition; Gastrointestinal tract
14.  Importance of uncharged polar residues and proline in the proximal two-thirds (Pro107–Ser128) of the highly conserved region of mouse ileal Na+-dependent bile acid transporter, Slc10a2, in transport activity and cellular expression 
BMC Physiology  2013;13:4.
Background
SLC10A2-mediated reabsorption of bile acids at the distal end of the ileum is the first step in enterohepatic circulation. Because bile acids act not only as detergents but also as signaling molecules in lipid metabolism and energy production, SLC10A2 is important as the key transporter for understanding the in vivo kinetics of bile acids. SLC10A family members and the homologous genes of various species share a highly conserved region corresponding to Gly104–Pro142 of SLC10A2. The functional importance of this region has not been fully elucidated.
Results
To elucidate the functional importance of this region, we previously performed mutational analysis of the uncharged polar residues and proline in the distal one-third (Thr130–Pro142) of the highly conserved region in mouse Slc10a2. In this study, proline and uncharged polar residues in the remaining two-thirds of this region in mouse Slc10a2 were subjected to mutational analysis, and taurocholic acid uptake and cell surface localization were examined. Cell surface localization of Slc10a2 is necessary for bile acid absorption. Mutants in which Asp or Leu were substituted for Pro107 (P107N or P107L) were abundantly expressed, but their cell surface localization was impaired. The S126A mutant was completely impaired in cellular expression. The T110A and S128A mutants exhibited remarkably enhanced membrane expression. The S112A mutant was properly expressed at the cell surface but transport activity was completely lost. Replacement of Tyr117 with various amino acids resulted in reduced transport activity. The degree of reduction roughly depended on the van der Waals volume of the side chains.
Conclusions
The functional importance of proline and uncharged polar residues in the highly conserved region of mouse Slc10a2 was determined. This information will contribute to the design of bile acid-conjugated prodrugs for efficient drug delivery or SLC10A2 inhibitors for hypercholesterolemia treatment.
doi:10.1186/1472-6793-13-4
PMCID: PMC3570448  PMID: 23374508
Bile acid; Enterohepatic circulation; Ileal sodium-dependent bile acid transporter
15.  The antioxidant response of the liver of male Swiss mice raised on a AIN 93 or commercial diet 
BMC Physiology  2013;13:3.
Background
Reactive oxygen species (ROS) are formed under natural physiological conditions and are thought to play an important role in many human diseases. A wide range of antioxidants are involved in cellular defense mechanisms against ROS, which can be generated in excess during stressful conditions, these include enzymes and non-enzymatic antioxidants. The aim of this study was to evaluate the antioxidant responses of mice to two diets control, commercial and the purified AIN 93 diet, commonly used in experiments with rodents.
Results
Malondialdehyde (MDA) and hydrogen peroxide (H2O2) concentrations and superoxide dismutase (SOD) and glutathione reductase (GR) activities determined in the liver were lower in the group of mice fed with the AIN 93 diet, while catalase (CAT) activity was higher in the same group, when compared to the group fed on the commercial diet. Liver glutathione peroxidase (GSH-Px) activity was similar in the groups fed on either AIN 93 or the commercial diets. Two SOD isoforms, Mn-SODII and a Cu/Zn-SODV, were specifically reduced in the liver of the AIN 93 diet fed animals.
Conclusions
The clear differences in antioxidant responses observed in the livers of mice fed on the two diets suggest that the macro- and micro-nutrient components with antioxidant properties, including vitamin E, can promote changes in the activity of enzymes involved in the removal of the ROS generated by cell metabolism.
doi:10.1186/1472-6793-13-3
PMCID: PMC3564843  PMID: 23347792
AIN 93 diet; Antioxidant enzymes; Commercial diet; Lipid peroxidation; Liver; Mice; Oxidative stress; Reactive oxygen species
16.  Genomic homeostasis is dysregulated in favour of apoptosis in the colonic epithelium of the azoxymethane treated rat 
BMC Physiology  2013;13:2.
Background
The acute response to genotoxic carcinogens in rats is an important model for researching cancer initiation events. In this report we define the normal rat colonic epithelium by describing transcriptional events along the anterior-posterior axis and then investigate the acute effects of azoxymethane (AOM) on gene expression, with a particular emphasis on pathways associated with the maintenance of genomic integrity in the proximal and distal compartments using whole genome expression microarrays.
Results
There are large transcriptional changes that occur in epithelial gene expression along the anterior-posterior axis of the normal healthy rat colon. AOM administration superimposes substantial changes on these basal gene expression patterns in both the distal and proximal rat colonic epithelium. In particular, the pathways associated with cell cycle and DNA damage and repair processes appear to be disrupted in favour of apoptosis.
Conclusions
The healthy rats’ colon exhibits extensive gene expression changes between its proximal and distal ends. The most common changes are associated with metabolism, but more subtle expression changes in genes involved in genomic homeostasis are also evident. These latter changes presumably protect and maintain a healthy colonic epithelium against incidental dietary and environmental insults. AOM induces substantial changes in gene expression, resulting in an early switch in the cell cycle process, involving p53 signalling, towards cell cycle arrest leading to the more effective process of apoptosis to counteract this genotoxic insult.
doi:10.1186/1472-6793-13-2
PMCID: PMC3561103  PMID: 23343511
Colorectal cancer; Azoxymethane; Rats; Gene expression
17.  Disease resistance is related to inherent swimming performance in Atlantic salmon 
BMC Physiology  2013;13:1.
Background
Like humans, fish can be classified according to their athletic performance. Sustained exercise training of fish can improve growth and physical capacity, and recent results have documented improved disease resistance in exercised Atlantic salmon. In this study we investigated the effects of inherent swimming performance and exercise training on disease resistance in Atlantic salmon.
Atlantic salmon were first classified as either poor or good according to their swimming performance in a screening test and then exercise trained for 10 weeks using one of two constant-velocity or two interval-velocity training regimes for comparison against control trained fish (low speed continuously). Disease resistance was assessed by a viral disease challenge test (infectious pancreatic necrosis) and gene expression analyses of the host response in selected organs.
Results
An inherently good swimming performance was associated with improved disease resistance, as good swimmers showed significantly better survival compared to poor swimmers in the viral challenge test. Differences in mortalities between poor and good swimmers were correlated with cardiac mRNA expression of virus responsive genes reflecting the infection status. Although not significant, fish trained at constant-velocity showed a trend towards higher survival than fish trained at either short or long intervals. Finally, only constant training at high intensity had a significant positive effect on fish growth compared to control trained fish.
Conclusions
This is the first evidence suggesting that inherent swimming performance is associated with disease resistance in fish.
doi:10.1186/1472-6793-13-1
PMCID: PMC3552842  PMID: 23336751
18.  VEGF induces sensory and motor peripheral plasticity, alters bladder function, and promotes visceral sensitivity 
BMC Physiology  2012;12:15.
Background
This work tests the hypothesis that bladder instillation with vascular endothelial growth factor (VEGF) modulates sensory and motor nerve plasticity, and, consequently, bladder function and visceral sensitivity.
In addition to C57BL/6J, ChAT-cre mice were used for visualization of bladder cholinergic nerves. The direct effect of VEGF on the density of sensory nerves expressing the transient receptor potential vanilloid subfamily 1 (TRPV1) and cholinergic nerves (ChAT) was studied one week after one or two intravesical instillations of the growth factor.
To study the effects of VEGF on bladder function, mice were intravesically instilled with VEGF and urodynamic evaluation was assessed. VEGF-induced alteration in bladder dorsal root ganglion (DRG) neurons was performed on retrogradly labeled urinary bladder afferents by patch-clamp recording of voltage gated Na+ currents. Determination of VEGF-induced changes in sensitivity to abdominal mechanostimulation was performed by application of von Frey filaments.
Results
In addition to an overwhelming increase in TRPV1 immunoreactivity, VEGF instillation resulted in an increase in ChAT-directed expression of a fluorescent protein in several layers of the urinary bladder. Intravesical VEGF caused a profound change in the function of the urinary bladder: acute VEGF (1 week post VEGF treatment) reduced micturition pressure and longer treatment (2 weeks post-VEGF instillation) caused a substantial reduction in inter-micturition interval. In addition, intravesical VEGF resulted in an up-regulation of voltage gated Na+ channels (VGSC) in bladder DRG neurons and enhanced abdominal sensitivity to mechanical stimulation.
Conclusions
For the first time, evidence is presented indicating that VEGF instillation into the mouse bladder promotes a significant increase in peripheral nerve density together with alterations in bladder function and visceral sensitivity. The VEGF pathway is being proposed as a key modulator of neural plasticity in the pelvis and enhanced VEGF content may be associated with visceral hyperalgesia, abdominal discomfort, and/or pelvic pain.
doi:10.1186/1472-6793-12-15
PMCID: PMC3543727  PMID: 23249422
19.  Localization of lipoprotein lipase and GPIHBP1 in mouse pancreas: effects of diet and leptin deficiency 
BMC Physiology  2012;12:14.
Background
Lipoprotein lipase (LPL) hydrolyzes triglycerides in plasma lipoproteins and enables uptake of lipolysis products for energy production or storage in tissues. Our aim was to study the localization of LPL and its endothelial anchoring protein glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) in mouse pancreas, and effects of diet and leptin deficiency on their expression patterns. For this, immunofluorescence microscopy was used on pancreatic tissue from C57BL/6 mouse embryos (E18), adult mice on normal or high-fat diet, and adult ob/ob-mice treated or not with leptin. The distribution of LPL and GPIHBP1 was compared to insulin, glucagon and CD31. Heparin injections were used to discriminate between intracellular and extracellular LPL.
Results
In the exocrine pancreas LPL was found in capillaries, and was mostly co-localized with GPIHBP1. LPL was releasable by heparin, indicating localization on cell surfaces. Within the islets, most of the LPL was associated with beta cells and could not be released by heparin, indicating that the enzyme remained mostly within cells. Staining for LPL was found also in the glucagon-producing alpha cells, both in embryos (E18) and in adult mice. Only small amounts of LPL were found together with GPIHBP1 within the capillaries of islets. Neither a high fat diet nor fasting/re-feeding markedly altered the distribution pattern of LPL or GPIHBP1 in mouse pancreas. Islets from ob/ob mice appeared completely deficient of LPL in the beta cells, while LPL-staining was normal in alpha cells and in the exocrine pancreas. Leptin treatment of ob/ob mice for 12 days reversed this pattern, so that most of the islets expressed LPL in beta cells.
Conclusions
We conclude that both LPL and GPIHBP1 are present in mouse pancreas, and that LPL expression in beta cells is dependent on leptin.
doi:10.1186/1472-6793-12-14
PMCID: PMC3537605  PMID: 23186339
Lipoprotein lipase; Diabetes mellitus; Islet cells; Exocrine pancreas; Endothelium; Ob/ob mice; High fat diet; Heparin; qPCR; Immunofluorescence
20.  Linking nutritional regulation of Angptl4, Gpihbp1, and Lmf1 to lipoprotein lipase activity in rodent adipose tissue 
BMC Physiology  2012;12:13.
Background
Lipoprotein lipase (LPL) hydrolyzes triglycerides in lipoproteins and makes fatty acids available for tissue metabolism. The activity of the enzyme is modulated in a tissue specific manner by interaction with other proteins. We have studied how feeding/fasting and some related perturbations affect the expression, in rat adipose tissue, of three such proteins, LMF1, an ER protein necessary for folding of LPL into its active dimeric form, the endogenous LPL inhibitor ANGPTL4, and GPIHBP1, that transfers LPL across the endothelium.
Results
The system underwent moderate circadian oscillations, for LPL in phase with food intake, for ANGPTL4 and GPIHBP1 in the opposite direction. Studies with cycloheximide showed that whereas LPL protein turns over rapidly, ANGPTL4 protein turns over more slowly. Studies with the transcription blocker Actinomycin D showed that transcripts for ANGPTL4 and GPIHBP1, but not LMF1 or LPL, turn over rapidly. When food was withdrawn the expression of ANGPTL4 and GPIHBP1 increased rapidly, and LPL activity decreased. On re-feeding and after injection of insulin the expression of ANGPTL4 and GPIHBP1 decreased rapidly, and LPL activity increased. In ANGPTL4−/− mice adipose tissue LPL activity did not show these responses. In old, obese rats that showed signs of insulin resistance, the responses of ANGPTL4 and GPIHBP1 mRNA and of LPL activity were severely blunted (at 26 weeks of age) or almost abolished (at 52 weeks of age).
Conclusions
This study demonstrates directly that ANGPTL4 is necessary for rapid modulation of LPL activity in adipose tissue. ANGPTL4 message levels responded very rapidly to changes in the nutritional state. LPL activity always changed in the opposite direction. This did not happen in Angptl4−/− mice. GPIHBP1 message levels also changed rapidly and in the same direction as ANGPTL4, i.e. increased on fasting when LPL activity decreased. This was unexpected because GPIHBP1 is known to stabilize LPL. The plasticity of the LPL system is severely blunted or completely lost in insulin resistant rats.
doi:10.1186/1472-6793-12-13
PMCID: PMC3562520  PMID: 23176178
Gene expression; Insulin; Gene inactivation; Cycloheximide; Actinomycin D; Transcription; Translation; Posttranslational
21.  The ΔF508-CFTR mutation inhibits wild-type CFTR processing and function when co-expressed in human airway epithelia and in mouse nasal mucosa 
BMC Physiology  2012;12:12.
Background
Rescue or correction of CFTR function in native epithelia is the ultimate goal of CF therapeutics development. Wild-type (WT) CFTR introduction and replacement is also of particular interest. Such therapies may be complicated by possible CFTR self-assembly into an oligomer or multimer.
Results
Surprisingly, functional CFTR assays in native airway epithelia showed that the most common CFTR mutant, ΔF508-CFTR (ΔF-CFTR), inhibits WT-CFTR when both forms are co-expressed. To examine more mechanistically, both forms of CFTR were transfected transiently in varying amounts into IB3-1 CF human airway epithelial cells and HEK-293 human embryonic kidney cells null for endogenous CFTR protein expression. Increasing amounts of ΔF-CFTR inhibited WT-CFTR protein processing and function in CF human airway epithelial cells but not in heterologous HEK-293 cells. Stably expressed ΔF-CFTR in clones of the non-CF human airway epithelial cell line, CALU-3, also showed reduction in cAMP-stimulated anion secretion and in WT-CFTR processing. An ultimate test of this dominant negative-like effect of ΔF-CFTR on WT-CFTR was the parallel study of two different CF mouse models: the ΔF-CFTR mouse and the bitransgenic CFTR mouse corrected in the gut but null in the lung and airways. WT/ΔF heterozygotes had an intermediate phenotype with regard to CFTR agonist responses in in vivo nasal potential difference (NPD) recordings and in Ussing chamber recordings of short-circuit current (ISC) in vitro on primary tracheal epithelial cells isolated from the same mice. In contrast, CFTR bitransgenic +/− heterozygotes had no difference in their responses versus +/+ wild-type mice.
Conclusions
Taken altogether, these data suggest that ΔF-CFTR and WT-CFTR co-assemble into an oligomeric macromolecular complex in native epithelia and share protein processing machinery and regulation at the level of the endoplasmic reticulum (ER). As a consequence, ΔF-CFTR slows WT-CFTR protein processing and limits its expression and function in the apical membrane of native airway epithelia. Implications of these data for the relative health of CF heterozygous carriers, for CFTR protein processing in native airway epithelia, and for the relative efficacy of different CF therapeutic approaches is significant and is discussed.
doi:10.1186/1472-6793-12-12
PMCID: PMC3507716  PMID: 22999299
Cystic fibrosis (CF); CFTR; Biogenesis; CF heterozygote; Oligomer; Chloride ion channels
22.  High molecular mass proteomics analyses of left ventricle from rats subjected to differential swimming training 
BMC Physiology  2012;12:11.
Background
Regular exercises are commonly described as an important factor in health improvement, being directly related to contractile force development in cardiac cells.
In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG) and three training groups (TG’s), with low, moderate and high intensity of exercises.
In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG) and three training groups (TG’s), with low, moderate and high intensity of exercises.
Results
Findings here reported demonstrated clear morphologic alterations, significant cellular injury and increased energy supplies at high exercise intensities. α-MyHC, as well proteins associated with mitochondrial oxidative metabolism were shown to be improved. α-MyHC expression increase 1.2 fold in high intensity training group when compared with control group. α-MyHC was also evaluated by real-time PCR showing a clear expression correlation with protein synthesis data increase in 8.48 fold in high intensity training group. Other myofibrillar protein, troponin , appear only in high intensity group, corroborating the cellular injury data. High molecular masses proteins such as MRS2 and NADH dehydrogenase, involved in metabolic pathways also demonstrate increase expression, respectily 1.5 and 1.3 fold, in response to high intensity exercise.
Conclusions
High intensity exercise demonstrated an increase expression in some high molecular masses myofibrilar proteins, α-MyHC and troponin. Furthermore this intensity also lead a significant increase of other high molecular masses proteins such as MRS2 and NADH dehydrogenase in comparison to low and moderate intensities. However, high intensity exercise also represented a significant degree of cellular injury, when compared with the individuals submitted to low and moderate intensities.
doi:10.1186/1472-6793-12-11
PMCID: PMC3508799  PMID: 22950628
Heart tissue; High molecular mass proteomic; Muscle; Myofibrillar proteins; Swimming training
23.  Identification of uterine ion transporters for mineralisation precursors of the avian eggshell 
BMC Physiology  2012;12:10.
Background
In Gallus gallus, eggshell formation takes place daily in the hen uterus and requires large amounts of the ionic precursors for calcium carbonate (CaCO3). Both elements (Ca2+, HCO3-) are supplied by the blood via trans-epithelial transport. Our aims were to identify genes coding for ion transporters that are upregulated in the uterine portion of the oviduct during eggshell calcification, compared to other tissues and other physiological states, and incorporate these proteins into a general model for mineral transfer across the tubular gland cells during eggshell formation.
Results
A total of 37 candidate ion transport genes were selected from our database of overexpressed uterine genes associated with eggshell calcification, and by analogy with mammalian transporters. Their uterine expression was compared by qRTPCR in the presence and absence of eggshell formation, and with relative expression levels in magnum (low Ca2+/HCO3- movement) and duodenum (high rates of Ca2+/HCO3- trans-epithelial transfer). We identified overexpression of eleven genes related to calcium movement: the TRPV6 Ca2+ channel (basolateral uptake of Ca2+), 28 kDa calbindin (intracellular Ca2+ buffering), the endoplasmic reticulum type 2 and 3 Ca2+ pumps (ER uptake), and the inositol trisphosphate receptors type 1, 2 and 3 (ER release). Ca2+ movement across the apical membrane likely involves membrane Ca2+ pumps and Ca2+/Na+ exchangers. Our data suggests that Na+ transport involved the SCNN1 channel and the Na+/Ca2+ exchangers SLC8A1, 3 for cell uptake, the Na+/K+ ATPase for cell output. K+ uptake resulted from the Na+/K+ ATPase, and its output from the K+ channels (KCNJ2, 15, 16 and KCNMA1).
We propose that the HCO3- is mainly produced from CO2 by the carbonic anhydrase 2 (CA2) and that HCO3- is secreted through the HCO3-/Cl- exchanger SLC26A9. HCO3- synthesis and precipitation with Ca2+ produce two H+. Protons are absorbed via the membrane’s Ca2+ pumps ATP2B1, 2 in the apical membrane and the vacuolar (H+)-atpases at the basolateral level. Our model incorporate Cl- ions which are absorbed by the HCO3-/Cl- exchanger SLC26A9 and by Cl- channels (CLCN2, CFTR) and might be extruded by Cl-/H+ exchanger (CLCN5), but also by Na+ K+ 2 Cl- and K+ Cl- cotransporters.
Conclusions
Our Gallus gallus uterine model proposes a large list of ion transfer proteins supplying Ca2+ and HCO3- and maintaining cellular ionic homeostasis. This avian model should contribute towards understanding the mechanisms and regulation for ionic precursors of CaCO3, and provide insight in other species where epithelia transport large amount of calcium or bicarbonate.
doi:10.1186/1472-6793-12-10
PMCID: PMC3582589  PMID: 22943410
Ion; Mineral; Calcium; Transporter; Uterus; Eggshell; Chicken
24.  Contribution of transient and sustained calcium influx, and sensitization to depolarization-induced contractions of the intact mouse aorta 
BMC Physiology  2012;12:9.
Background
Electrophysiological studies of L-type Ca2+ channels in isolated vascular smooth muscle cells revealed that depolarization of these cells evoked a transient and a time-independent Ca2+ current. The sustained, non-inactivating current occurred at voltages where voltage-dependent activation and inactivation overlapped (voltage window) and its contribution to basal tone or active tension in larger multicellular blood vessel preparations is unknown at present. This study investigated whether window Ca2+ influx affects isometric contraction of multicellular C57Bl6 mouse aortic segments.
Results
Intracellular Ca2+ (Cai2+, Fura-2), membrane potential and isometric force were measured in aortic segments, which were clamped at fixed membrane potentials by increasing extracellular K+ concentrations. K+ above 20 mM evoked biphasic contractions, which were not affected by inhibition of IP3- or Ca2+ induced Ca2+ release with 2-aminoethoxydiphenyl borate or ryanodine, respectively, ruling out the contribution of intracellular Ca2+ release. The fast force component paralleled Cai2+ increase, but the slow contraction coincided with Cai2+ decrease. In the absence of extracellular Ca2+, basal tension and Cai2+ declined, and depolarization failed to evoke Cai2+ signals or contraction. Subsequent re-introduction of external Ca2+ elicited only slow contractions, which were now matched by Cai2+ increase. After Cai2+ attained steady-state, isometric force kept increasing due to Ca2+- sensitization of the contractile elements. The slow force responses displayed a bell-shaped voltage-dependence, were suppressed by hyperpolarization with levcromakalim, and enhanced by an agonist of L-type Ca2+ channels (BAY K8644).
Conclusion
The isometric response of mouse aortic segments to depolarization consists of a fast, transient contraction paralleled by a transient Ca2+ influx via Ca2+ channels which completely inactivate. Ca2+ channels, which did not completely inactivate during the depolarization, initiated a second, sustained phase of contraction, which was matched by a sustained non-inactivating window Ca2+ influx. Together with sensitization, this window L-type Ca2+ influx is a major determinant of basal and active tension of mouse aortic smooth muscle.
doi:10.1186/1472-6793-12-9
PMCID: PMC3499395  PMID: 22943445
Vascular smooth muscle; L-type Ca2+ channel; Vasoconstriction; Intracellular Ca2+; Depolarization; Window Ca2+ influx
25.  Contractile properties and movement behaviour in neonatal rats with axotomy, treated with the NMDA antagonist DAP5 
BMC Physiology  2012;12:5.
Background
It is well known that axotomy in the neonatal period causes massive loss of motoneurons, which is reflected in the reduction of the number of motor units and the alteration in muscle properties. This type of neuronal death is attributed to the excessive activation of the ionotropic glutamate receptors (glutamate excitotoxicity). In the present study we investigated the effect of the NMDA antagonist DAP5 [D-2-amino-5-phosphonopentanoic acid] in systemic administration, on muscle properties and on behavioural aspects following peripheral nerve injury.
Methods
Wistar rats were subjected to sciatic nerve crush on the second postnatal day. Four experimental groups were included in this study: a) controls (injection of 0.9% NaCl solution) b) crush c) DAP5 treated and d) crush and DAP5 treated. Animals were examined with isometric tension recordings of the fast extensor digitorum longus and the slow soleus muscles, as well as with locomotor tests at four time points, at P14, P21, P28 and adulthood (2 months).
Results
1. Administration of DAP5 alone provoked no apparent adverse effects. 2. In all age groups, animals with crush developed significantly less tension than the controls in both muscles and had a worse performance in locomotor tests (p < 0.01). Crush animals injected with DAP5 were definitely improved as their tension recordings and their locomotor behaviour were significantly improved compared to axotomized ones (p < 0.01). 3. The time course of soleus contraction was not altered by axotomy and the muscle remained slow-contracting in all developmental stages in all experimental groups. EDL, on the other hand, became slower after the crush (p < 0.05). DAP5 administration restored the contraction velocity, even up to the level of control animals 4. Following crush, EDL becomes fatigue resistant after P21 (p < 0.01). Soleus, on the other hand, becomes less fatigue resistant. DAP5 restored the profile in both muscles.
Conclusions
Our results confirm that contractile properties and locomotor behaviour of animals are severely affected by axotomy, with a differential impact on fast contracting muscles. Administration of DAP5 reverses these devastating effects, without any observable side-effects. This agent could possibly show a therapeutic potential in other models of excitotoxic injury as well.
doi:10.1186/1472-6793-12-5
PMCID: PMC3395568  PMID: 22551202

Résultats 1-25 (219)