Conseils de recherche
Les critères de recherche

Résultats 1-25 (945)

Notices sélectionnées (0)

Sélectionner un filtre

Année de publication
plus »
1.  Optimized DNA extraction from neonatal dried blood spots: application in methylome profiling 
BMC Biotechnology  2014;14:60.
Neonatal dried blood spots (DBS) represent an inexpensive method for long-term biobanking worldwide and are considered gold mines for research for several human diseases, including those of metabolic, infectious, genetic and epigenetic origin. However, the utility of DBS is restricted by the limited amount and quality of extractable biomolecules (including DNA), especially for genome wide profiling. Degradation of DNA in DBS often occurs during storage and extraction. Moreover, amplifying small quantities of DNA often leads to a bias in subsequent data, particularly in methylome profiles. Thus it is important to develop methodologies that maximize both the yield and quality of DNA from DBS for downstream analyses.
Using combinations of in-house-derived and modified commercial extraction kits, we developed a robust and efficient protocol, compatible with methylome studies, many of which require stringent bisulfite conversion steps. Several parameters were tested in a step-wise manner, including blood extraction, cell lysis, protein digestion, and DNA precipitation, purification and elution. DNA quality was assessed based on spectrophotometric measurements, DNA detectability by PCR, and DNA integrity by gel electrophoresis and bioanalyzer analyses. Genome scale Infinium HumanMethylation450 and locus-specific pyrosequencing data generated using the refined DBS extraction protocol were of high quality, reproducible and consistent.
This study may prove useful to meet the increased demand for research on prenatal, particularly epigenetic, origins of human diseases and for newborn screening programs, all of which are often based on DNA extracted from DBS.
PMCID: PMC4086704  PMID: 24980254
Blood spot; DNA extraction; Epigenetics; Methylome; HM450; Pyrosequencing; Whole bisulfitome amplification; QIAamp; GenSolve; NucleoSpin
2.  Production and characterization of in planta transiently produced polygalacturanase from Aspergillus niger and its fusions with hydrophobin or ELP tags 
BMC Biotechnology  2014;14:59.
Pectinases play an important role in plant cell wall deconstruction and have potential in diverse industries such as food, wine, animal feed, textile, paper, fuel, and others. The demand for such enzymes is increasing exponentially, as are the efforts to improve their production and to implement their use in several industrial processes. The goal of this study was to examine the potential of producing polygalacturonase I from Aspergillus niger in plants and to investigate the effects of subcellular compartmentalization and protein fusions on its accumulation and activity.
Polygalacturonase I from Aspergillus niger (AnPGI) was transiently produced in Nicotiana benthamiana by targeting it to five different cellular compartments: apoplast, endoplasmic reticulum (ER), vacuole, chloroplast and cytosol. Accumulation levels of 2.5%, 3.0%, and 1.9% of total soluble protein (TSP) were observed in the apoplast, ER, and vacuole, respectively, and specific activity was significantly higher in vacuole-targeted AnPGI compared to the same enzyme targeted to the ER or apoplast. No accumulation was found for AnPGI when targeted to the chloroplast or cytosol. Analysis of AnPGI fused with elastin-like polypeptide (ELP) revealed a significant increase in the protein accumulation level, especially when targeted to the vacuole where the protein doubles its accumulation to 3.6% of TSP, while the hydrophobin (HFBI) fusion impaired AnPGI accumulation and both tags impaired activity, albeit to different extents. The recombinant protein showed activity against polygalacturonic acid with optimum conditions at pH 5.0 and temperature from 30 to 50°C, depending on its fusion. In vivo analysis of reducing sugar content revealed a higher release of reducing sugars in plant tissue expressing recombinant AnPGI compared to wild type N. benthamiana leaves.
Our results demonstrate that subcellular compartmentalization of enzymes has an impact on both the target protein accumulation and its activity, especially in the case of proteins that undergo post-translational modifications, and should be taken into consideration when protein production strategies are designed. Using plants to produce heterologous enzymes for the degradation of a key component of the plant cell wall could reduce the cost of biomass pretreatment for the production of cellulosic biofuels.
PMCID: PMC4083859  PMID: 24970673
Polygalacturonase; Aspergillus niger; Nicotiana benthamiana; Elastin-like polypeptide; Hydrophobin I; Cellulosic biofuels
3.  Identification of rapidly induced genes in the response of peanut (Arachis hypogaea) to water deficit and abscisic acid 
BMC Biotechnology  2014;14:58.
Peanut (Arachis hypogaea) is an important crop, but droughts often affect peanut production. There is a lack of genomic information available for peanut; therefore, little is known about the molecular basis of its drought stress response.
Previously, we found that peanut stomata close rapidly during water deficit and in response to abscisic acid (ABA) treatment, and many genes show changes in their expression levels. To screen for candidate genes involved in the water deficit response, we used the Illumina HiSeq2000/MiSeq sequencing platform to conduct a global transcriptome analysis of peanut seedlings under water deficit with or without an ABA pretreatment. Three peanut tissues (leaves, roots, and stems) collected at each of three developmental stages (four-leaf, flowering, and podding stages) were used to construct sequence libraries. Then, 4.96 × 107 raw sequence reads were generated and the high quality reads were assembled into 47,842 unigenes. We analyzed these sequence libraries to identify differentially expressed genes (DEGs) under water deficit with or without ABA pretreatment. In total, 621 genes were induced rapidly (≥1.5 fold change compared with control) under water deficit, 2,665 genes were induced rapidly under water deficit + ABA pretreatment, and 279 genes overlapped between water deficit and water deficit + ABA pretreatment. Of the 279 overlapping genes, 264 showed the same expression pattern and 15 showed opposite expression patterns. Among the DEGs, 257 were highly induced (>5 fold) by water deficit + ABA pretreatment, while 19 were highly induced (>5 fold) by water deficit alone. The genes induced under water deficit + ABA pretreatment included 100 putative transcription factor (TF) genes, while those induced under water deficit alone included only 22 putative TF genes. To validate the transcriptome results, we conducted quantitative PCR (qPCR) analyses to quantify the transcript levels of nine candidate genes.
The DEGs results show that many genes are rapidly induced in peanut in response to water deficit without or with ABA pretreatment. The results indicate that the main drought response mechanisms in peanut function through an ABA-dependent pathway. Our data provide a comprehensive sequence resource for molecular genetics research on peanut stress responses.
PMCID: PMC4082179  PMID: 24970488
Arachis hypogaea; Transcriptome; Water deficit; Abscisic acid (ABA)
4.  Flow cytometry-based functional selection of RNA interference triggers for efficient epi-allelic analysis of therapeutic targets 
BMC Biotechnology  2014;14:57.
The dose-response relationship is a fundamental pharmacological parameter necessary to determine therapeutic thresholds. Epi-allelic hypomorphic analysis using RNA interference (RNAi) can similarly correlate target gene dosage with cellular phenotypes. This however requires a set of RNAi triggers empirically determined to attenuate target gene expression to different levels.
In order to improve our ability to incorporate epi-allelic analysis into target validation studies, we developed a novel flow cytometry-based functional screening approach (CellSelectRNAi) to achieve unbiased selection of shRNAs from high-coverage libraries that knockdown target gene expression to predetermined levels. Employing a Gaussian probability model we calculated that knockdown efficiency is inferred from shRNA sequence frequency profiles derived from sorted hypomorphic cell populations. We used this approach to generate a hypomorphic epi-allelic cell series of shRNAs to reveal a functional threshold for the tumor suppressor p53 in normal and transformed cells.
The unbiased CellSelectRNAi flow cytometry-based functional screening approach readily provides an epi-allelic series of shRNAs for graded reduction of target gene expression and improved phenotypic validation.
PMCID: PMC4074332  PMID: 24952598
5.  Improved elongation factor-1 alpha-based vectors for stable high-level expression of heterologous proteins in Chinese hamster ovary cells 
BMC Biotechnology  2014;14:56.
Establishing highly productive clonal cell lines with constant productivity over 2–3 months of continuous culture remains a tedious task requiring the screening of tens of thousands of clonal colonies. In addition, long-term cultivation of many candidate lines derived in the absence of drug selection pressure is necessary. Expression vectors based on the elongation factor-1 alpha (EEF1A) gene and the dihydrofolate reductase (DHFR) selection marker (with separate promoters) can be used to obtain highly productive populations of stably transfected cells in the selection medium, but they have not been tested for their ability to support target gene amplification under gradually increasing methotrexate pressure.
We have modified EEF1A-based vectors by linking the DHFR selection marker to the target gene in the bicistronic RNA, shortening the overall plasmid size, and adding an Epstein-Barr virus terminal repeat fragment (EBVTR) element. Presence of the EBVTR element increased the rate of stable transfection by the plasmid by 24 times that of the EBVTR-minus control and improved the rate of methotrexate-driven gene amplification. The mean expression level of the enhanced green fluorescent protein (eGFP) used herein as a model protein, increased up to eight-fold using a single round of amplification in the case of adherent colonies formation and up to 4.5-fold in the case of suspension polyclonal cultures. Several eGFP-expressing cell populations produced using vectors with antibiotic resistance markers instead of the DHFR marker were compared with each other. Stable transfection of Chinese hamster ovary (CHO) DG44 cells by the p1.2-Hygro-eGFP plasmid (containing a hygromycin resistance marker) generated highest eGFP expression levels of up to 8.9% of the total cytoplasmic protein, with less than 5% of the cell population being eGFP-negative.
The p1.1 vector was very effective for stable transfection of CHO cells and capable of rapid MTX-driven target gene amplification, while p1.2-Hygro achieved similar eGFP expression levels as p1.1. The set of vectors we have developed should speed-up the process of generating highly productive clonal cell lines while substantially decreasing the associated experimental effort.
PMCID: PMC4067061  PMID: 24929670
CHO cells; High level expression; Stable cell line generation; Molecular cloning
6.  Positive regulations of adipogenesis by Italian ryegrass [Lolium multiflorum] in 3T3-L1 cells 
BMC Biotechnology  2014;14:54.
Back ground
Intramuscular fat deposition in the meat animal is relatively new strategy for developing the meat quality. Fat deposition is largely depending on the adipocyte proliferation and differentiation. Therefore, we investigated the effect of chloroform extract of L. multiflorum [CELM] on cell proliferation, lipid accumulation and adipocyte differentiation in 3T3-L1 cells and body weight of mouse.
We identified 6,9-Octadecatrienoic acid, Hexadecanoic acid, 2-hydroxypropanoic acid, butane-2,3-diol and hexane-1,2,3,4,5,6-hexaol in CELM. L. multiflorum extract increased the cell viability, lipid accumulation, cell cycle progression and key transcriptional and secretory factors like PPRAγ2, C/CEBP-α, adiponectin, aP2, GLUT-4, FAS and SREBP-1 mRNA expression as compared with control cells. For in-vivo, mice administered with CELM significantly increased body weight throughout the experiment periods. Further, the identified fatty acids like 3, 6, 9-Octadecatrienoic acid and Hexadecanoic acid was docked with target protein [PPRAγ2] using HEX 6.12. The least binding energy considered as high affinity with target protein. The maximum affinity with the target protein was observed in the Hexadecanoic acid followed by 3, 6, 9-Octadecatrienoic acid. The binding efficacy of Hexadecanoic acid and 3, 6, 9-Octadecatrienoic acid to the active site of PPAR-γ2 may be enhanced the adipocyte differentiations.
These findings suggest that CELM stimulates adipogenesis via activating the PPARγ-mediated signaling pathway in adipocyte which could be useful for the development of meat quality in animals.
PMCID: PMC4057822  PMID: 24917384
7.  Cultivation to improve in vivo solubility of overexpressed arginine deiminases in Escherichia coli and the enzyme characteristics 
BMC Biotechnology  2014;14:53.
Overexpression of foreign genes in Escherichia coli cells is an efficient means to obtain recombinant proteins. The technique is, however, often hampered by misfolding, degradation, aggregation and formation in inclusion bodies of products.
In this study, we reported that in vivo solubility of overexpressed arginine deiminases (ADI) improved by changing the cultivation conditions. ADI is enzymes that convert L-arginine to L-citrulline. After codon optimization, we synthesized the ADI gene of Pseudomonas putida and constructed it for overexpression in E. coli cells. The rADI products were mainly in inclusion body forms. We performed a series of optimization to enhance solubility of the protein. Co-expression with the GroES-GroEL chaperone team increased approximately 5-fold of the rADI activity. In addition the combination of L-arginine and D-glucose in the Luria-Bertani (LB) growth medium further increased the total activity to about 15 times. Separate L-arginine and D-glucose or the addition of other saccharides or amino acids had no such effects. The solubilization effects of the combination of L-arginine and D-glucose were further confirmed in the overexpression of another ADI from Listeria welshimeri. The enzymatic and conversion characteristics of the rADI products were further determined.
Combined addition of L-arginine and D-glucose in the LB medium significantly improved in vivo solubility of rADI proteins. The present study suggested a new strategy to increase the solubilization of overexpressed recombinant proteins in E. coli cells.
PMCID: PMC4072490  PMID: 24908259
Arginine deiminase; Heterologous expression; Escherichia coli; Solubilization; Cultivation; Conversion; L-arginine; L-citrulline
8.  An efficient method for stable protein targeting in grasses (Poaceae): a case study in Puccinellia tenuiflora 
BMC Biotechnology  2014;14:52.
An efficient transformation method is lacking for most non-model plant species to test gene function. Therefore, subcellular localization of proteins of interest from non-model plants is mainly carried out through transient transformation in homologous cells or in heterologous cells from model species such as Arabidopsis. Although analysis of expression patterns in model organisms like yeast and Arabidopsis can provide important clues about protein localization, these heterologous systems may not always faithfully reflect the native subcellular distribution in other species. On the other hand, transient expression in protoplasts from species of interest has limited ability for detailed sub-cellular localization analysis (e.g., those involving subcellular fractionation or sectioning and immunodetection), as it results in heterogeneous populations comprised of both transformed and untransformed cells.
We have developed a simple and reliable method for stable transformation of plant cell suspensions that are suitable for protein subcellular localization analyses in the non-model monocotyledonous plant Puccinellia tenuiflora. Optimization of protocols for obtaining suspension-cultured cells followed by Agrobacterium-mediated genetic transformation allowed us to establish stably transformed cell lines, which could be maintained indefinitely in axenic culture supplied with the proper antibiotic. As a case study, protoplasts of transgenic cell lines stably transformed with an ammonium transporter-green fluorescent protein (PutAMT1;1-GFP) fusion were successfully used for subcellular localization analyses in P. tenuiflora.
We present a reliable method for the generation of stably transformed P. tenuiflora cell lines, which, being available in virtually unlimited amounts, can be conveniently used for any type of protein subcellular localization analysis required. Given its simplicity, the method can be used as reference for other non-model plant species lacking efficient regeneration protocols.
PMCID: PMC4064272  PMID: 24898217
Non-model plant; Suspension-cultured cells; Green fluorescent protein (GFP); Agrobacterium; Subcellular localization
9.  A novel Streptomyces spp. integration vector derived from the S. venezuelae phage, SV1 
BMC Biotechnology  2014;14:51.
Integrating vectors based on the int/attP loci of temperate phages are convenient and used widely, particularly for cloning genes in Streptomyces spp.
We have constructed and tested a novel integrating vector based on g27, encoding integrase, and attP site from the phage, SV1. This plasmid, pBF3 integrates efficiently in S. coelicolor and S. lividans but surprisingly fails to generate stable integrants in S. venezuelae, the natural host for phage SV1.
pBF3 promises to be a useful addition to the range of integrating vectors currently available for Streptomyces molecular genetics.
PMCID: PMC4068962  PMID: 24885867
Streptomyces; Cloning; Integration vector; Serine integrase; Bacteriophage; SV1
10.  Saccharification and liquefaction of cassava starch: an alternative source for the production of bioethanol using amylolytic enzymes by double fermentation process 
BMC Biotechnology  2014;14:49.
Cassava starch is considered as a potential source for the commercial production of bioethanol because of its availability and low market price. It can be used as a basic source to support large-scale biological production of bioethanol using microbial amylases. With the progression and advancement in enzymology, starch liquefying and saccharifying enzymes are preferred for the conversion of complex starch polymer into various valuable metabolites. These hydrolytic enzymes can selectively cleave the internal linkages of starch molecule to produce free glucose which can be utilized to produce bioethanol by microbial fermentation.
In the present study, several filamentous fungi were screened for production of amylases and among them Aspergillus fumigatus KIBGE-IB33 was selected based on maximum enzyme yield. Maximum α-amylase, amyloglucosidase and glucose formation was achieved after 03 days of fermentation using cassava starch. After salt precipitation, fold purification of α-amylase and amyloglucosidase increased up to 4.1 and 4.2 times with specific activity of 9.2 kUmg-1 and 393 kUmg-1, respectively. Concentrated amylolytic enzyme mixture was incorporated in cassava starch slurry to give maximum glucose formation (40.0 gL-1), which was further fermented using Saccharomyces cerevisiae into bioethanol with 84.0% yield. The distillate originated after recovery of bioethanol gave 53.0% yield.
An improved and effective dual enzymatic starch degradation method is designed for the production of bioethanol using cassava starch. The technique developed is more profitable due to its fast liquefaction and saccharification approach that was employed for the formation of glucose and ultimately resulted in higher yields of alcohol production.
PMCID: PMC4048251  PMID: 24885587
Amylases; Aspergillus fumigatus; Biofuel; Saccharification; Saccharomyces cerevisiae; Starch
11.  Development of late blight resistant potatoes by cisgene stacking 
BMC Biotechnology  2014;14:50.
Phytophthora infestans, causing late blight in potato, remains one of the most devastating pathogens in potato production and late blight resistance is a top priority in potato breeding. The introduction of multiple resistance (R) genes with different spectra from crossable species into potato varieties is required. Cisgenesis is a promising approach that introduces native genes from the crops own gene pool using GM technology, thereby retaining favourable characteristics of established varieties.
We pursued a cisgenesis approach to introduce two broad spectrum potato late blight R genes, Rpi-sto1 and Rpi-vnt1.1 from the crossable species Solanum stoloniferum and Solanum venturii, respectively, into three different potato varieties. First, single R gene-containing transgenic plants were produced for all varieties to be used as references for the resistance levels and spectra to be expected in the respective genetic backgrounds. Next, a construct containing both cisgenic late blight R genes (Rpi-vnt1.1 and Rpi-sto1), but lacking the bacterial kanamycin resistance selection marker (NPTII) was transformed to the three selected potato varieties using Agrobacterium-mediated transformation. Gene transfer events were selected by PCR among regenerated shoots. Through further analyses involving morphological evaluations in the greenhouse, responsiveness to Avr genes and late blight resistance in detached leaf assays, the selection was narrowed down to eight independent events. These cisgenic events were selected because they showed broad spectrum late blight resistance due to the activity of both introduced R genes. The marker-free transformation was compared to kanamycin resistance assisted transformation in terms of T-DNA and vector backbone integration frequency. Also, differences in regeneration time and genotype dependency were evaluated.
We developed a marker-free transformation pipeline to select potato plants functionally expressing a stack of late blight R genes. Marker-free transformation is less genotype dependent and less prone to vector backbone integration as compared to marker-assisted transformation. Thereby, this study provides an important tool for the successful deployment of R genes in agriculture and contributes to the production of potentially durable late blight resistant potatoes.
PMCID: PMC4075930  PMID: 24885731
Potato; Late blight; Resistance gene; Cisgenesis; Marker-free transformation
12.  Fermentation performance and physiology of two strains of Saccharomyces cerevisiae during growth in high gravity spruce hydrolysate and spent sulphite liquor 
BMC Biotechnology  2014;14:47.
Lignocellulosic materials are a diverse group of substrates that are generally scarce in nutrients, which compromises the tolerance and fermentation performance of the fermenting organism. The problem is exacerbated by harsh pre-treatment, which introduces sugars and substances inhibitory to yeast metabolism. This study compares the fermentation behaviours of two yeast strains using different types of lignocellulosic substrates; high gravity dilute acid spruce hydrolysate (SH) and spent sulphite liquor (SSL), in the absence and presence of yeast extract. To this end, the fermentation performance, energy status and fermentation capacity of the strains were measured under different growth conditions.
Nutrient supplementation with yeast extract increased sugar uptake, cell growth and ethanol production in all tested fermentation conditions, but had little or no effect on the energy status, irrespective of media. Nutrient-supplemented medium enhanced the fermentation capacity of harvested cells, indicating that cell viability and reusability was increased by nutrient addition.
Although both substrates belong to the lignocellulosic spruce hydrolysates, their differences offer specific challenges and the overall yields and productivities largely depend on choice of fermenting strain.
PMCID: PMC4035757  PMID: 24885359
Lignocellulosic material; Nutrients; Energy charge; Fermentation capacity; High gravity fermentation
13.  Cloning, expression and biochemical characterization of the cholesterol oxidase CgChoA from Chryseobacterium gleum 
BMC Biotechnology  2014;14:46.
Cholesterol oxidases are important enzymes for applications such as the analysis of cholesterol in clinical samples, the synthesis of steroid derived drugs, and are considered as potential antibacterial drug targets.
The gene choA encoding a cholesterol oxidase from Chryseobacterium gleum DSM 16776 was cloned into the pQE-30 expression vector and heterologously expressed in Escherichia coli JM109 co-transformed with pRARE2. The N-terminally His-tagged cholesterol oxidase (CgChoA) was assigned to be a monomer in solution by size exclusion chromatography, showed a temperature optimum of 35°C, and a pH optimum at 6.75 using 0.011 M MOPS buffer under the tested conditions. The purified protein showed a maximum activity of 15.5 U/mg. CgChoA showed a Michaelis-Menten like kinetic behavior only when the substrate was dissolved in water and taurocholate (apparent Km = 0.5 mM). In addition, the conversion of cholesterol by CgChoA was studied via biocatalytic batches at analytical scale, and cholest-4-en-3-one was confirmed as product by HPLC-MS.
CgChoA is a true cholesterol oxidase which activity ranges among the high performing described cholesterol oxidases from other organisms. Thus, the enzyme broadens the available toolbox of cholesterol oxidases for e.g. synthetic and biosensing applications.
PMCID: PMC4053396  PMID: 24885249
Chryseobacterium gleum; Cholesterol oxidase; Recombinant expression in Escherichia coli; Biocatalysis; Taurocholate
14.  Alcohol dehydrogenases from Kluyveromyces marxianus: heterologous expression in Escherichia coli and biochemical characterization 
BMC Biotechnology  2014;14:45.
Kluyveromyces marxianus has recently become a species of interest for ethanol production since it can produce ethanol at high temperature and on a wide variety of substrates. However, the reason why this yeast can produce ethanol at high temperature is largely unknown.
The ethanol fermentation capability of K. marxianus GX-UN120 at 40°С was found to be the same as that of Saccharomyces cerevisiae at 34°С. Zymogram analysis showed that alcohol dehydrogenase 1 (KmAdh1) was largely induced during ethanol production, KmAdh4 was constitutively expressed at a lower level and KmAdh2 and KmAdh3 were almost undetectable. The genes encoding the four alcohol dehydrogenases (ADHs) were cloned from strain GX-UN120. Each KmADH was expressed in Escherichia coli and each recombinant protein was digested with enterokinase to remove the fusion protein. The optimum pH of the purified recombinant KmAdh1 was 8.0 and that of KmAdh2, KmAdh3 and KmAdh4 was 7.0. The optimum temperatures of KmAdh1, KmAdh2, KmAdh3 and KmAdh4 were 50, 45, 55 and 45°C, respectively. The Km values of the recombinant KmAdh1 and KmAdh2 were 4.0 and 1.2 mM for acetaldehyde and 39.7 and 49.5 mM for ethanol, respectively. The Vmax values of the recombinant KmAdh1 and KmAdh2 were 114.9 and 21.6 μmol min-1 mg-1 for acetaldehyde and 57.5 and 1.8 μmol min-1 mg-1 for ethanol, respectively. KmAdh3 and KmAdh4 catalyze the oxidation reaction of ethanol to acetaldehyde but not the reduction reaction of acetaldehyde to ethanol, and the K m values of the recombinant KmAdh3 and KmAdh4 were 26.0 and 17.0 mM for ethanol, respectively. The Vmax values of the recombinant KmAdh3 and KmAdh4 were 12.8 and 56.2 μmol min-1 mg-1 for ethanol, respectively.
These data in this study collectively indicate that KmAdh1 is the primary ADH responsible for the production of ethanol from the reduction of acetaldehyde in K. marxianus. The relatively high optimum temperature of KmAdh1 may partially explain the ability of K. marxianus to produce ethanol at high temperature. Understanding the biochemical characteristics of KmAdhs will enhance our fundamental knowledge of the metabolism of ethanol fermentation in K. marxianus.
PMCID: PMC4062290  PMID: 24885162
Alcohol dehydrogenase; Characterization; Expression; Gene cloning; Kluyveromyces marxianus
15.  Biosynthesis of trans-4-hydroxyproline by recombinant strains of Corynebacterium glutamicum and Escherichia coli 
BMC Biotechnology  2014;14:44.
Trans-4-hydroxy-L-proline (trans-Hyp), one of the hydroxyproline (Hyp) isomers, is a useful chiral building block in the production of many pharmaceuticals. Although there are some natural biosynthetic pathways of trans-Hyp existing in microorganisms, the yield is still too low to be scaled up for industrial applications. Until now the production of trans-Hyp is mainly from the acid hydrolysis of collagen. Due to the increasing environmental concerns on those severe chemical processes and complicated downstream separation, it is essential to explore some environment-friendly processes such as constructing new recombinant strains to develop efficient process for trans-Hyp production.
In this study, the genes of trans-proline 4-hydroxylase (trans-P4H) from diverse resources were cloned and expressed in Corynebacterium glutamicum and Escherichia coli, respectively. The trans-Hyp production by these recombinant strains was investigated. The results showed that all the genes from different resources had been expressed actively. Both the recombinant C. glutamicum and E. coli strains could produce trans-Hyp in the absence of proline and 2-oxoglutarate.
The whole cell microbial systems for trans-Hyp production have been successfully constructed by introducing trans-P4H into C. glutamicum and E. coli. Although the highest yield was obtained in recombinant E. coli, using recombinant C. glutamicum strains to produce trans-Hyp was a new attempt.
PMCID: PMC4055215  PMID: 24885047
Trans-4-hydroxy-L-proline; Recombinant Corynebacterium glutamicum; Recombinant Escherichia coli; Proline 4-hydroxylases
16.  A novel quadruplex real-time PCR method for simultaneous detection of Cry2Ae and two genetically modified cotton events (GHB119 and T304-40) 
BMC Biotechnology  2014;14:43.
To date, over 150 genetically modified (GM) crops are widely cultivated. To comply with regulations developed for genetically modified organisms (GMOs), including labeling policies, many detection methods for GMO identification and quantification have been developed.
To detect the entrance and exit of unauthorized GM crop events in China, we developed a novel quadruplex real-time PCR method for simultaneous detection and quantification of GM cotton events GHB119 and T304-40 in cotton-derived products (based on the 5′-flanking sequence) and the insect-resistance gene Cry2Ae. The limit of detection was 10 copies for GHB119 and Cry2Ae and 25 copies for T304-40. The limit of quantification was 25 copies for GHB119 and Cry2Ae and 50 copies for T304-40. Moreover, low bias and acceptable standard deviation and relative standard deviation values were obtained in quantification analysis of six blind samples containing different GHB119 and T304-40 ingredients.
The developed quadruplex quantitative method could be used for quantitative detection of two GM cotton events (GHB119 and T304-40) and Cry2Ae gene ingredient in cotton derived products.
PMCID: PMC4064275  PMID: 24884946
Cry2Ae; Event-specific; GHB119; Quadruplex real-time PCR; T304-40
17.  Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase 
BMC Biotechnology  2014;14:41.
Yeasts tolerant to toxic inhibitors from steam-pretreated lignocellulose with xylose co-fermentation capability represent an appealing approach for 2nd generation ethanol production. Whereas rational engineering, mutagenesis and evolutionary engineering are established techniques for either improved xylose utilisation or enhancing yeast tolerance, this report focuses on the simultaneous enhancement of these attributes through mutagenesis and evolutionary engineering of Saccharomyces cerevisiae harbouring xylose isomerase in anoxic chemostat culture using non-detoxified pretreatment liquor from triticale straw.
Following ethyl methanesulfonate (EMS) mutagenesis, Saccharomyces cerevisiae strain D5A+ (ATCC 200062 strain platform), harbouring the xylose isomerase (XI) gene for pentose co-fermentation was grown in anoxic chemostat culture for 100 generations at a dilution rate of 0.10 h-1 in a medium consisting of 60% (v/v) non-detoxified hydrolysate liquor from steam-pretreated triticale straw, supplemented with 20 g/L xylose as carbon source. In semi-aerobic batch cultures in the same medium, the isolated strain D5A+H exhibited a slightly lower maximum specific growth rate (μmax = 0.12 ± 0.01 h-1) than strain TMB3400, with no ethanol production observed by the latter strain. Strain D5A+H also exhibited a shorter lag phase (4 h vs. 30 h) and complete removal of HMF, furfural and acetic acid from the fermentation broth within 24 h, reaching an ethanol concentration of 1.54 g/L at a yield (Yp/s) of 0.06 g/g xylose and a specific productivity of 2.08 g/gh. Evolutionary engineering profoundly affected the yeast metabolism, given that parental strain D5A+ exhibited an oxidative metabolism on xylose prior to strain development.
Physiological adaptations confirm improvements in the resistance to and conversion of inhibitors from pretreatment liquor with simultaneous enhancement of xylose to ethanol fermentation. These data support the sequential application of random mutagenesis followed by continuous culture under simultaneous selective pressure from inhibitors and xylose as primary carbon source.
PMCID: PMC4026109  PMID: 24884721
Saccharomyces cerevisiae; Yeast hardening; Evolutionary engineering; Random mutagenesis; Triticale hydrolysate; EMS; Lignocellulose
18.  Increased ethanol accumulation from glucose via reduction of ATP level in a recombinant strain of Saccharomyces cerevisiae overexpressing alkaline phosphatase 
BMC Biotechnology  2014;14:42.
The production of ethyl alcohol by fermentation represents the largest scale application of Saccharomyces cerevisiae in industrial biotechnology. Increased worldwide demand for fuel bioethanol is anticipated over the next decade and will exceed 200 billion liters from further expansions. Our working hypothesis was that the drop in ATP level in S. cerevisiae cells during alcoholic fermentation should lead to an increase in ethanol production (yield and productivity) with a greater amount of the utilized glucose converted to ethanol. Our approach to achieve this goal is to decrease the intracellular ATP level via increasing the unspecific alkaline phosphatase activity.
Intact and truncated versions of the S. cerevisiae PHO8 gene coding for vacuolar or cytosolic forms of alkaline phosphatase were fused with the alcohol dehydrogenase gene (ADH1) promoter. The constructed expression cassettes used for transformation vectors also contained the dominant selective marker kanMX4 and S. cerevisiae δ-sequence to facilitate multicopy integration to the genome. Laboratory and industrial ethanol producing strains BY4742 and AS400 overexpressing vacuolar form of alkaline phosphatase were characterized by a slightly lowered intracellular ATP level and biomass accumulation and by an increase in ethanol productivity (13% and 7%) when compared to the parental strains. The strains expressing truncated cytosolic form of alkaline phosphatase showed a prolonged lag-phase, reduced biomass accumulation and a strong defect in ethanol production.
Overexpression of vacuolar alkaline phosphatase leads to an increased ethanol yield in S. cerevisiae.
PMCID: PMC4026825  PMID: 24884834
Baker’s yeasts; Ethanol production; PHO8; Alkaline phosphatase; ATP content; Biomass accumulation
19.  CBD binding domain fused γ-lactamase from Sulfolobus solfataricus is an efficient catalyst for (-) γ-lactam production 
BMC Biotechnology  2014;14:40.
γ-lactamase is used for the resolution of γ-lactam which is utilized in the synthesizing of abacavir and peramivir. In some cases, enzymatic method is the most utilized method because of its high efficiency and productivity. The cellulose binding domain (CBD) of cellulose is often used as the bio-specific affinity matrix for enzyme immobilization. Cellulose is cheap and it has excellent chemical and physical properties. Meanwhile, binding between cellulose and CBD is tight and the desorption rarely happened.
We prepared two fusion constructs of the γ-lactamase gene gla, which was from Sulfolobus solfataricus P2. These two constructs had Cbd (cellulose binding domain from Clostridium thermocellum) fused at amino or carboxyl terminus of the γ-lactamase. These two constructs were heterogeneously expressed in E. coli rosetta (DE3) as two fusion proteins. Both of them were immobilized well on Avicel (microcrystalline cellulose matrix). The apparent kinetic parameters revealed that carboxyl terminus fused protein (Gla-linker-Cbd) was a better catalyst. The Vmax and kcat value of Avicel immobilized Gla-linker-Cbd were 381 U mg-1 and 4.7 × 105 s-1 respectively. And the values of the free Gla-linker-Cbd were 151 U mg-1 and 1.8 × 105 s-1 respectively. These data indicated that the catalytic efficiency of the enzyme was upgraded after immobilization. The immobilized Gla-linker-Cbd had a 10-degree temperature optimum dropping from 80°C to 70°C but it was stable when incubated at 60°C for 48 h. It remained stable in catalyzing 20-batch reactions. After optimization, the immobilized enzyme concentration in transformation was set as 200 mg/mL. We found out that there was inhibition that occurred to the immobilized enzyme when substrate concentration exceeded 60 mM. Finally a 10 mL-volume transformation was conducted, in which 0.6 M substrate was hydrolyzed and the resolution was completed within 9 h with a 99.5% ee value.
Cellulose is the most abundant and renewable material on the Earth. The absorption between Cbd domain and cellulose is a bio-green process. The cellulose immobilized fusion Gla exhibited good catalytic characters, therefore we think the cellulose immobilized Gla is a promising catalyst for the industrial preparation of (-) - γ-lactam.
PMCID: PMC4041915  PMID: 24884655
Avicel; Cellulose binding domain; γ-lactamase; (-) γ-lactam
20.  Natural transformation of Thermotoga sp. strain RQ7 
BMC Biotechnology  2014;14:39.
Thermotoga species are organisms of enormous interest from a biotechnological as well as evolutionary point of view. Genetic modifications of Thermotoga spp. are often desired in order to fully release their multifarious potentials. Effective transformation of recombinant DNA into these bacteria constitutes a critical step of such efforts. This study aims to establish natural competency in Thermotoga spp. and to provide a convenient method to transform these organisms.
Foreign DNA was found to be relatively stable in the supernatant of a Thermotoga culture for up to 6 hours. Adding donor DNA to T. sp. strain RQ7 at its early exponential growth phase (OD600 0.18 ~ 0.20) resulted in direct acquisition of the DNA by the cells. Both T. neapolitana chromosomal DNA and Thermotoga-E. coli shuttle vectors effectively transformed T. sp. strain RQ7, rendering the cells resistance to kanamycin. The kan gene carried by the shuttle vector pDH10 was detected by PCR from the plasmid extract of the transformants, and the amplicons were verified by restriction digestions. A procedure for natural transformation of Thermotoga spp. was established and optimized. With the optimized method, T. sp. strain RQ7 sustained a transformation frequency in the order of 10-7 with both genomic and plasmid DNA.
T. sp. strain RQ7 cells are naturally transformable during their early exponential phase. They acquire DNA from both closely and distantly related species. Both chromosomal DNA and plasmid DNA serve as suitable substrates for transformation. Our findings lend a convenient technical tool for the genetic engineering of Thermotoga spp.
PMCID: PMC4029938  PMID: 24884561
Thermotoga; Natural transformation; Natural competence; pDH10; pDH12
21.  Recombinant fusion protein of cholera toxin B subunit with YVAD secreted by Lactobacillus casei inhibits lipopolysaccharide-induced caspase-1 activation and subsequent IL-1 beta secretion in Caco-2 cells 
BMC Biotechnology  2014;14:38.
Lactobacillus species are used as bacterial vectors to deliver functional peptides to the intestine because they are delivered live to the intestine, colonize the mucosal surface, and continue to produce the desired protein. Previously, we generated a recombinant Lactobacillus casei secreting the cholera toxin B subunit (CTB), which can translocate into intestinal epithelial cells (IECs) through GM1 ganglioside. Recombinant fusion proteins of CTB with functional peptides have been used as carriers for the delivery of these peptides to IECs because of the high cell permeation capacity of recombinant CTB (rCTB). However, there have been no reports of rCTB fused with peptides expressed or secreted by Lactobacillus species. In this study, we constructed L. casei secreting a recombinant fusion protein of CTB with YVAD (rCTB–YVAD). YVAD is a tetrapeptide (tyrosine–valine–alanine–aspartic acid) that specifically inhibits caspase-1, which catalyzes the production of interleukin (IL)-1β, an inflammatory cytokine, from its inactive precursor. Here, we examined whether rCTB–YVAD secreted by L. casei binds to GM1 ganglioside and inhibits caspase-1 activation in Caco-2 cells used as a model of IECs.
We constructed the rCTB–YVAD secretion vector pSCTB–YVAD by modifying the rCTB secretion vector pSCTB. L. casei secreting rCTB–YVAD was generated by transformation with pSCTB–YVAD. Both the culture supernatant of pSCTB–YVAD-transformed L. casei and purified rCTB–YVAD bound to GM1 ganglioside, as did the culture supernatant of pSCTB-transformed L. casei and purified rCTB. Interestingly, although both purified rCTB–YVAD and rCTB translocated into Caco-2 cells, regardless of lipopolysaccharide (LPS), only purified rCTB–YVAD but not rCTB inhibited LPS-induced caspase-1 activation and subsequent IL-1β secretion in Caco-2 cells, without affecting cell viability.
The rCTB protein fused to a functional peptide secreted by L. casei can bind to GM1 ganglioside, like rCTB, and recombinant YVAD secreted by L. casei may exert anti-inflammatory effects in the intestine. Therefore, rCTB secreted by L. casei has potential utility as a vector for the delivery of YVAD to IECs.
PMCID: PMC4031163  PMID: 24884459
Caspase-1; Cholera toxin B subunit; GM1 ganglioside; Interleukin-1β; Lactobacillus casei; YVAD
22.  Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing 
BMC Biotechnology  2014;14:36.
The zebrafish has been established as the main vertebrate model system for whole organism screening applications. However, the lack of consistent positioning of zebrafish embryos within wells of microtiter plates remains an obstacle for the comparative analysis of images acquired in automated screening assays. While technical solutions to the orientation problem exist, dissemination is often hindered by the lack of simple and inexpensive ways of distributing and duplicating tools.
Here, we provide a cost effective method for the production of 96-well plate compatible zebrafish orientation tools using a desktop 3D printer. The printed tools enable the positioning and orientation of zebrafish embryos within cavities formed in agarose. Their applicability is demonstrated by acquiring lateral and dorsal views of zebrafish embryos arrayed within microtiter plates using an automated screening microscope. This enables the consistent visualization of morphological phenotypes and reporter gene expression patterns.
The designs are refined versions of previously demonstrated devices with added functionality and strongly reduced production costs. All corresponding 3D models are freely available and digital design can be easily shared electronically. In combination with the increasingly widespread usage of 3D printers, this provides access to the developed tools to a wide range of zebrafish users. Finally, the design files can serve as templates for other additive and subtractive fabrication methods.
PMCID: PMC4021294  PMID: 24886511
Orientation tool; 3D printing; Zebrafish screening; High content screening
23.  Expression and characterization of a GH43 endo-arabinanase from Thermotoga thermarum 
BMC Biotechnology  2014;14:35.
Arabinan is an important plant polysaccharide degraded mainly by two hydrolytic enzymes, endo-arabinanase and α-L-arabinofuranosidase. In this study, the characterization and application in arabinan degradation of an endo-arabinanase from Thermotoga thermarum were investigated.
The recombinant endo-arabinanase was expressed in Escherichia coli BL21 (DE3) and purified by heat treatment followed by purification on a nickel affinity column chromatography. The purified endo-arabinanase exhibited optimal activity at pH 6.5 and 75°C and its residual activity retained more than 80% of its initial activity after being incubated at 80°C for 2 h. The results showed that the endo-arabinanase was very effective for arabinan degradation at higher temperature. When linear arabinan was used as the substrate, the apparent Km and Vmax values were determined to be 12.3 ± 0.15 mg ml−1 and 1,052.1 ± 12.7 μmol ml−1 min−1, respectively (at pH 6.5, 75°C), and the calculated kcat value was 349.3 ± 4.2 s−1.
This work provides a useful endo-arabinanase with high thermostability andcatalytic efficiency, and these characteristics exhibit a great potential for enzymatic conversion of arabinan.
PMCID: PMC4021227  PMID: 24886412
Arabinan; Arabinose; Endo-arabinanase; Thermotoga thermarum
24.  Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass 
BMC Biotechnology  2014;14:34.
Lignocellulosic biomass is highly recalcitrant and various pretreatment techniques are needed to facilitate its effective enzymatic hydrolysis to produce sugars for further conversion to bio-based chemicals. Ionic liquids (ILs) are of interest in pretreatment because of their potential to dissolve lignocellulosic materials including crystalline cellulose.
Four imidazolium-based ionic liquids (ILs) ([C=C2C1im][MeCO2], [C4C1im][MeCO2], [C4C1im][Cl], and [C4C1im][HSO4]) well known for their capability to dissolve lignocellulosic species were synthesized and then used for pretreatment of substrates prior to enzymatic hydrolysis. In order to achieve a broad evaluation, seven cellulosic, hemicellulosic and lignocellulosic substrates, crystalline as well as amorphous, were selected. The lignocellulosic substrates included hybrid aspen and Norway spruce. The monosaccharides in the enzymatic hydrolysate were determined using high-performance anion-exchange chromatography. The best results, as judged by the saccharification efficiency, were achieved with [C4C1im][Cl] for cellulosic substrates and with the acetate-based ILs for hybrid aspen and Norway spruce. After pretreatment with acetate-based ILs, the conversion to glucose of glucan in recalcitrant softwood lignocellulose reached similar levels as obtained with pure crystalline and amorphous cellulosic substrates. IL pretreatment of lignocellulose resulted in sugar yields comparable with that obtained with acidic pretreatment. Heterogeneous dissolution with [C4C1im][HSO4] gave promising results with aspen, the less recalcitrant of the two types of lignocellulose included in the investigation.
The ability of ILs to dissolve lignocellulosic biomass under gentle conditions and with little or no by-product formation contributes to making them highly interesting alternatives for pretreatment in processes where high product yields are of critical importance.
PMCID: PMC4022982  PMID: 24779378
Ionic liquid; Pretreatment; Lignocellulose; Enzymatic saccharification
25.  A novel self-assembled oligopeptide amphiphile for biomimetic mineralization of enamel 
BMC Biotechnology  2014;14:32.
Researchers are looking for biomimetic mineralization of ena/mel to manage dental erosion. This study evaluated biomimetic mineralization of demineralized enamel induced by a synthetic and self-assembled oligopeptide amphiphile (OPA).
The results showed that the OPA self-assembled into nano-fibres in the presence of calcium ions and in neutral acidity. The OPA was alternately immersed in calcium chloride and sodium hypophosphate solutions to evaluate its property of mineralization. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed nucleation and growth of amorphous calcium phosphate along the self-assembled OPA nano-fibres when it was repetitively exposed to solutions with calcium and phosphate ions. Energy dispersive spectrometry (EDS) confirmed that these nano-particles contained calcium and phosphate. Furthermore, electron diffraction pattern suggested that the nano-particles precipitated on OPA nano-fibres were comparable to amorphous calcium phosphate. Acid-etched human enamel slices were incubated at 37°C in metastable calcium phosphate solution with the OPA for biomimetic mineralization. SEM and X-ray diffraction indicated that the OPA induced the formation of hydroxyapatite crystals in organized bundles on etched enamel. TEM micrographs revealed there were 20–30 nm nano-amorphous calcium phosphate precipitates in the biomimetic mineralizing solution. The particles were found separately bound to the oligopeptide fibres. Biomimetic mineralization with or without the oligopeptide increased demineralized enamel microhardness.
A novel OPA was successfully fabricated, which fostered the biomimetic mineralization of demineralized enamel. It is one of the primary steps towards the design and construction of novel biomaterial for future clinical therapy of dental erosion.
PMCID: PMC4021083  PMID: 24766767
Amelogenin; Peptide; Remineralization; Enamel; Biomimetic; Mineralization; Self-assemble

Résultats 1-25 (945)