PMCC PMCC

Conseils de recherche
Les critères de recherche

Avancée
Résultats 1-25 (40)
 

Notices sélectionnées (0)
Aucune

Sélectionner un filtre

Année de publication
2.  Does Nrf2 Contribute to p53-Mediated Control of Cell Survival and Death? 
Antioxidants & Redox Signaling  2012;17(12):1670-1675.
Abstract
In response to oxidative stress, the transcription factor Nrf2 is upregulated and controls activation of many genes that work in concert to defend cells from damages and to maintain cellular redox homeostasis. p53 has been regarded as the guardian of the genome through its pro-oxidant and antioxidant functions. Under low levels of reactive oxygen species (ROS), “normal” amounts of p53 upregulates expression of antioxidant genes, protecting macromolecules from ROS-induced damage. However, at high levels or extended exposure of ROS, p53 expression is enhanced, activating pro-oxidant genes and resulting in p53-dependent apoptosis. We observed a two-phase Nrf2 expression controlled by p53. (i) The induction phase: when p53 expression is relatively low, p53 enhances the protein level of Nrf2 and its target genes to promote cell survival in a p21-dependent manner. (ii) The repression phase: when p53 expression is high, the Nrf2-mediated survival response is inhibited by p53. Our observation leads to the hypothesis that the p53-mediated biphasic regulation of Nrf2 may be key for the tumor-suppressor function of p53 by coordinating cell survival and death pathways. Antioxid. Redox Signal. 17, 1670–1675.
doi:10.1089/ars.2012.4674
PMCID: PMC3474188  PMID: 22559194
3.  Arsenic Inhibits Autophagic Flux, Activating the Nrf2-Keap1 Pathway in a p62-Dependent Manner 
Molecular and Cellular Biology  2013;33(12):2436-2446.
The Nrf2-Keap1 signaling pathway is a protective mechanism promoting cell survival. Activation of the Nrf2 pathway by natural compounds has been proven to be an effective strategy for chemoprevention. Interestingly, a cancer-promoting function of Nrf2 has recently been observed in many types of tumors due to deregulation of the Nrf2-Keap1 axis, which leads to constitutive activation of Nrf2. Here, we report a novel mechanism of Nrf2 activation by arsenic that is distinct from that of chemopreventive compounds. Arsenic deregulates the autophagic pathway through blockage of autophagic flux, resulting in accumulation of autophagosomes and sequestration of p62, Keap1, and LC3. Thus, arsenic activates Nrf2 through a noncanonical mechanism (p62 dependent), leading to a chronic, sustained activation of Nrf2. In contrast, activation of Nrf2 by sulforaphane (SF) and tert-butylhydroquinone (tBHQ) depends upon Keap1-C151 and not p62 (the canonical mechanism). More importantly, SF and tBHQ do not have any effect on autophagy. In fact, SF and tBHQ alleviate arsenic-mediated deregulation of autophagy. Collectively, these findings provide evidence that arsenic causes prolonged activation of Nrf2 through autophagy dysfunction, possibly providing a scenario similar to that of constitutive activation of Nrf2 found in certain human cancers. This may represent a previously unrecognized mechanism underlying arsenic toxicity and carcinogenicity in humans.
doi:10.1128/MCB.01748-12
PMCID: PMC3700105  PMID: 23589329
4.  The Nrf2-inducers tanshinone I and dihydrotanshinone protect human skin cells and reconstructed human skin against solar simulated UV☆ 
Redox Biology  2013;1(1):532-541.
Exposure to solar ultraviolet (UV) radiation is a causative factor in skin photocarcinogenesis and photoaging, and an urgent need exists for improved strategies for skin photoprotection. The redox-sensitive transcription factor Nrf2 (nuclear factor-E2-related factor 2), a master regulator of the cellular antioxidant defense against environmental electrophilic insult, has recently emerged as an important determinant of cutaneous damage from solar UV, and the concept of pharmacological activation of Nrf2 has attracted considerable attention as a novel approach to skin photoprotection. In this study, we examined feasibility of using tanshinones, a novel class of phenanthrenequinone-based cytoprotective Nrf2 inducers derived from the medicinal plant Salvia miltiorrhiza, for protection of cultured human skin cells and reconstructed human skin against solar simulated UV. Using a dual luciferase reporter assay in human Hs27 dermal fibroblasts pronounced transcriptional activation of Nrf2 by four major tanshinones [tanshinone I (T-I), dihydrotanshinone (DHT), tanshinone IIA (T-II-A) and cryptotanshinone (CT)] was detected. In fibroblasts, the more potent tanshinones T-I and DHT caused a significant increase in Nrf2 protein half-life via blockage of ubiquitination, ultimately resulting in upregulated expression of cytoprotective Nrf2 target genes (GCLC, NQO1) with the elevation of cellular glutathione levels. Similar tanshinone-induced changes were also observed in HaCaT keratinocytes. T-I and DHT pretreatment caused significant suppression of skin cell death induced by solar simulated UV and riboflavin-sensitized UVA. Moreover, feasibility of tanshinone-based cutaneous photoprotection was tested employing a human skin reconstruct exposed to solar simulated UV (80 mJ/cm2 UVB; 1.53 J/cm2 UVA). The occurrence of markers of epidermal solar insult (cleaved procaspase 3, pycnotic nuclei, eosinophilic cytoplasm, acellular cavities) was significantly attenuated in DHT-treated reconstructs that displayed increased immunohistochemical staining for Nrf2 and γ-GCS together with the elevation of total glutathione levels. Taken together, our data suggest the feasibility of achieving tanshinone-based cutaneous Nrf2-activation and photoprotection.
Graphical abstract
Highlights
•Tanshinones are phenanthrenequinone-based Nrf2 inducers active in human skin cells.•Tanshinones upregulate Nrf2 target gene expression with the elevation of glutathione.•Dihydrotanshinone protects cultured human skin cells against solar simulated UV.•Dihydrotanshinone protects reconstructed human skin against acute photodamage.
doi:10.1016/j.redox.2013.10.004
PMCID: PMC3836278  PMID: 24273736
CHX, cycloheximide; CT, cryptotanshinone; DHT, dihydrotanshinone; DMEM, Dulbecco's modified Eagle's medium; γ-GCS, gamma-glutamate-cysteine ligase; H&E, hematoxylin and eosin; HMOX1, heme oxygenase-1; IHC, immunohistochemistry; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; NQO1, NAD(P)H quinone oxidoreductase 1; Nrf2, nuclear factor-E2-related factor 2; ROS, reactive oxygen species; SF, sulforaphane; SLL, solar simulated UV light; T-I, tanshinone I; T-II-A, tanshinone IIA; UVA, ultraviolet; UVB, ultraviolet B; Tanshinone I; Dihydrotanshinone; Nrf2; Solar simulated ultraviolet light; Skin photoprotection
5.  Sulforaphane prevents pulmonary damage in response to inhaled arsenic by activating the Nrf2-defense response 
Toxicology and applied pharmacology  2012;265(3):292-299.
Exposure to arsenic is associated with an increased risk of lung disease. Novel strategies are needed to reduce the adverse health effects associated with arsenic exposure in the lung. Nrf2, a transcription factor that mediates an adaptive cellular defense response, is effective in detoxifying environmental insults and prevents a broad spectrum of diseases induced by environmental exposure to harmful substances. In this report, we tested whether Nrf2 activation protects mice from arsenic-induced toxicity. We used an in vivo arsenic inhalation model that is highly relevant to low environmental human exposure to arsenic-containing dusts. Two-week exposure to arsenic-containing dust resulted in pathological alterations, oxidative DNA damage, and mild apoptotic cell death in the lung; all of which were blocked by sulforaphane (SF) in an Nrf2-dependent manner. Mechanistically, SF-mediated activation of Nrf2 alleviated inflammatory responses by modulating cytokine production. This study provides strong evidence that dietary intervention targeting Nrf2 activation is a feasible approach to reduce adverse health effects associated with arsenic exposure.
doi:10.1016/j.taap.2012.08.028
PMCID: PMC3725323  PMID: 22975029
Nrf2; Keap1; Arsenic; Antioxidant response
6.  Arsenic-Mediated Activation of the Nrf2-Keap1 Antioxidant Pathway 
Arsenic is present in the environment and has become a worldwide health concern due to its toxicity and carcinogenicity. However, the specific mechanism(s) by which arsenic elicits its toxic effects has yet to be fully elucidated. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) has been recognized as the master regulator of a cellular defense mechanism against toxic insults. This review highlights studies demonstrating that arsenic activates the Nrf2-Keap1 antioxidant pathway by a distinct mechanism from that of natural compounds such as sulforaphane (SF) found in broccoli sprouts or tert-butylhyrdoquinone (tBHQ), a natural antioxidant commonly used as a food preservative. Evidence also suggests that arsenic prolongs Nrf2 activation and may mimic constitutive activation of Nrf2, which has been found in several human cancers due to disruption of the Nrf2-Keap1 axis. The current literature strongly suggests that activation of Nrf2 by arsenic potentially contributes to, rather than protects against, arsenic toxicity and carcinogenicity. The mechanism(s) by which known Nrf2 activators, such as the natural chemopreventive compounds SF and lipoic acid, protect against the deleterious effects caused by arsenic will also be discussed. These findings will provide insight to further understand how arsenic promotes a prolonged Nrf2 response, which will lead to the identification of novel molecular markers and development of rational therapies for the prevention or intervention of arsenic-induced diseases. The National Institute of Environmental Health Science (NIEHS) Outstanding New Environmental Scientist (ONES) award has provided the opportunity to review the progress both in the fields of arsenic toxicology and Nrf2 biology. Much of the funding has led to (1) the novel discovery that arsenic activates the Nrf2 pathway by a mechanism different to that of other Nrf2 activators, such as sulforaphane and tert-butylhydroquinone, (2) activation of Nrf2 by chemopreventive compounds protects against arsenic toxicity and carcinogenicity both in vitro and in vivo, (3) constitutive activation of Nrf2 by disrupting Keap1-mediated negative regulation contributes to cancer and chemoresistance, (4) p62-mediated sequestration of Keap1 activates the Nrf2 pathway, and (5) arsenic-mediated Nrf2 activation may be through a p62-dependent mechanism. All of these findings have been published and are discussed in this review. This award has laid the foundation for my laboratory to further investigate the molecular mechanism(s) that regulate the Nrf2 pathway and how it may play an integral role in arsenic toxicity. Moreover, understanding the biology behind arsenic toxicity and carcinogenicity will help in the discovery of potential strategies to prevent or control arsenic-mediated adverse effects.
doi:10.1002/jbt.21463
PMCID: PMC3725327  PMID: 23188707
Nrf2; Arsenic; Keap1; Oxidative stress; p62; Autophagy; Chemoprevention
7.  Cinnamoyl-based Nrf2-Activators Targeting Human Skin Cell Photo-oxidative Stress 
Free radical biology & medicine  2008;45(4):385-395.
Strong experimental evidence suggests the involvement of photo-oxidative stress mediated by reactive oxygen species as a crucial mechanism of solar damage relevant to human skin photoaging and photocarcinogenesis. Based on the established role of antioxidant response element (ARE)-mediated gene expression in cancer chemoprevention, we tested the hypothesis that small molecule Nrf2-activators may serve a photo-chemopreventive role by targeting skin cell photo-oxidative stress. A luciferase-based reporter gene assay was used as a primary screen for the identification of novel agents that modulate the Nrf2-Keap1 signaling pathway. A series of cinnamoyl-based electrophilic Michael acceptors including cinnamic aldehyde and methyl-1-cinnamoyl-5-oxo-2-pyrrolidine-carboxylate was identified as potent Nrf2-activators. Hit confirmation was performed in a secondary screen, based on immunodetection of Nrf2 protein upregulation in human Hs27 skin fibroblasts, HaCaT keratinocytes, and primary skin keratinocytes. Bioefficacy profiling of positive test compounds in skin cells demonstrated compound-induced upregulation of hemeoxygenase I and NAD(P)H-quinone oxidoreductase, two Nrf2 target genes involved in the cellular antioxidant response. Pretreatment with cinnamoyl-based Nrf2-activators suppressed intracellular oxidative stress and protected against photo-oxidative induction of apoptosis in skin cells exposed to high doses of singlet oxygen. Our pilot studies suggest feasibility of developing cinnamoyl-based Nrf2-activators as novel photo-chemopreventive agents targeting skin cell photo-oxidative stress.
doi:10.1016/j.freeradbiomed.2008.04.023
PMCID: PMC3710742  PMID: 18482591
Nrf2; skin cancer; photo-oxidative stress; photo-chemoprevention; Michael acceptor; cinnamic aldehyde; singlet oxygen
8.  Nrf2 Pathway Regulates Multidrug-Resistance-Associated Protein 1 in Small Cell Lung Cancer 
PLoS ONE  2013;8(5):e63404.
Although multidrug-resistance-associated protein-1 (MRP1) is a major contributor to multi-drug resistance (MDR), the regulatory mechanism of Mrp1 still remains unclear. Nrf2 is a transcription factor that regulates cellular defense response through antioxidant response elements (AREs) in normal tissues. Recently, Nrf2 has emerged as an important contributor to chemo-resistance in tumor tissues. In the present study, the role of Nrf2-ARE pathway on regulation of Mrp1 was investigated. Compared with H69 lung cancer cells, H69AR cells with MDR showed significantly higher Nrf2-ARE pathway activity and expression of Mrp1 as well. When Nrf2 was knocked down in H69AR cells, MRP1's expression decreased accordingly. Moreover, those H69AR cells with reduced Nrf2 level restored sensitivity to chemo-drugs. To explore how Nrf2-ARE pathway regulates Mrp1, the promoter of Mrp1 gene was searched, and two putative AREs—ARE1 and ARE2—were found. Using reporter gene and ChIP assay, both ARE1 and ARE2 showed response to and interaction with Nrf2. In 40 cases of cancer tissues, the expression of Nrf2 and MRP1 was measured by immunohistochemistry (IHC). As the quantitive data of IHC indicated, both Nrf2 and MRP1 showed significantly higher expression in tumor tissue than adjacent non-tumor tissue. And more important, the correlation analysis of the two genes proved that their expression was correlative. Taken together, theses data suggested that Nrf2-ARE pathway is required for the regulatory expression of Mrp1 and implicated Nrf2 as a new therapeutic target for MDR.
doi:10.1371/journal.pone.0063404
PMCID: PMC3646742  PMID: 23667609
9.  Nrf2 Is Crucial to Graft Survival in a Rodent Model of Heart Transplantation 
Currently, the sole treatment option for patients with heart failure is transplantation. The battle of prolonging graft survival and modulating innate and adaptive immune responses is still being waged in the clinic and in research labs. The transcription factor Nrf2 controls major cell survival pathways and is central to moderating inflammation and immune responses. In this study the effect of Nrf2 levels in host recipient C57BL/6 mice on Balb/c allogeneic graft survival was examined. Importantly, Nrf2−/− recipient mice could not support the graft for longer than 7.5 days on average, whereas activation of Nrf2 by sulforaphane in Nrf2+/+ hosts prolonged graft survival to 13 days. Several immune cells in the spleen of recipient mice were unchanged; however, CD11b+ macrophages were significantly increased in Nrf2−/− mice. In addition, IL-17 mRNA levels were elevated in grafts transplanted into Nrf2−/− mice. Although Nrf2 appears to play a crucial role in graft survival, the exact mechanism is yet to be fully understood.
doi:10.1155/2013/919313
PMCID: PMC3603380  PMID: 23533698
10.  Therapeutic Potential of Nrf2 Activators in Streptozotocin-Induced Diabetic Nephropathy 
Diabetes  2011;60(11):3055-3066.
OBJECTIVE
To determine whether dietary compounds targeting NFE2-related factor 2 (Nrf2) activation can be used to attenuate renal damage and preserve renal function during the course of streptozotocin (STZ)-induced diabetic nephropathy.
RESEARCH DESIGN AND METHODS
Diabetes was induced in Nrf2+/+ and Nrf2−/− mice by STZ injection. Sulforaphane (SF) or cinnamic aldehyde (CA) was administered 2 weeks after STZ injection and metabolic indices and renal structure and function were assessed (18 weeks). Markers of diabetes including blood glucose, insulin, polydipsia, polyuria, and weight loss were measured. Pathological alterations and oxidative damage in glomeruli were also determined. Changes in protein expression of the Nrf2 pathway, as well as transforming growth factor-β1 (TGF-β1), fibronectin (FN), collagen IV, and p21/WAF1Cip1 (p21) were analyzed. The molecular mechanisms of Nrf2-mediated protection were investigated in an in vitro model using human renal mesangial cells (HRMCs).
RESULTS
SF or CA significantly attenuated common metabolic disorder symptoms associated with diabetes in Nrf2+/+ but not in Nrf2−/− mice, indicating SF and CA function through specific activation of the Nrf2 pathway. Furthermore, SF or CA improved renal performance and minimized pathological alterations in the glomerulus of STZ-Nrf2+/+ mice. Nrf2 activation reduced oxidative damage and suppressed the expression of TGF-β1, extracellular matrix proteins and p21 both in vivo and in HRMCs. In addition, Nrf2 activation reverted p21-mediated growth inhibition and hypertrophy of HRMCs under hyperglycemic conditions.
CONCLUSIONS
We provide experimental evidence indicating that dietary compounds targeting Nrf2 activation can be used therapeutically to improve metabolic disorder and relieve renal damage induced by diabetes.
doi:10.2337/db11-0807
PMCID: PMC3198067  PMID: 22025779
11.  PALB2 Interacts with KEAP1 To Promote NRF2 Nuclear Accumulation and Function 
Molecular and Cellular Biology  2012;32(8):1506-1517.
PALB2/FANCN is mutated in breast and pancreatic cancers and Fanconi anemia (FA). It controls the intranuclear localization, stability, and DNA repair function of BRCA2 and links BRCA1 and BRCA2 in DNA homologous recombination repair and breast cancer suppression. Here, we show that PALB2 directly interacts with KEAP1, an oxidative stress sensor that binds and represses the master antioxidant transcription factor NRF2. PALB2 shares with NRF2 a highly conserved ETGE-type KEAP1 binding motif and can effectively compete with NRF2 for KEAP1 binding. PALB2 promotes NRF2 accumulation and function in the nucleus and lowers the cellular reactive oxygen species (ROS) level. In addition, PALB2 also regulates the rate of NRF2 export from the nucleus following induction. Our findings identify PALB2 as a regulator of cellular redox homeostasis and provide a new link between oxidative stress and the development of cancer and FA.
doi:10.1128/MCB.06271-11
PMCID: PMC3318596  PMID: 22331464
12.  Autophagy Suppresses RIP Kinase-Dependent Necrosis Enabling Survival to mTOR Inhibition 
PLoS ONE  2012;7(7):e41831.
mTOR inhibitors are used clinically to treat renal cancer but are not curative. Here we show that autophagy is a resistance mechanism of human renal cell carcinoma (RCC) cell lines to mTOR inhibitors. RCC cell lines have high basal autophagy that is required for survival to mTOR inhibition. In RCC4 cells, inhibition of mTOR with CCI-779 stimulates autophagy and eliminates RIP kinases (RIPKs) and this is blocked by autophagy inhibition, which induces RIPK- and ROS-dependent necroptosis in vitro and suppresses xenograft growth. Autophagy of mitochondria is required for cell survival since mTOR inhibition turns off Nrf2 antioxidant defense. Thus, coordinate mTOR and autophagy inhibition leads to an imbalance between ROS production and defense, causing necroptosis that may enhance cancer treatment efficacy.
doi:10.1371/journal.pone.0041831
PMCID: PMC3406086  PMID: 22848625
13.  Regulation of the Nrf2–Keap1 Antioxidant Response by the Ubiquitin Proteasome System: An Insight into Cullin-Ring Ubiquitin Ligases 
Antioxidants & Redox Signaling  2010;13(11):1699-1712.
Abstract
Nrf2 is a transcription factor that has emerged as the cell's main defense mechanism against many harmful environmental toxicants and carcinogens. Nrf2 is negatively regulated by Keap1, a substrate adaptor protein for the Cullin3 (Cul3)-containing E3-ligase complex, which targets Nrf2 for ubiquitination and degradation by the ubiquitin proteasome system (UPS). Recent evidence suggests that constitutive activation of Nrf2, due to mutations in Keap1 or Nrf2, is prominent in many cancer types and contributes to chemoresistance. Regulation of Nrf2 by the Cul3–Keap1-E3 ligase provides strong evidence that tight regulation of Cullin-ring ligases (CRLs) is imperative to maintain cellular homeostasis. There are seven known Cullin proteins that form various CRL complexes. They are regulated by neddylation/deneddylation, ubiquitination/deubiquitination, CAND1-assisted complex assembly/disassembly, and subunit dimerization. In this review, we will discuss the regulation of each CRL using the Cul3–Keap1-E3 ligase complex as the primary focus. The substrates of CRLs are involved in many signaling pathways. Therefore, deregulation of CRLs affects several cellular processes, including cell cycle arrest, DNA repair, cell proliferation, senescence, and death, which may lead to many human diseases, including cancer. This makes CRLs a promising target for novel cancer drug therapies. Antioxid. Redox Signal. 13, 1699–1712.
doi:10.1089/ars.2010.3211
PMCID: PMC2966484  PMID: 20486766
14.  KPNA6 (Importin α7)-Mediated Nuclear Import of Keap1 Represses the Nrf2-Dependent Antioxidant Response ▿  
Molecular and Cellular Biology  2011;31(9):1800-1811.
The transcription factor Nrf2 has emerged as a master regulator of cellular redox homeostasis. As an adaptive response to oxidative stress, Nrf2 activates the transcription of a battery of genes encoding antioxidants, detoxification enzymes, and xenobiotic transporters by binding the cis-antioxidant response element in the promoter regions of genes. The magnitude and duration of inducible Nrf2 signaling is delicately controlled at multiple levels by Keap1, which targets Nrf2 for redox-sensitive ubiquitin-mediated degradation in the cytoplasm and exports Nrf2 from the nucleus. However, it is not clear how Keap1 gains access to the nucleus. In this study, we show that Keap1 is constantly shuttling between the nucleus and the cytoplasm under physiological conditions. The nuclear import of Keap1 requires its C-terminal Kelch domain and is independent of Nrf1 and Nrf2. We have determined that importin α7, also known as karyopherin α6 (KPNA6), directly interacts with the Kelch domain of Keap1. Overexpression of KPNA6 facilitates Keap1 nuclear import and attenuates Nrf2 signaling, whereas knockdown of KPNA6 slows down Keap1 nuclear import and enhances the Nrf2-mediated adaptive response induced by oxidative stress. Furthermore, KPNA6 accelerates the clearance of Nrf2 protein from the nucleus during the postinduction phase, therefore promoting restoration of the Nrf2 protein to basal levels. These findings demonstrate that KPNA6-mediated Keap1 nuclear import plays an essential role in modulating the Nrf2-dependent antioxidant response and maintaining cellular redox homeostasis.
doi:10.1128/MCB.05036-11
PMCID: PMC3133232  PMID: 21383067
15.  High levels of Nrf2 determine chemoresistance in type II endometrial cancer 
Cancer research  2010;70(13):5486-5496.
Type II endometrial cancer, which mainly presents as serous and clear cell types, has proved to be the most malignant and recurrent carcinoma among various female genital malignancies. The transcription factor, Nrf2, was first described as having chemopreventive activity. Activation of the Nrf2-mediated cellular defense response protects cells against the toxic and carcinogenic effects of environmental insults by upregulating an array of genes that detoxify reactive oxygen species (ROS) and restore cellular redox homeostasis. However, the cancer-promoting role of Nrf2 has recently been revealed. Nrf2 is constitutively upregulated in several types of human cancer tissues and cancer cell lines. Furthermore, inhibition of Nrf2 expression sensitizes cancer cells to chemotherapeutic drugs. In this study, the constitutive level of Nrf2 was compared in different types of human endometrial tumors. It was found that Nrf2 was highly expressed in endometrial serous carcinoma (ESC), whereas complex hyperplasia (CH) and endometrial endometrioid carcinoma (EEC) had no or marginal expression of Nrf2. Likewise, the ESC derived SPEC-2 cell line had a higher level of Nrf2 expression and was more resistant to the toxic effects of cisplatin and paclitaxel than that of the Ishikawa cell line, which was generated from EEC. Silencing of Nrf2 rendered SPEC-2 cells more susceptible to chemotherapeutic drugs while it had a limited effect on Ishikawa cells. Inhibition of Nrf2 expression by overexpressing Keap1 sensitized SPEC-2 cells or SPEC-2-derived xenografts to chemotherapeutic treatments using both cell culture and SCID mouse models. Collectively, we provide a molecular basis for the use of Nrf2 inhibitors to increase the efficacy of chemotherapeutic drugs and to combat chemoresistance, the biggest obstacle in chemotherapy.
doi:10.1158/0008-5472.CAN-10-0713
PMCID: PMC2896449  PMID: 20530669
Nrf2; chemoresistance; and endometrial cancer
16.  Correction: Statistical Metamodeling for Revealing Synergistic Antimicrobial Interactions 
PLoS ONE  2011;6(7):10.1371/annotation/d598d976-2604-429b-a76f-14aeca628a8e.
doi:10.1371/annotation/d598d976-2604-429b-a76f-14aeca628a8e
PMCID: PMC3128627
17.  The Cinnamon-derived Dietary Factor Cinnamic Aldehyde Activates the Nrf2-dependent Antioxidant Response in Human Epithelial Colon Cells 
Molecules (Basel, Switzerland)  2010;15(5):3338-3355.
Colorectal cancer (CRC) is a major cause of tumor-related morbidity and mortality worldwide. Recent research suggests that pharmacological intervention using dietary factors that activate the redox sensitive Nrf2/Keap1-ARE signaling pathway may represent a promising strategy for chemoprevention of human cancer including CRC. In our search for dietary Nrf2 activators with potential chemopreventive activity targeting CRC, we have focused our studies on trans-cinnamic aldehyde (cinnamaldeyde, CA), the key flavor compound in cinnamon essential oil. Here we demonstrate that CA and an ethanolic extract (CE) prepared from Cinnamomum cassia bark, standardized for CA content by GC-MS analysis, display equipotent activity as inducers of Nrf2 transcriptional activity. In human colon cancer cells (HCT116, HT29) and non-immortalized primary fetal colon cells (FHC), CA- and CE-treatment upregulated cellular protein levels of Nrf2 and established Nrf2 targets involved in the antioxidant response including heme oxygenase 1 (HO-1) and γ-glutamylcysteine synthetase (γ-GCS, catalytic subunit). CA- and CE-pretreatment strongly upregulated cellular glutathione levels and protected HCT116 cells against hydrogen peroxide-induced genotoxicity and arsenic-induced oxidative insult. Taken together our data demonstrate that the cinnamon-derived food factor CA is a potent activator of the Nrf2-orchestrated antioxidant response in cultured human epithelial colon cells. CA may therefore represent an underappreciated chemopreventive dietary factor targeting colorectal carcinogenesis.
doi:10.3390/molecules15053338
PMCID: PMC3101712  PMID: 20657484
colon cancer; Nrf2-activator; cinnamic aldehyde; antioxidant response
18.  The Protective Role of Nrf2 in Streptozotocin-Induced Diabetic Nephropathy 
Diabetes  2010;59(4):850-860.
OBJECTIVE
Diabetic nephropathy is one of the major causes of renal failure, which is accompanied by the production of reactive oxygen species (ROS). Nrf2 is the primary transcription factor that controls the antioxidant response essential for maintaining cellular redox homeostasis. Here, we report our findings demonstrating a protective role of Nrf2 against diabetic nephropathy.
RESEARCH DESIGN AND METHODS
We explore the protective role of Nrf2 against diabetic nephropathy using human kidney biopsy tissues from diabetic nephropathy patients, a streptozotocin-induced diabetic nephropathy model in Nrf2−/− mice, and cultured human mesangial cells.
RESULTS
The glomeruli of human diabetic nephropathy patients were under oxidative stress and had elevated Nrf2 levels. In the animal study, Nrf2 was demonstrated to be crucial in ameliorating streptozotocin-induced renal damage. This is evident by Nrf2−/− mice having higher ROS production and suffering from greater oxidative DNA damage and renal injury compared with Nrf2+/+ mice. Mechanistic studies in both in vivo and in vitro systems showed that the Nrf2-mediated protection against diabetic nephropathy is, at least, partially through inhibition of transforming growth factor-β1 (TGF-β1) and reduction of extracellular matrix production. In human renal mesangial cells, high glucose induced ROS production and activated expression of Nrf2 and its downstream genes. Furthermore, activation or overexpression of Nrf2 inhibited the promoter activity of TGF-β1 in a dose-dependent manner, whereas knockdown of Nrf2 by siRNA enhanced TGF-β1 transcription and fibronectin production.
CONCLUSIONS
This work clearly indicates a protective role of Nrf2 in diabetic nephropathy, suggesting that dietary or therapeutic activation of Nrf2 could be used as a strategy to prevent or slow down the progression of diabetic nephropathy.
doi:10.2337/db09-1342
PMCID: PMC2844833  PMID: 20103708
19.  Rapid Antimicrobial Susceptibility Testing Using High Surface-to-Volume Ratio Microchannels 
Analytical chemistry  2010;82(3):1012.
This study reports the use of microfluidics, which intrinsically has a large surface-to-volume ratio, toward rapid antimicrobial susceptibility testing at the point of care. By observing the growth of uropathogenic E. coli in gas permeable polymeric microchannels with different dimensions, we demonstrate that the large surface-to-volume ratio of microfluidic systems facilitates rapid growth of bacteria. For microchannels with 250 micrometer or less in depth, the effective oxygenation can sustain the growth of E. coli to over 109 cfu/ml without external agitation or oxygenation, which eliminates the requirement of bulky instrumentation and facilitates rapid bacterial growth for antimicrobial susceptibility testing at the point of care. The applicability of microfluidic rapid antimicrobial susceptibility testing is demonstrated in culture media and in urine with clinical bacterial isolates that have different antimicrobial resistance profiles. The antimicrobial resistance pattern can be determined as rapidly as 2 hours compared to days in standard clinical procedures facilitating diagnostics at the point of care.
doi:10.1021/ac9022764
PMCID: PMC2821038  PMID: 20055494
20.  A Noncanonical Mechanism of Nrf2 Activation by Autophagy Deficiency: Direct Interaction between Keap1 and p62▿  
Molecular and Cellular Biology  2010;30(13):3275-3285.
In response to stress, cells can utilize several cellular processes, such as autophagy, which is a bulk-lysosomal degradation pathway, to mitigate damages and increase the chances of cell survival. Deregulation of autophagy causes upregulation of p62 and the formation of p62-containing aggregates, which are associated with neurodegenerative diseases and cancer. The Nrf2-Keap1 pathway functions as a critical regulator of the cell's defense mechanism against oxidative stress by controlling the expression of many cellular protective proteins. Under basal conditions, Nrf2 is ubiquitinated by the Keap1-Cul3-E3 ubiquitin ligase complex and targeted to the 26S proteasome for degradation. Upon induction, the activity of the E3 ubiquitin ligase is inhibited through the modification of cysteine residues in Keap1, resulting in the stabilization and activation of Nrf2. In this current study, we identified the direct interaction between p62 and Keap1 and the residues required for the interaction have been mapped to 349-DPSTGE-354 in p62 and three arginines in the Kelch domain of Keap1. Accumulation of endogenous p62 or ectopic expression of p62 sequesters Keap1 into aggregates, resulting in the inhibition of Keap1-mediated Nrf2 ubiquitination and its subsequent degradation by the proteasome. In contrast, overexpression of mutated p62, which loses its ability to interact with Keap1, had no effect on Nrf2 stability, demonstrating that p62-mediated Nrf2 upregulation is Keap1 dependent. These findings demonstrate that autophagy deficiency activates the Nrf2 pathway in a noncanonical cysteine-independent mechanism.
doi:10.1128/MCB.00248-10
PMCID: PMC2897585  PMID: 20421418
21.  Nrf2 expression in endometrial serous carcinomas and its precancers 
Endometrial serous carcinoma (ESC) is the most aggressive subtype of endometrial cancer. Its aggressive behavior and poor clinical outcome may be partially attributed to lack of early diagnostic markers and unclear patho-genesis. The transcription factor Erythroid–E2-related factor 2 (Nrf2) is a recently identified protein marker, which plays a role in carcinogenesis as well as responsible for poor prognosis of many human cancers. The aim of this study is to determine the Nrf2 expression in benign endometrium (n=28), endometrial cancers (n=122) as well as their precursor lesions (n=81) trying to see whether Nrf2 has any diagnostic usage and is potentially involved in endometrial carcinogenesis. The level of Nrf2 was evaluated by immunohistochemical (IHC) and verified by using Western blots. Among the malignant cases, Nrf2 was positive in 28 (68%) of 50 ESCs, which was significantly more than in 3 (6%) of 50 endometrioid carcinomas (p < 0.001) and 2 (13%) of 15 clear cell carcinomas (p = 0.001) and other histologic types of endometrial cancers. Among endometrial precursor lesions, both serous endometrial glandular dysplasia (EmGD, 40%) and serous endometrial intraepithelial carcinoma (EIC, 44%) showed a significantly higher Nrf2 expression than that in atypical endometrial hyperplasia or endometrial intraepithelial neoplasia (0%), clear cell EmGD (10%), and clear cell EIC (25%), respectively. We conclude that Nrf2 overexpression is closely associated with endometrial neoplasms with serous differentiation. Alteration of Nrf2 expression may represent one of the early molecular events in ESC carcinogenesis and overexpression of Nrf2 may used as a diagnostic marker in surgical pathology.
PMCID: PMC3016106  PMID: 21228930
Nrf2; endometrial cancer; precancer; endometrial serous carcinoma; endometrial glandular dysplasia
22.  Statistical Metamodeling for Revealing Synergistic Antimicrobial Interactions 
PLoS ONE  2010;5(11):e15472.
Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO) scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future.
doi:10.1371/journal.pone.0015472
PMCID: PMC2988685  PMID: 21124958
23.  Nrf2 and p21 regulate the fine balance between life and death by controlling ROS levels 
Cell Cycle  2009;8(20):3255-3256.
doi:10.4161/cc.8.20.9565
PMCID: PMC3918967  PMID: 19806015
Nrf2; Keap1; p21; ROS; oxidative stress
24.  Nrf2 protects against As(III)-induced damage in mouse liver and bladder 
Arsenic compounds are classified as toxicants and human carcinogens. Environmental exposure to arsenic imposes a big health issue worldwide. Arsenic elicits its toxic efforts through many mechanisms, including generation of reactive oxygen species (ROS). Nrf2 is the primary transcription factor that controls expression of a main cellular antioxidant response, which is required for neutralizing ROS and thus defending cells from exogenous insults. Previously, we demonstrated a protective role of Nrf2 against arsenic-induced toxicity using a cell culture model. In this report, we present evidence that Nrf2 protects against liver and bladder injury in response to six-weeks of arsenic exposure in a mouse model. Nrf2−/− mice displayed more severe pathological changes in the liver and bladder, compared to Nrf2+/+ mice. Furthermore, Nrf2−/− mice were more sensitive to arsenic-induced DNA hypomethylation, oxidative DNA damage, and apoptotic cell death. These results indicate a protective role of Nrf2 against arsenic toxicity in vivo. Hence, this work demonstrates the feasibility of using dietary compounds that target activation of the Nrf2 signaling pathway to alleviate arsenic-induced damage.
doi:10.1016/j.taap.2009.06.010
PMCID: PMC2739886  PMID: 19538980
25.  Nrf2 promotes neuronal cell differentiation 
Free radical biology & medicine  2009;47(6):867-879.
The transcription factor Nrf2 has emerged as a master regulator for the endogenous antioxidant response, which is critical in defending cells against environmental insults and in maintaining intracellular redox balance. However, whether Nrf2 has any role in neuronal cell differentiation is largely unknown. In this report, we have examined the effects of Nrf2 on cell differentiation using a neuroblastoma cell line, SH-SY5Y. Retinoic acid (RA) and 12-O-tetradecanoylphorbol-13-acetate (TPA), two well-studied inducers for neuronal differentiation, are able to induce Nrf2 and its target gene NAD(P)H quinone oxidoreductase 1 (NQO1) in a dose- and time- dependent manner. RA-induced Nrf2 up-regulation is accompanied by neurite outgrowth and an induction of two neuronal differentiation markers, neurofilament-M (NF-M) and microtubule-associated protein 2 (MAP-2). Overexpression of Nrf2 in SH-SY5Y cells promotes neuronal differentiation whereas inhibition of endogenous Nrf2 expression inhibited neuronal differentiation. More remarkably, the positive role of Nrf2 in neuronal differentiation was verified ex vivo in primary neuron culture. Primary neurons isolated from Nrf2-null mice showed a retarded progress in differentiation, compared to that from wild-type mice. Collectively, our data demonstrate a novel role for Nrf2 in promoting neuronal cell differentiation, which will open new perspectives for therapeutic uses of Nrf2 activators in patients with neurodegenerative diseases.
doi:10.1016/j.freeradbiomed.2009.06.029
PMCID: PMC2748111  PMID: 19573594
Nrf2; Keap1; Oxidative Stress; Neuronal differentiation; SH-SY5Y; NQO1

Résultats 1-25 (40)