Conseils de recherche
Les critères de recherche

Résultats 1-25 (105)

Notices sélectionnées (0)

Sélectionner un filtre

plus »
Année de publication
1.  Fine-mapping of the 5p15.33, 6p22.1-p21.31 and 15q25.1 regions identifies functional and histology-specific lung cancer susceptibility loci in African-Americans 
Genome-wide association studies of European and East Asian populations have identified lung cancer susceptibility loci on chromosomes 5p15.33, 6p22.1-p21.31 and 15q25.1. We investigated whether these regions contain lung cancer susceptibly loci in African-Americans refined previous association signals by utilizing the reduced linkage disequilibrium observed in African-Americans.
1308 African-American cases and 1241 African-American controls from three centers were genotyped for 760 single nucleotide polymorphisms spanning three regions, and additional SNP imputation was performed. Associations between polymorphisms and lung cancer risk were estimated using logistic regression, stratified by tumor histology where appropriate.
The strongest associations were observed on 15q25.1 in/near CHRNA5, including a missense substitution (rs16969968: OR = 1.57, 95% CI = 1.25–1.97, P = 1.1 × 10−4) and variants in the 5′-UTR. Associations on 6p22.1-p21.31 were histology-specific and included a missense variant in BAT2 associated with squamous-cell carcinoma (rs2736158: OR = 0.64, 95% CI = 0.48–0.85, P = 1.82 × 10−3). Associations on 5p15.33 were detected near TERT, the strongest of which was rs2735940 (OR = 0.82, 95% CI = 0.73–0.93, P = 1.1 × 10−3). This association was stronger among cases with adenocarcinoma (OR = 0.75, 95% CI = 0.65–0.86, P = 8.1 × 10−5).
Polymorphisms in 5p15.33, 6p22.1-p21.31 and 15q25.1 are associated with lung cancer in African-Americans. Variants on 5p15.33 are stronger risk factors for adenocarcinoma and variants on 6p21.33 associated only with squamous-cell carcinoma.
Results implicate the BAT2, TERT and CHRNA5 genes in the pathogenesis of specific lung cancer histologies.
PMCID: PMC3565099  PMID: 23221128
Lung cancer; adenocarcinoma; squamous-cell carcinoma; fine-mapping; African-American; genetic association
2.  Association study of nicotinic acetylcholine receptor genes identifies a novel lung cancer susceptibility locus near CHRNA1 in African-Americans 
Oncotarget  2012;3(11):1428-1438.
Studies in European and East Asian populations have identified lung cancer susceptibility loci in nicotinic acetylcholine receptor (nAChR) genes on chromosome 15q25.1 which also appear to influence smoking behaviors. We sought to determine if genetic variation in nAChR genes influences lung cancer susceptibly in African-Americans, and evaluated the association of these cancer susceptibility loci with smoking behavior. A total of 1308 African-Americans with lung cancer and 1241 African-American controls from three centers were genotyped for 378 single nucleotide polymorphisms (SNPs) spanning the sixteen human nAChR genes. Associations between SNPs and the risk of lung cancer were estimated using logistic regression, adjusted for relevant covariates. Seven SNPs in three nAChR genes were significantly associated with lung cancer at a strict Bonferroni-corrected level, including a novel association on chromosome 2 near the promoter of CHRNA1 (rs3755486: OR = 1.40, 95% CI = 1.18-1.67, P = 1.0 × 10−4). Association analysis of an additional 305 imputed SNPs on 2q31.1 supported this association. Publicly available expression data demonstrated that the rs3755486 risk allele correlates with increased CHRNA1 gene expression. Additional SNP associations were observed on 15q25.1 in genes previously associated with lung cancer, including a missense variant in CHRNA5 (rs16969968: OR = 1.60, 95% CI = 1.27-2.01, P = 5.9 × 10−5). Risk alleles on 15q25.1 also correlated with an increased number of cigarettes smoked per day among the controls. These findings identify a novel lung cancer risk locus on 2q31.1 which correlates with CHRNA1 expression and replicate previous associations on 15q25.1 in African-Americans.
PMCID: PMC3717803  PMID: 23232035
Lung cancer; nicotine dependence; African-Americans; genetic association; smoking
3.  Integrative Cancer Epidemiology - The Next Generation 
Cancer discovery  2012;2(12):1087-1090.
We outline an integrative approach to extend the boundaries of molecular cancer epidemiology by integrating modern and rapidly evolving “omics” technologies into state-of-the-art molecular epidemiology. In this way, one can comprehensively explore the mechanistic underpinnings of epidemiologic observations into cancer risk and outcome. We highlight the exciting opportunities to collaborate across large observational studies and to forge new interdisciplinary collaborative ventures.
PMCID: PMC3531829  PMID: 23230187
multidisciplinary epidemiologic research; integrating new technologies
4.  Role of Select Genetic Variants in Lung Cancer Risk in African Americans 
Black/white disparities in lung cancer incidence and mortality mandate an evaluation of underlying biological differences. We have previously shown higher risks of lung cancer associated with prior emphysema in African American compared with white lung cancer patients.
We therefore evaluated a panel of 1440 inflammatory gene variants in a two phase analysis (discovery and replication), added top GWAS lung cancer hits from Caucasian populations, and 28 SNPs from a published gene panel. The discovery set (477 self-designated African Americans cases, 366 controls matched on age, ethnicity, and gender) were from Houston, Texas. The external replication set (330 cases, 342 controls) was from the EXHALE study at Wayne State University.
In discovery, 154 inflammation SNPs were significant (P<0.05) on univariate analysis, as was one of the gene panel SNPs (rs308738 in REV1, P=0.0013), and three GWAS hits, rs16969968 P=0.0014 and rs10519203 P=0.0003 in the 15q locus and rs2736100, the HTERT locus, P=0.0002. One inflammation SNP, rs950286, was successfully replicated with a concordant odds ratio of 1.46(1.14-1.87) in discovery, 1.37(1.05-1.77) in replication, and a combined OR of 1.40 (1.17-1.68). This SNP is intergenic between IRF4 and EXOC2 genes. We also constructed and validated epidemiologic and extended risk prediction models. The AUC for the epidemiologic discovery model was 0.77 and 0.80 for the extended model. For the combined datasets, the AUC values were 0.75 and 0.76, respectively.
As has been reported for other cancer sites and populations, incorporating top genetic hits into risk prediction models, provides little improvement in model performance and no clinical relevance.
PMCID: PMC3623962  PMID: 23454887
5.  Transforming Epidemiology for 21st Century Medicine and Public Health 
In 2012, the National Cancer Institute (NCI) engaged the scientific community to provide a vision for cancer epidemiology in the 21st century. Eight overarching thematic recommendations, with proposed corresponding actions for consideration by funding agencies, professional societies, and the research community emerged from the collective intellectual discourse. The themes are (i) extending the reach of epidemiology beyond discovery and etiologic research to include multilevel analysis, intervention evaluation, implementation, and outcomes research; (ii) transforming the practice of epidemiology by moving towards more access and sharing of protocols, data, metadata, and specimens to foster collaboration, to ensure reproducibility and replication, and accelerate translation; (iii) expanding cohort studies to collect exposure, clinical and other information across the life course and examining multiple health-related endpoints; (iv) developing and validating reliable methods and technologies to quantify exposures and outcomes on a massive scale, and to assess concomitantly the role of multiple factors in complex diseases; (v) integrating “big data” science into the practice of epidemiology; (vi) expanding knowledge integration to drive research, policy and practice; (vii) transforming training of 21st century epidemiologists to address interdisciplinary and translational research; and (viii) optimizing the use of resources and infrastructure for epidemiologic studies. These recommendations can transform cancer epidemiology and the field of epidemiology in general, by enhancing transparency, interdisciplinary collaboration, and strategic applications of new technologies. They should lay a strong scientific foundation for accelerated translation of scientific discoveries into individual and population health benefits.
PMCID: PMC3625652  PMID: 23462917
big data; clinical trials; cohort studies; epidemiology; genomics; medicine; public health; technologies; training; translational research
6.  Global assessment of genetic variation influencing response to retinoid chemoprevention in head and neck cancer patients 
Head and neck squamous cell carcinoma (HNSCC) patients are at an increased risk of developing a second primary tumor (SPT) or recurrence following curative treatment. 13-cis-retinoic acid (13-cRA) has been tested in chemoprevention clinical trials but the results have been inconclusive. We genotyped 9,465 SNPs in 450 patients from the Retinoid Head and Neck Second Primary Trial. SNPs were analyzed for associations with SPT/recurrence in patients receiving placebo to identify prognosis markers and further analyzed for effects of 13-cRA in patients with these prognostic loci. Thirteen loci identified a majority subgroup of patients at a high risk of SPT/recurrence and in whom 13-cRA was protective. Patients carrying the common genotype of rs3118570 in the retinoid X receptor (RXRA) were at a 3.33-fold increased risk (95% confidence interval [CI], 1.67–6.67) and represented over 70% of the study population. This locus also identified individuals who received benefit from chemoprevention with a 38% reduced risk (95% CI, 0.43–0.90). Analyses of cumulative effect and potential gene-gene interactions also implicated CDC25C:rs6596428 and JAK2:rs1887427 as two other genetic loci with major roles in prognosis and 13-cRA response. Patients with all three common genotypes had a 76% reduction in SPT/recurrence (95% CI, 0.093–0.64) following 13-cRA chemoprevention. Carriers of these common genotypes constituted a substantial percentage of the study population, indicating that a pharmacogenetics approach could help select patients for 13-cRA chemoprevention. The lack of any alternatives for reducing risk in these patients highlights the need for future clinical trials to prospectively validate our findings.
PMCID: PMC3955084  PMID: 21292633
HNSCC; SPT; single nucleotide polymorphisms; retinoids
7.  Self-Rated Health Among Adult Women of Mexican Origin 
Self-rated health (SRH), a consistent predictor of mortality among diverse populations, is sensitive to health indicators and social factors. American-born Hispanics report better SRH than their foreign-born counterparts but simultaneously report poorer health indicators and have shorter life expectancy. Using a matched prospective cross-sectional design, we analyzed data from 631 age-matched pairs of women, born in the United States or Mexico, enrolled in a cohort study based in Houston, Texas. Our first goal was to describe the relationships between SRH and health behaviors, physician-diagnosed chronic conditions, acculturation, and socioeconomic status (SES) by birthplace. Our second goal was to investigate the relative influence of SES, acculturation, health behaviors, and physician-diagnosed conditions in explaining expected differences in SRH between the two groups. Number of chronic conditions reported, particularly depression, more strongly influenced SRH than SES, acculturation, or reported health risk behaviors and the influence of birthplace is accounted for by these factors.
PMCID: PMC3940416  PMID: 24600161
Self-rated health; acculturation; SES; health indicators
8.  Sensation seeking genes and physical activity in youth 
Genes, brain, and behavior  2012;12(2):181-188.
Many studies examining genetic influences on physical activity (PA) have evaluated the impact of single nucleotide polymorphisms (SNPs) related to the development of lifestyle-related chronic diseases, under the hypothesis that they would be associated with PA. However, PA is a multi-determined behavior and associated with a multitude of health consequences. Thus, examining a broader range of candidate genes associated with a boarder range of PA correlates may provide new insights into the genetic underpinnings of PA. In this study we focus on one such correlate – sensation seeking behavior. Participants (N=1,130 Mexican origin youth) provided a saliva sample and data on PA and sensation seeking tendencies in 2008–09. Participants were genotyped for 630 functional and tagging variants in the dopamine, serotonin, and cannabinoid pathways. Overall 30% of participants (males – 37.6%; females – 22.0%) reported ≥60 minutes of PA on five out of seven days. After adjusting for gender, age and population stratification, and applying the Bayesian False Discovery Probability approach for assessing noteworthiness, four gene variants were significantly associated with PA. In a multivariable model, being male, having higher sensation seeking tendencies and at least one copy of the minor allele for SNPs in ACE (rs8066276 OR=1.44; p=0.012) and TPH2 (rs11615016 OR=1.73; p=0.021) were associated with increased likelihood of meeting PA recommendations. Participants with at least one copy of the minor allele for SNPs in SNAP25 (rs363035 OR=0.53; p=0.005) and CNR1 (rs6454672 OR=0.62; p=0.022) have decreased likelihood of meeting PA recommendations. Our findings extend current knowledge of the complex relationship between PA and possible genetic underpinnings.
PMCID: PMC3581711  PMID: 23190435
Physical Activity; Genes; Sensation Seeking; Mexican origin youth
9.  Variants in inflammation genes are implicated in risk of lung cancer in never smokers exposed to second-hand smoke 
Cancer discovery  2011;1(5):420-429.
Lung cancer in lifetime never smokers is distinct from that in smokers, but the role of separate or overlapping carcinogenic pathways has not been explored. We therefore evaluated a comprehensive panel of 11,737 SNPs in inflammatory-pathway genes in a discovery phase (451 lung cancer cases, 508 controls from Texas). SNPs that were significant were evaluated in a second external population (303 cases, 311 controls from the Mayo Clinic). An intronic SNP in the ACVR1B gene, rs12809597, was replicated with significance and restricted to those reporting adult exposure to environmental tobacco smoke Another promising candidate was a SNP in NR4A1, although the replication OR did not achieve statistical significance. ACVR1B belongs to the TGFR-β superfamily, contributing to resolution of inflammation and initiation of airway remodeling. An inflammatory microenvironment, (second hand smoking, asthma, or hay fever) is necessary for risk from these gene variants to be expressed. These findings require further replication, followed by targeted resequencing, and functional validation.
PMCID: PMC3919666  PMID: 22586632
lung cancer; never smokers; inflammation genes; sidestream exposure
10.  Genome-Wide Association Study Reveals Novel Genetic Determinants of DNA Repair Capacity in Lung Cancer 
Cancer research  2012;73(1):256-264.
Suboptimal cellular DNA repair capacity (DRC) has been shown to be associated with enhanced cancer risk, but genetic variants affecting the DRC phenotype have not been comprehensively investigated. In this study, with the available DRC phenotype data, we analyzed correlations between the DRC phenotype and genotypes detected by the Illumina 317K platform in 1,774 individuals of European ancestry from a Texas lung cancer genome-wide association study. The discovery phase was followed by a replication in an independent set of 1,374 cases and controls of European ancestry. We applied a generalized linear model with SNPs as predictors and DRC (a continuous variable) as the outcome. Covariates of age, sex, pack-years of smoking, DRC assay-related variables and case-control status of the study participants were adjusted in the model. We validated that reduced DRC was associated with an increased risk of lung cancer in both independent datasets. Several suggestive loci that contributed to the DRC phenotype were defined in ERCC2/XPD, PHACTR2 and DUSP1. In summary, we determined that DRC is an independent risk factor for lung cancer and we defined several genetic loci contributing to DRC phenotype.
PMCID: PMC3537906  PMID: 23108145
DNA repair capacity; genetic susceptibility; genome-wide association; molecular epidemiology
11.  Use of the Cytokinesis-Blocked Micronucleus Assay (CBMN) to Detect Gender Differences and Genetic Instability in a Lung Cancer Case-Control Study 
Although tobacco exposure is the predominant risk factor for lung cancer, other environmental agents are established lung carcinogens. Measuring the genotoxic effect of environmental exposures remains equivocal as increases in morbidity and mortality may be attributed to co-exposures such as smoking.
We evaluated genetic instability and risk of lung cancer associated with exposure to environmental agents (e.g., exhaust) and smoking among 500 lung cancer cases and 500 controls using the Cytokinesis-Blocked Micronucleus (CBMN) assay. Linear regression was applied to estimate the adjusted means of the CBMN endpoints (micronuclei and nucleoplasmic bridges). Logistic regression analyses were used to estimate lung cancer risk and to control for potential confounding by age, gender, and smoking.
Cases showed significantly higher levels of micronuclei and nucleoplasmic bridges as compared to controls (mean ± SEM=3.54±0.04 vs.1.81 ±0.04 and mean ± SEM=4.26±0.03 vs. 0.99±0.03, respectively; p <0.001) with no differences among participants with or without reported environmental exposure. No differences were observed when stratified by smoking or environmental exposure among cases or controls. A difference in lung cancer risk was observed between non-exposed male and female heavy smokers, although it was not statistically significant (I2=64.9%; P-value for Q statistic=0.09).
Our study confirms that the CBMN assay is an accurate predictor of lung cancer and supports the premise that heavy smoking may have an effect on DNA repair capacity and in turn modulate the risk of lung cancer.
Identifying factors that increase lung cancer risk may lead to more effective prevention measures.
PMCID: PMC3538922  PMID: 23195992
Lung cancer; CBMN assay; DNA damage; gender differences
12.  Genetic Variation in the PNPLA3 Gene and Hepatocellular Carcinoma in USA: Risk and Prognosis Prediction 
Molecular carcinogenesis  2013;52(0):10.1002/mc.22057.
Nonalcoholic fatty liver disease (NAFLD) is an emerging epidemic with high prevalence in Western countries. Genome-wide association studies had reported that a variation in the patatin-like phospholipase domain containing 3 (PNPLA3) gene is associated with high susceptibility to NAFLD. However, the relationship between this variation and hepatocellular carcinoma (HCC) has not been well established. We investigated the impact of PNPLA3 genetic variation (rs738409: C>G) on HCC risk and prognosis in the United States by conducting a case–control study that included 257 newly diagnosed and pathologically confirmed Caucasian patients with HCC (cases) and 494 healthy controls. Multivariate logistics and Cox regression models were used to control for the confounding effects of HCC risk and prognostic factors. We observed higher risk of HCC for subjects with a homozygous GG genotype than for those with CC or CG genotypes, the adjusted odds ratio (OR) was 3.21 (95% confidence interval [CI], 1.68–6.41). We observed risk modification among individuals with diabetes mellitus (OR = 19.11; 95% CI, 5.13–71.20). The PNPLA3 GG genotype was significantly associated with underlying cirrhosis in HCC patients (OR = 2.48; 95% CI, 1.05–5.87). Moreover, GG allele represents an independent risk factor for death. The adjusted hazard ratio of the GG genotype was 2.11 (95% CI, 1.26–3.52) compared with CC and CG genotypes. PNPLA3 genetic variation (rs738409: C>G) may determine individual susceptibility to HCC development and poor prognosis. Further experimental investigations are necessary for thorough assessment of the hepatocarcinogenic role of PNPLA3.
PMCID: PMC3808509  PMID: 23776098
molecular epidemiology; genetic susceptibility; case–control; single nucleotide polymorphism
13.  Increased risk of lung cancer in individuals with a family history of the disease: A pooled analysis from the International Lung Cancer Consortium 
Background and Methods
Familial aggregation of lung cancer exists after accounting for cigarette smoking. However, the extent to which family history affects risk by smoking status, histology, relative type and ethnicity is not well described. This pooled analysis included 24 case-control studies in the International Lung Cancer Consortium. Each study collected age of onset/interview, gender, race/ethnicity, cigarette smoking, histology and first-degree family history of lung cancer. Data from 24,380 lung cancer cases and 23,305 healthy controls were analyzed. Unconditional logistic regression models and generalized estimating equations were used to estimate odds ratios and 95% confidence intervals.
Individuals with a first-degree relative with lung cancer had a 1.51-fold increase in risk of lung cancer, after adjustment for smoking and other potential confounders(95% CI: 1.39, 1.63). The association was strongest for those with a family history in a sibling, after adjustment (OR=1.82, 95% CI: 1.62, 2.05). No modifying effect by histologic type was found. Never smokers showed a lower association with positive familial history of lung cancer (OR=1.25, 95% CI: 1.03, 1.52), slightly stronger for those with an affected sibling (OR=1.44, 95% CI: 1.07, 1.93), after adjustment.
The increased risk among never smokers and similar magnitudes of the effect of family history on lung cancer risk across histological types suggests familial aggregation of lung cancer is independent of those associated with cigarette smoking. While the role of genetic variation in the etiology of lung cancer remains to be fully characterized, family history assessment is immediately available and those with a positive history represent a higher risk group.
PMCID: PMC3445438  PMID: 22436981
14.  Genome-wide gene–environment interaction analysis for asbestos exposure in lung cancer susceptibility 
Carcinogenesis  2012;33(8):1531-1537.
Asbestos exposure is a known risk factor for lung cancer. Although recent genome-wide association studies (GWASs) have identified some novel loci for lung cancer risk, few addressed genome-wide gene–environment interactions. To determine gene–asbestos interactions in lung cancer risk, we conducted genome-wide gene–environment interaction analyses at levels of single nucleotide polymorphisms (SNPs), genes and pathways, using our published Texas lung cancer GWAS dataset. This dataset included 317 498 SNPs from 1154 lung cancer cases and 1137 cancer-free controls. The initial SNP-level P-values for interactions between genetic variants and self-reported asbestos exposure were estimated by unconditional logistic regression models with adjustment for age, sex, smoking status and pack-years. The P-value for the most significant SNP rs13383928 was 2.17×10–6, which did not reach the genome-wide statistical significance. Using a versatile gene-based test approach, we found that the top significant gene was C7orf54, located on 7q32.1 (P = 8.90×10–5). Interestingly, most of the other significant genes were located on 11q13. When we used an improved gene-set-enrichment analysis approach, we found that the Fas signaling pathway and the antigen processing and presentation pathway were most significant (nominal P < 0.001; false discovery rate < 0.05) among 250 pathways containing 17 572 genes. We believe that our analysis is a pilot study that first describes the gene–asbestos interaction in lung cancer risk at levels of SNPs, genes and pathways. Our findings suggest that immune function regulation-related pathways may be mechanistically involved in asbestos-associated lung cancer risk.
Abbreviations:CIconfidence intervalEenvironmentFDRfalse discovery rateGgeneGSEAgene-set-enrichment analysisGWASgenome-wide association studiesi-GSEAimproved gene-set-enrichment analysis approachORodds ratioSNPsingle nucleotide polymorphism
PMCID: PMC3499061  PMID: 22637743
15.  Association Between Hypothyroidism and Hepatocellular Carcinoma: A Case-Control Study in the United States 
Hepatology (Baltimore, Md.)  2009;49(5):1563-1570.
Thyroid hormones play an essential role in lipid mobilization, lipid degradation, and fatty acid oxidation. Hypothyroidism has been associated with nonalcoholic steatohepatitis; however, the association between thyroid diseases and hepatocellular carcinoma (HCC) in men and women has not been well established. We investigated the association between hypothyroidism and HCC risk in men and women in a case-control study, which included 420 eligible patients with HCC and 1104 healthy controls. We used multivariate unconditional logistic regression models to control for the confounding effects of established HCC risk factors. A long-term history of hypothyroidism (> 10 years) was associated with a statistically significant high risk of HCC in women; after adjusting for demographic factors, diabetes, hepatitis, alcohol consumption, cigarette smoking, and family history of cancer, the odds ratio (OR) was 2.9 (95% confidence interval [CI], 1.3–6.3). Restricted analyses among hepatitis virus—negative subjects, nondrinkers, nondiabetics, nonsmokers, and nonobese individuals indicated a significant association between hypothyroidism and HCC, with an approximate two-fold to three-fold increased risk of HCC development. We observed risk modification among women with diabetes mellitus (OR = 9.4; 95% CI = 2.7–32.7) and chronic hepatitis virus infection (OR = 31.2; 95% CI = 6.3–153.2). A history of hyperthyroidism was not significantly related to HCC (OR = 1.7; CI = 0.6–5.1). We noted significant elevated risk association between hypothyroidism and HCC in women that was independent of established HCC risk factors. Experimental investigations are necessary for thorough assessment of the relationship between thyroid disorders and HCC.
PMCID: PMC3715879  PMID: 19399911
16.  Bridging the clinical gaps: genetic, epigenetic and transcriptomic biomarkers for the early detection of lung cancer in the post-National Lung Screening Trial era 
BMC Medicine  2013;11:168.
Lung cancer is the leading cause of cancer death worldwide in part due to our inability to identify which smokers are at highest risk and the lack of effective tools to detect the disease at its earliest and potentially curable stage. Recent results from the National Lung Screening Trial have shown that annual screening of high-risk smokers with low-dose helical computed tomography of the chest can reduce lung cancer mortality. However, molecular biomarkers are needed to identify which current and former smokers would benefit most from annual computed tomography scan screening in order to reduce the costs and morbidity associated with this procedure. Additionally, there is an urgent clinical need to develop biomarkers that can distinguish benign from malignant lesions found on computed tomography of the chest given its very high false positive rate. This review highlights recent genetic, transcriptomic and epigenomic biomarkers that are emerging as tools for the early detection of lung cancer both in the diagnostic and screening setting.
PMCID: PMC3717087  PMID: 23870182
Biomarker; Diagnostics; Early detection; Epigenetics; Genetics; Lung cancer; Screening; Transcriptomics
17.  Genetic variants in the PI3K/PTEN/AKT/MTOR pathway predict head and neck cancer patient second primary tumor/recurrence risk and response to retinoid chemoprevention 
Clinical Cancer Research  2012;18(13):3705-3713.
The development of second primary tumors (SPT) or recurrence alters prognosis for curatively-treated head and neck squamous cell carcinoma (HNSCC) patients. 13-cis-retnoic acid (13-cRA) has been tested as a chemoprevention agent in clinical trials with mixed results. Therefore, we investigated if genetic variants in the PI3K/PTEN/AKT/MTOR pathway could serve as biomarkers to identify which patients are at high risk of an SPT/recurrence while also predicting response to 13-cRA chemoprevention.
Experimental Design
A total of 137 pathway SNPs were genotyped in 440 patients from the Retinoid Head and Neck Second Primary Trial and assessed for SPT/recurrence risk and response to 13-cRA. Risk models were created based on epidemiology, clinical, and genetic data.
Twenty-two genetic loci were associated with increased SPT/recurrence risk with six also being associated with a significant benefit following chemoprevention. Combined analysis of these high-risk/high-benefit loci identified a significant (P = 1.54×10−4) dose-response relationship for SPT/recurrence risk, with patients carrying 4–5 high-risk genotypes having a 3.76-fold (95%CI:1.87–7.57) increase in risk in the placebo group (n=215). Patients carrying 4–5 high-risk loci showed the most benefit from 13-cRA chemoprevention with a 73% reduction in SPT/recurrence (95%CI:0.13–0.58) compared to those with the same number of high-risk genotypes who were randomized to receive placebo. Incorporation of these loci into a risk model significantly improved the discriminatory ability over models with epidemiology, clinical, and previously identified genetic variables.
These results demonstrate that loci within this important pathway could identify individuals with a high-risk/high-benefit profile and are a step towards personalized chemoprevention for HNSCC patients.
PMCID: PMC3404728  PMID: 22577058
19.  Maternal current smoking: Concordance between adolescent proxy and mother’s self-report 
Nicotine & Tobacco Research  2009;11(8):1016-1019.
The purpose of this study was to examine the extent to which adolescent reports on mother’s smoking status and mother’s self-reports on smoking are concordant with one another.
Mothers self-reported on their smoking at two timepoints (first query and second query), while the adolescents reported on their mother’s smoking status at one timepoint. Kappa values and percent exact agreement as well as sensitivity and specificity were calculated to examine the degree of agreement between child and mother’s reports at the two timepoints.
Overall, the results indicated good concordance between mothers’ self-reports and adolescent reports on smoking. Specifically, higher concordance was observed for mother’s first query compared with mother’s second query (Κ = 0.69 vs. Κ = 0.51). Younger adolescents and girls provided more concordant reports than older adolescents and boys.
The results indicate that adolescent reports on mothers’ smoking behavior can be used as a proxy to obtain data if mothers’ self-report data are not available. Our results further suggest that when reports are not collected concurrently, self-report data obtained from the mothers prior to the proxy report obtained from her adolescent may be more reliable than the other way around.
PMCID: PMC2711984  PMID: 19531668
20.  An Expanded Risk Prediction Model for Lung Cancer 
Risk prediction models are useful in clinical decision making. We have published an internally validated prediction tool for lung cancer based on easily obtainable epidemiologic and clinical data. Because the precision of the model was modest, we now estimate the improvement obtained by adding two markers of DNA repair capacity.
Assay data (host-cell reactivation and mutagen sensitivity) were available for 725 White lung cancer cases and 615 controls, all former or current smokers, a subset of cases and controls from the previous analysis. Multivariable models were constructed from the original variables with addition of the biomarkers separately and together. Pairwise comparisons of the area under the receiver operating characteristic curves (AUC) and 3-fold cross-validations were done.
For former smokers, the AUC and 95% confidence intervals were 0.67 (0.63–0.71) for the baseline model and 0.70 (0.66–0.74) for the expanded model. For current smokers, the comparable AUC values were 0.68 (0.64–0.72) and 0.73 (0.69–0.77). For both groups, the expanded models were statistically significantly better than the baseline models (P = 0.006 and P = 0.0048, respectively), although the increases in the concordance statistics were modest. We also recomputed 1-year absolute risks of lung cancer as described previously for two different risk profiles and showed that individuals who exhibited poor repair capacity or heightened mutagen sensitivity had increased absolute risks of lung cancer.
Addition of biomarker assays improved the sensitivity of the expanded models.
PMCID: PMC2854404  PMID: 19138968
21.  Body Mass Index and Risk of Lung Cancer Among Never, Former, and Current Smokers 
Although obesity has been directly linked to the development of many cancers, many epidemiological studies have found that body mass index (BMI)—a surrogate marker of obesity—is inversely associated with the risk of lung cancer. These studies are difficult to interpret because of potential confounding by cigarette smoking, a major risk factor for lung cancer that is associated with lower BMI.
We prospectively examined the association between BMI and the risk of lung cancer among 448 732 men and women aged 50–71 years who were recruited during 1995–1996 for the National Institutes of Health–AARP Diet and Health Study. BMI was calculated based on the participant’s self-reported height and weight on the baseline questionnaire. We identified 9437 incident lung carcinomas (including 415 in never smokers) during a mean follow-up of 9.7 years through 2006. Multivariable Cox proportional hazards regression models were used to estimate hazard ratios (HRs) and 95% confidence intervals (CIs) with adjustment for lung cancer risk factors, including smoking status. To address potential bias due to preexisting undiagnosed disease, we excluded potentially unhealthy participants in sensitivity analyses. All statistical tests were two-sided.
The crude incidence rate of lung cancer over the study follow-up period was 233 per 100 000 person-years among men and 192 per 100 000 person-years among women. BMI was inversely associated with the risk of lung cancer among both men and women (BMI ≥35 vs 22.5–24.99 kg/m2: HR = 0.81, 95% CI = 0.70 to 0.94 and HR = 0.73, 95% CI = 0.61 to 0.87, respectively). The inverse association was restricted to current and former smokers and was stronger after adjustment for smoking. Among smokers, the inverse association persisted even after finely stratifying on smoking status, time since quitting smoking, and number of cigarettes smoked per day. Sensitivity analyses did not support the possibility that the inverse association was due to prevalent undiagnosed disease.
Our results suggest that a higher BMI is associated with a reduced risk of lung cancer in current and former smokers. Our inability to attribute the inverse association between BMI and the risk of lung cancer to residual confounding by smoking or to bias suggests the need for considering other explanations.
PMCID: PMC3352831  PMID: 22457475
Evolutionary aspects of the genetic architecture of common human diseases remain enigmatic. The results of more than 200 genome-wide association studies published to date were compiled in a catalog ( We used cataloged data to determine whether derived (mutant) alleles are associated with higher risk of human disease more frequently than ancestral alleles. We placed all allelic variants into ten categories of population frequency (0%–100%) in 10% increments. We then analyzed the relationship between allelic frequency, evolutionary status of the polymorphic site (ancestral versus derived), and disease risk status (risk versus protection). Given the same population frequency, derived alleles are more likely to be risk associated than ancestral alleles, as are rarer alleles. The common interpretation of this association is that negative selection prevents fixation of the risk variants. However, disease stratification as early or late onset suggests that weak selection against risk-associated alleles is unlikely a major factor shaping genetic architecture of common diseases. Our results clearly suggest that the duration of existence of an allele in a population is more important. Alleles existing longer tend to show weaker linkage disequilibrium with neighboring alleles, including the causal alleles, and are less likely to tag a SNP-disease association.
PMCID: PMC3655427  PMID: 22809343
Genome-wide association studies; ancestral allele; derived allele; minor allele frequency
24.  Genetic Variants on 15q25.1, Smoking, and Lung Cancer: An Assessment of Mediation and Interaction 
American Journal of Epidemiology  2012;175(10):1013-1020.
Genome-wide association studies have identified variants on chromosome 15q25.1 that increase the risks of both lung cancer and nicotine dependence and associated smoking behavior. However, there remains debate as to whether the association with lung cancer is direct or is mediated by pathways related to smoking behavior. Here, the authors apply a novel method for mediation analysis, allowing for gene-environment interaction, to a lung cancer case-control study (1992–2004) conducted at Massachusetts General Hospital using 2 single nucleotide polymorphisms, rs8034191 and rs1051730, on 15q25.1. The results are validated using data from 3 other lung cancer studies. Tests for additive interaction (P = 2 × 10−10 and P = 1 × 10−9) and multiplicative interaction (P = 0.01 and P = 0.01) were significant. Pooled analyses yielded a direct-effect odds ratio of 1.26 (95% confidence interval (CI): 1.19, 1.33; P = 2 × 10−15) for rs8034191 and an indirect-effect odds ratio of 1.01 (95% CI: 1.00, 1.01; P = 0.09); the proportion of increased risk mediated by smoking was 3.2%. For rs1051730, direct- and indirect-effect odds ratios were 1.26 (95% CI: 1.19, 1.33; P = 1 × 10−15) and 1.00 (95% CI: 0.99, 1.01; P = 0.22), respectively, with a proportion mediated of 2.3%. Adjustment for measurement error in smoking behavior allowing up to 75% measurement error increased the proportions mediated to 12.5% and 9.2%, respectively. These analyses indicate that the association of the variants with lung cancer operates primarily through other pathways.
PMCID: PMC3353137  PMID: 22306564
gene-environment interaction; lung neoplasms; mediation; pathway analysis; smoking
25.  Evolutionary evidence of the effect of rare variants on disease etiology 
Clinical genetics  2010;79(3):199-206.
The common disease/common variant hypothesis has been popular for describing the genetic architecture of common human diseases for several years. According to the originally stated hypothesis, one or a few common genetic variants with a relatively large effect size control the risk of common diseases. A growing body of evidence, however, suggests that rare single-nucleotide polymorphisms (SNPs), i.e., those with a minor allele frequency of less than 5%, are also an important component of the genetic architecture of common human diseases. In this study, we analyzed the relevance of rare SNPs to the risk of common disease from an evolutionary perspective and found that rare SNPs are more likely than common SNPs to be functional and tend to have a stronger effect size than do common SNPs. This observation, plus the fact that most of the SNPs in the human genome are rare, suggests that rare SNPs are a crucial element of the genetic architecture of common human diseases. We propose that the next generation of genomic studies should focus on analyzing rare SNPs. Further, targeting patients with a family history of the disease, an extreme phenotype, or early disease onset may facilitate the detection of risk-associated rare SNPs.
PMCID: PMC3652532  PMID: 20831747
Single Nucleotide Polymorphisms (SNPs); Genome Wide Association Studies (GWAS); Minor Allele Frequency (MAF); negative selection

Résultats 1-25 (105)