Conseils de recherche
Les critères de recherche

Résultats 1-5 (5)

Notices sélectionnées (0)

Sélectionner un filtre

plus »
Année de publication
Type de document
1.  Invasion of Oral and Aortic Tissues by Oral Spirochete Treponema denticola in ApoE−/− Mice Causally Links Periodontal Disease and Atherosclerosis 
Infection and Immunity  2014;82(5):1959-1967.
Treponema denticola is a predominantly subgingival oral spirochete closely associated with periodontal disease and has been detected in atherosclerosis. This study was designed to evaluate causative links between periodontal disease induced by chronic oral T. denticola infection and atherosclerosis in hyperlipidemic ApoE−/− mice. ApoE−/− mice (n = 24) were orally infected with T. denticola ATCC 35404 and were euthanized after 12 and 24 weeks. T. denticola genomic DNA was detected in oral plaque samples, indicating colonization of the oral cavity. Infection elicited significantly (P = 0.0172) higher IgG antibody levels and enhanced intrabony defects than sham infection. T. denticola-infected mice had higher levels of horizontal alveolar bone resorption than sham-infected mice and an associated significant increase in aortic plaque area (P ≤ 0.05). Increased atherosclerotic plaque correlated with reduced serum nitric oxide (NO) levels and increased serum-oxidized low-density lipoprotein (LDL) levels compared to those of sham-infected mice. T. denticola infection altered the expression of genes known to be involved in atherosclerotic development, including the leukocyte/endothelial cell adhesion gene (Thbs4), the connective tissue growth factor gene (Ctgf), and the selectin-E gene (Sele). Fluorescent in situ hybridization (FISH) revealed T. denticola clusters in both gingival and aortic tissue of infected mice. This is the first study examining the potential causative role of chronic T. denticola periodontal infection and vascular atherosclerosis in vivo in hyperlipidemic ApoE−/− mice. T. denticola is closely associated with periodontal disease and the rapid progression of atheroma in ApoE−/− mice. These studies confirm a causal link for active oral T. denticola infection with both atheroma and periodontal disease.
PMCID: PMC3993427  PMID: 24566627
2.  Active Invasion of Oral and Aortic Tissues by Porphyromonas gingivalis in Mice Causally Links Periodontitis and Atherosclerosis 
PLoS ONE  2014;9(5):e97811.
Atherosclerotic vascular disease is a leading cause of myocardial infarction and cerebrovascular accident, and independent associations with periodontal disease (PD) are reported. PD is caused by polymicrobial infections and aggressive immune responses. Genomic DNA of Porphyromonas gingivalis, the best-studied bacterial pathogen associated with severe PD, is detected within atherosclerotic plaque. We examined causal relationships between chronic P. gingivalis oral infection, PD, and atherosclerosis in hyperlipidemic ApoEnull mice. ApoEnull mice (n = 24) were orally infected with P. gingivalis for 12 and 24 weeks. PD was assessed by standard clinical measurements while the aorta was examined for atherosclerotic lesions and inflammatory markers by array. Systemic inflammatory markers serum amyloid A, nitric oxide, and oxidized low-density lipoprotein were analyzed. P. gingivalis infection elicited specific antibodies and alveolar bone loss. Fluorescent in situ hybridization detected viable P. gingivalis within oral epithelium and aorta, and genomic DNA was detected within systemic organs. Aortic plaque area was significantly increased in P. gingivalis-infected mice at 24 weeks (P<0.01). Aortic RNA and protein arrays indicated a strong Th2 response. Chronic oral infection with P. gingivalis results in a specific immune response, significant increases in oral bone resorption, aortic inflammation, viable bacteria in oral epithelium and aorta, and plaque development.
PMCID: PMC4024021  PMID: 24836175
3.  Bis-Enoxacin Blocks Rat Alveolar Bone Resorption from Experimental Periodontitis 
PLoS ONE  2014;9(3):e92119.
Periodontal diseases are multifactorial, caused by polymicrobial subgingival pathogens, including Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia. Chronic periodontal infection results in inflammation, destruction of connective tissues, periodontal ligament, and alveolar bone resorption, and ultimately tooth loss. Enoxacin and a bisphosphonate derivative of enoxacin (bis-enoxacin) inhibit osteoclast formation and bone resorption and also contain antibiotic properties. Our study proposes that enoxacin and/or bis-enoxacin may be useful in reducing alveolar bone resorption and possibly bacterial colonization. Rats were infected with 109 cells of polymicrobial inoculum consisting of P. gingivalis, T. denticola, and T. forsythia, as an oral lavage every other week for twelve weeks. Daily subcutaneous injections of enoxacin (5 mg/kg/day), bis-enoxacin (5, 25 mg/kg/day), alendronate (1, 10 mg/kg/day), or doxycycline (5 mg/day) were administered after 6 weeks of polymicrobial infection. Periodontal disease parameters, including bacterial colonization/infection, immune response, inflammation, alveolar bone resorption, and systemic spread, were assessed post-euthanasia. All three periodontal pathogens colonized the rat oral cavity during polymicrobial infection. Polymicrobial infection induced an increase in total alveolar bone resorption, intrabony defects, and gingival inflammation. Treatment with bis-enoxacin significantly decreased alveolar bone resorption more effectively than either alendronate or doxycycline. Histologic examination revealed that treatment with bis-enoxacin and enoxacin reduced gingival inflammation and decreased apical migration of junctional epithelium. These data support the hypothesis that bis-enoxacin and enoxacin may be useful for the treatment of periodontal disease.
PMCID: PMC3956892  PMID: 24638087
4.  Polymicrobial Infection with Major Periodontal Pathogens Induced Periodontal Disease and Aortic Atherosclerosis in Hyperlipidemic ApoEnull Mice 
PLoS ONE  2013;8(2):e57178.
Periodontal disease (PD) and atherosclerosis are both polymicrobial and multifactorial and although observational studies supported the association, the causative relationship between these two diseases is not yet established. Polymicrobial infection-induced periodontal disease is postulated to accelerate atherosclerotic plaque growth by enhancing atherosclerotic risk factors of orally infected Apolipoprotein E deficient (ApoEnull) mice. At 16 weeks of infection, samples of blood, mandible, maxilla, aorta, heart, spleen, and liver were collected, analyzed for bacterial genomic DNA, immune response, inflammation, alveolar bone loss, serum inflammatory marker, atherosclerosis risk factors, and aortic atherosclerosis. PCR analysis of polymicrobial-infected (Porphyromonas gingivalis [P. gingivalis], Treponema denticola [T. denticola], and Tannerella forsythia [T. forsythia]) mice resulted in detection of bacterial genomic DNA in oral plaque samples indicating colonization of the oral cavity by all three species. Fluorescent in situ hybridization detected P. gingivalis and T. denticola within gingival tissues of infected mice and morphometric analysis showed an increase in palatal alveolar bone loss (p<0.0001) and intrabony defects suggesting development of periodontal disease in this model. Polymicrobial-infected mice also showed an increase in aortic plaque area (p<0.05) with macrophage accumulation, enhanced serum amyloid A, and increased serum cholesterol and triglycerides. A systemic infection was indicated by the detection of bacterial genomic DNA in the aorta and liver of infected mice and elevated levels of bacterial specific IgG antibodies (p<0.0001). This study was a unique effort to understand the effects of a polymicrobial infection with P. gingivalis, T. denticola and T. forsythia on periodontal disease and associated atherosclerosis in ApoEnull mice.
PMCID: PMC3581444  PMID: 23451182
5.  CcpA Regulates Central Metabolism and Virulence Gene Expression in Streptococcus mutans▿ †  
Journal of Bacteriology  2008;190(7):2340-2349.
CcpA globally regulates transcription in response to carbohydrate availability in many gram-positive bacteria, but its role in Streptococcus mutans remains enigmatic. Using the fructan hydrolase (fruA) gene of S. mutans as a model, we demonstrated that CcpA plays a direct role in carbon catabolite repression (CCR). Subsequently, the expression of 170 genes was shown to be differently expressed (≥2-fold) in glucose-grown wild-type (UA159) and CcpA-deficient (TW1) strains (P ≤ 0.001). However, there were differences in expression of only 96 genes between UA159 and TW1 when cells were cultivated with the poorly repressing substrate galactose. Interestingly, 90 genes were expressed differently in wild-type S. mutans when glucose- and galactose-grown cells were compared, but the expression of 515 genes was altered in the CcpA-deficient strain in a similar comparison. Overall, our results supported the hypothesis that CcpA has a major role in CCR and regulation of gene expression but revealed that in S. mutans there is a substantial CcpA-independent network that regulates gene expression in response to the carbohydrate source. Based on the genetic studies, biochemical and physiological experiments demonstrated that loss of CcpA impacts the ability of S. mutans to transport and grow on selected sugars. Also, the CcpA-deficient strain displayed an enhanced capacity to produce acid from intracellular stores of polysaccharides, could grow faster at pH 5.5, and could acidify the environment more rapidly and to a greater extent than the parental strain. Thus, CcpA directly modulates the pathogenic potential of S. mutans through global control of gene expression.
PMCID: PMC2293215  PMID: 18223086

Résultats 1-5 (5)