PMCC PMCC

Conseils de recherche
Les critères de recherche

Avancée
Résultats 1-25 (34)
 

Notices sélectionnées (0)
Aucune

Sélectionner un filtre

Revues
plus »
Année de publication
plus »
1.  Most Human Proteins Made in Both Nucleus and Cytoplasm Turn Over within Minutes 
PLoS ONE  2014;9(6):e99346.
In bacteria, protein synthesis can be coupled to transcription, but in eukaryotes it is believed to occur solely in the cytoplasm. Using pulses as short as 5 s, we find that three analogues – L-azidohomoalanine, puromycin (detected after attaching fluors using ‘click’ chemistry or immuno-labeling), and amino acids tagged with ‘heavy’ 15N and 13C (detected using secondary ion mass spectrometry) – are incorporated into the nucleus and cytoplasm in a process sensitive to translational inhibitors. The nuclear incorporation represents a significant fraction of the total, and labels in both compartments have half-lives of less than a minute; results are consistent with most newly-made peptides being destroyed soon after they are made. As nascent RNA bearing a premature termination codon (detected by fluorescence in situ hybridization) is also eliminated by a mechanism sensitive to a translational inhibitor, the nuclear turnover of peptides is probably a by-product of proof-reading the RNA for stop codons (a process known as nonsense-mediated decay). We speculate that the apparently-wasteful turnover of this previously-hidden (‘dark-matter’) world of peptide is involved in regulating protein production.
doi:10.1371/journal.pone.0099346
PMCID: PMC4050049  PMID: 24911415
2.  Determinants of Allergic Rhinitis in Young Children with Asthma 
PLoS ONE  2014;9(5):e97236.
Background
In the preschool period, allergic rhinitis (AR) is infrequent and thus under-diagnosed. However, recent works have highlighted the occurrence of AR in toddlers although the causes of AR in this young population remain unknown. The objective of this study was to identify determinants of AR in young children with asthma.
Methods
We carried out a case-control study of 227 children with active asthma and enrolled in the Trousseau Asthma Program. AR and other allergic diseases (asthma, food allergy and eczema) were diagnosed by medical doctors using standardized questionnaires. Parental history of AR and asthma, biological markers of atopy (total IgE, blood eosinophilia, allergic sensitization towards food and aeroallergens) and environmental parameters were also collected.
Results
Forty one of the children (18.1%) had AR. By univariate logistic regression analysis, AR was mainly associated with peanut sensitization (OR = 6.75; p = 0.002); food allergy (OR = 4.31; p = 0.026); mold exposure (OR = 3.81 p<0.01) and parental history of AR (OR = 1.42; p = 0.046). Due to the strong link between food allergy and peanut sensitization three models of multivariate logistic regression were performed and confirmed that AR is associated with peanut sensitization but also food allergy and mold exposure. A random forest analysis was also performed to explain AR. The results reinforced the logistic analysis that peanut sensitization and mold exposure were the principal determinants of AR.
Conclusions & Clinical Relevance
These results stress the importance of investigating AR in young children with asthma to potentially diagnose a particularly severe allergic asthmatic phenotype. Moreover, these data evoke the hypothesis that peanut could be an aeroallergen.
doi:10.1371/journal.pone.0097236
PMCID: PMC4022721  PMID: 24831804
3.  Reduced Gamma Oscillations in a Mouse Model of Intellectual Disability: A Role for Impaired Repetitive Neurotransmission? 
PLoS ONE  2014;9(5):e95871.
Intellectual disability affects 2–3% of the population; mutations of the X-chromosome are a major cause of moderate to severe cases. The link between the molecular consequences of the mutation and impaired cognitive function remains unclear. Loss of function mutations of oligophrenin-1 (OPHN1) disrupt Rho-GTPase signalling. Here we demonstrate abnormal neurotransmission at CA3 synapses in hippocampal slices from Ophn1-/y mice, resulting from a substantial decrease in the readily releasable pool of vesicles. As a result, synaptic transmission fails at high frequencies required for oscillations associated with cognitive functions. Both spontaneous and KA-induced gamma oscillations were reduced in Ophn1-/y hippocampal slices. Spontaneous oscillations were rapidly rescued by inhibition of the downstream signalling pathway of oligophrenin-1. These findings suggest that the intellectual disability due to mutations of oligophrenin-1 results from a synaptopathy and consequent network malfunction, providing a plausible mechanism for the learning disabilities. Furthermore, they raise the prospect of drug treatments for affected individuals.
doi:10.1371/journal.pone.0095871
PMCID: PMC4011727  PMID: 24800744
4.  Suppression of eIF2α kinases alleviates AD-related synaptic plasticity and spatial memory deficits 
Nature neuroscience  2013;16(9):1299-1305.
Expression of long-lasting synaptic plasticity and long-term memory requires new protein synthesis, which can be repressed by phosphorylation of eukaryotic initiation factor 2α subunit (eIF2α). It was reported previously that eIF2α phosphorylation is elevated in the brains of Alzheimer’s disease (AD) patients and AD model mice. Therefore, we determined whether suppressing eIF2α kinases could alleviate synaptic plasticity and memory deficits in AD model mice. The genetic deletion of the eIF2α kinase PERK prevented enhanced eIF2α phosphorylation, as well as deficits in protein synthesis, synaptic plasticity, and spatial memory in APP/PS1 AD model mice. Similarly, deletion of another eIF2α kinase, GCN2, prevented impairments of synaptic plasticity and spatial memory defects displayed in the APP/PS1 mice. Our findings implicate aberrant eIF2α phosphorylation as a novel molecular mechanism underlying AD-related synaptic pathophysioloy and memory dysfunction and suggest that PERK and GCN2 are potential therapeutic targets for the treatment of individuals with AD.
doi:10.1038/nn.3486
PMCID: PMC3756900  PMID: 23933749
5.  Genetic Removal of p70 S6 Kinase 1 Corrects Molecular, Synaptic, and Behavioral Phenotypes in Fragile X Syndrome Mice 
Neuron  2012;76(2):325-337.
Summary
Fragile X syndrome (FXS) is the leading inherited cause of autism and intellectual disability. Aberrant synaptic translation has been implicated in the etiology of FXS, but most lines of research on therapeutic strategies have targeted protein synthesis indirectly, far upstream of the translation machinery. We sought to perturb p70 ribosomal S6 kinase 1 (S6K1), a key translation initiation and elongation regulator, in FXS model mice. We found that genetic reduction of S6K1 prevented elevated phosphorylation of translational control molecules, exaggerated protein synthesis, enhanced mGluR-dependent long-term depression (LTD), weight gain, and macro-orchidism in FXS model mice. In addition, S6K1 deletion prevented immature dendritic spine morphology and multiple behavioral phenotypes, including social interaction deficits, impaired novel object recognition, and behavioral inflexibility. Our results support the model that dysregulated protein synthesis is the key causal factor in FXS, and that restoration of normal translation can stabilize peripheral and neurological function in FXS.
doi:10.1016/j.neuron.2012.07.022
PMCID: PMC3479445  PMID: 23083736
7.  Interspecific prediction of photosynthetic light response curves using specific leaf mass and leaf nitrogen content: effects of differences in soil fertility and growth irradiance 
Annals of Botany  2012;109(6):1149-1157.
Background and Aims
Previous work has shown that the entire photosynthetic light response curve, based on both Mitscherlich and Michaelis–Menten functions, could be predicted in an interspecific context through allometric relations linking the parameters of these functions to two static leaf traits: leaf nitrogen (N) content and leaf mass per area (LMA). This paper describes to what extent these allometric relations are robust to changes in soil fertility and the growth irradiance of the plants.
Methods
Plants of 25 herbaceous species were grown under controlled conditions in factorial combinations of low/high soil fertility and low/high growth irradiance. Net photosynthetic rates per unit dry mass were measured at light intensities ranging from 0 to 700 µmol m−2 s−1 photosynthetically active radiation (PAR).
Key Results
The differing growth environments induced large changes in N, LMA and in each of the parameter estimates of the Mitscherlich and Michaelis–Menten functions. However, the differing growth environments induced only small (although significant) changes in the allometric relationships linking N and LMA to the parameters of the two functions. As a result, 88 % (Mitcherlich) and 89 % (Michaelis–Menten) of the observed net photosynthetic rates over the full range of light intensities (0–700 µmol m−2 s−1 PAR) and across all four growth environments could be predicted using only N and LMA using the same allometric relations.
Conclusions
These results suggest the possibility of predicting net photosynthetic rates in nature across species over the full range of light intensities using readily available data.
doi:10.1093/aob/mcs032
PMCID: PMC3336948  PMID: 22442344
Quantum yield; Mitscherlich curve; Michaelis–Menten curve; leaf respiration rate; maximum photosynthetic rate; SLA; LMA
8.  Skeletal Muscle Cells Express ICAM-1 after Muscle Overload and ICAM-1 Contributes to the Ensuing Hypertrophic Response 
PLoS ONE  2013;8(3):e58486.
We previously reported that leukocyte specific β2 integrins contribute to hypertrophy after muscle overload in mice. Because intercellular adhesion molecule-1 (ICAM-1) is an important ligand for β2 integrins, we examined ICAM-1 expression by murine skeletal muscle cells after muscle overload and its contribution to the ensuing hypertrophic response. Myofibers in control muscles of wild type mice and cultures of skeletal muscle cells (primary and C2C12) did not express ICAM-1. Overload of wild type plantaris muscles caused myofibers and satellite cells/myoblasts to express ICAM-1. Increased expression of ICAM-1 after muscle overload occurred via a β2 integrin independent mechanism as indicated by similar gene and protein expression of ICAM-1 between wild type and β2 integrin deficient (CD18-/-) mice. ICAM-1 contributed to muscle hypertrophy as demonstrated by greater (p<0.05) overload-induced elevations in muscle protein synthesis, mass, total protein, and myofiber size in wild type compared to ICAM-1-/- mice. Furthermore, expression of ICAM-1 altered (p<0.05) the temporal pattern of Pax7 expression, a marker of satellite cells/myoblasts, and regenerating myofiber formation in overloaded muscles. In conclusion, ICAM-1 expression by myofibers and satellite cells/myoblasts after muscle overload could serve as a mechanism by which ICAM-1 promotes hypertrophy by providing a means for cell-to-cell communication with β2 integrin expressing myeloid cells.
doi:10.1371/journal.pone.0058486
PMCID: PMC3594308  PMID: 23505517
9.  BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions 
Several bacterial pathogens have TIR domain-containing proteins that contribute to their pathogenesis. We identified a second TIR-containing protein in Brucella spp. that we have designated BtpB. We show it is a potent inhibitor of TLR signaling, probably via MyD88. BtpB is a novel Brucella effector that is translocated into host cells and interferes with activation of dendritic cells. In vivo mouse studies revealed that BtpB is contributing to virulence and control of local inflammatory responses with relevance in the establishment of chronic brucellosis. Together, our results show that BtpB is a novel Brucella effector that plays a major role in the modulation of host innate immune response during infection.
doi:10.3389/fcimb.2013.00028
PMCID: PMC3703528  PMID: 23847770
Brucella; TIR domain; Btp1/BtpA; TLR; DC; NF-κB
10.  BDNF activation of CaM-kinase kinase via TRPC channels induces the translation and synaptic incorporation of GluA1 containing calcium-permeable AMPARs 
The Journal of Neuroscience  2012;32(24):8127-8137.
Glutamatergic synapses in early postnatal development transiently express calcium-permeable AMPA receptors (CP-AMPARs). Although these GluA2-lacking receptors are essential and are elevated in response to brain-derived neurotrophic factor (BDNF), little is known regarding molecular mechanisms that govern their expression and synaptic insertion. Here we show that BDNF-induced GluA1 translation in rat primary hippocampal neurons requires the activation of mTOR via calcium calmodulin-dependent protein kinase kinase (CaMKK). Specifically, BDNF-mediated phosphorylation of T308 in AKT, a known substrate of CaMKK and an upstream activator of mTOR-dependent translation, was prevented by 1) pharmacological inhibition of CaMKK with STO-609, 2) overexpression of a dominant-negative CaMKK, or 3) short hairpin-mediated knockdown of CaMKK. GluA1 surface expression induced by BDNF, as assessed by immunocytochemistry using an extracellular N-terminal GluA1 antibody or by surface biotinylation, was impaired following knockdown of CaMKK or treatment with STO-609. Activation of CaMKK by BDNF requires TRPC channels as SKF-96365, but not the NMDA receptor antagonist D-APV, prevented BDNF-induced GluA1 surface expression as well as phosphorylation of CaMKI, AKTT308 and mTOR. Using siRNA we confirmed the involvement of TRPC5 and -6 subunits in BDNF-induced AKTT308 phosphorylation. The BDNF-induced increase in mEPSC was blocked by IEM-1460, a selected antagonist of CP-AMPARs, as well as by the specific repression of acute GluA1 translation via siRNA to GluA1 but not GluA2. Taken together these data support the conclusion that newly synthesized GluA1 subunits, induced by BDNF, are readily incorporated into synapses where they enhance the expression of CP-AMPARs and synaptic strength.
doi:10.1523/JNEUROSCI.6034-11.2012
PMCID: PMC3390208  PMID: 22699894
BDNF; AMPA receptors; translation; CaM-kinase; TRPC
11.  Large G3BP-induced granules trigger eIF2α phosphorylation 
Molecular Biology of the Cell  2012;23(18):3499-3510.
Increasing size of G3BP-induced stress granules is associated with a threshold or switch that must be triggered for eIF2α phosphorylation and subsequent translational repression to occur. Stress granules are active in signaling to the translational machinery and may be important regulators of the innate immune response.
Stress granules are large messenger ribonucleoprotein (mRNP) aggregates composed of translation initiation factors and mRNAs that appear when the cell encounters various stressors. Current dogma indicates that stress granules function as inert storage depots for translationally silenced mRNPs until the cell signals for renewed translation and stress granule disassembly. We used RasGAP SH3-binding protein (G3BP) overexpression to induce stress granules and study their assembly process and signaling to the translation apparatus. We found that assembly of large G3BP-induced stress granules, but not small granules, precedes phosphorylation of eIF2α. Using mouse embryonic fibroblasts depleted for individual eukaryotic initiation factor 2α (eIF2α) kinases, we identified protein kinase R as the principal kinase that mediates eIF2α phosphorylation by large G3BP-induced granules. These data indicate that increasing stress granule size is associated with a threshold or switch that must be triggered in order for eIF2α phosphorylation and subsequent translational repression to occur. Furthermore, these data suggest that stress granules are active in signaling to the translational machinery and may be important regulators of the innate immune response.
doi:10.1091/mbc.E12-05-0385
PMCID: PMC3442399  PMID: 22833567
12.  Extracellular Localization of the Diterpene Sclareol in Clary Sage (Salvia sclarea L., Lamiaceae) 
PLoS ONE  2012;7(10):e48253.
Sclareol is a high-value natural product obtained by solid/liquid extraction of clary sage (Salvia sclarea L.) inflorescences. Because processes of excretion and accumulation of this labdane diterpene are unknown, the aim of this work was to gain knowledge on its sites of accumulation in planta. Samples were collected in natura or during different steps of the industrial process of extraction (steam distillation and solid/liquid extraction). Samples were then analysed with a combination of complementary analytical techniques (gas chromatography coupled to a mass spectrometer, polarized light microscopy, environmental scanning electron microscopy, two-photon fluorescence microscopy, second harmonic generation microscopy). According to the literature, it is hypothesized that sclareol is localized in oil pockets of secretory trichomes. This study demonstrates that this is not the case and that sclareol accumulates in a crystalline epicuticular form, mostly on calyces.
doi:10.1371/journal.pone.0048253
PMCID: PMC3484996  PMID: 23133579
13.  Nuclear translation visualized by ribosome-bound nascent chain puromycylation 
The Journal of Cell Biology  2012;197(1):45-57.
A new method for visualizing translation in cells via standard immunofluorescence microscopy provides evidence for translation in the nucleoplasm and nucleolus.
Whether protein translation occurs in the nucleus is contentious. To address this question, we developed the ribopuromycylation method (RPM), which visualizes translation in cells via standard immunofluorescence microscopy. The RPM is based on ribosome-catalyzed puromycylation of nascent chains immobilized on ribosomes by antibiotic chain elongation inhibitors followed by detection of puromycylated ribosome-bound nascent chains with a puromycin (PMY)-specific monoclonal antibody in fixed and permeabilized cells. The RPM correlates localized translation with myriad processes in cells and can be applied to any cell whose translation is sensitive to PMY. In this paper, we use the RPM to provide evidence for translation in the nucleoplasm and nucleolus, which is regulated by infectious and chemical stress.
doi:10.1083/jcb.201112145
PMCID: PMC3317795  PMID: 22472439
14.  Brain-specific Disruption of the eIF2α Kinase PERK Decreases ATF4 Expression and Impairs Behavioral Flexibility 
Cell Reports  2012;1(6):676-688.
Summary
Translational control depends on phosphorylation of eIF2α by PKR-like ER kinase (PERK). To examine the role of PERK in cognitive function, we selectively disrupted PERK expression in the adult mouse forebrain. In the prefrontal cortex (PFC) of PERK-deficient mice, eIF2α phosphorylation and ATF4 expression were diminished and associated with enhanced behavioral perseveration, decreased prepulse inhibition, reduced fear extinction, and impaired behavioral flexibility. Treatment with the glycine transporter inhibitor SSR504734 normalized eIF2α phosphorylation, ATF4 expression, and behavioral flexibility in PERK-deficient mice. Moreover, PERK and ATF4 expression were reduced in the frontal cortex of human schizophrenic patients. Together, our findings reveal that PERK plays a critical role in information processing and cognitive function, and that modulation of eIF2α phosphorylation and ATF4 expression may represent an effective strategy for treating behavioral inflexibility associated with several neurological disorders including schizophrenia.
doi:10.1016/j.celrep.2012.04.010
PMCID: PMC3401382  PMID: 22813743
PERK; translational control; eIF2α; ATF4; prefrontal cortex; cognitive control; glycine transporter-1 inhibitor; behavioral flexibility; schizophrenia
15.  Endosome-to-cytosol transport of viral nucleocapsids 
Nature Cell Biology  2005;7(7):653-664.
During viral infection, fusion of the viral envelope with endosomal membranes and nucleocapsid release were thought to be concomitant events. We show here that for the vesicular stomatitis virus, they occur sequentially, at two successive steps of the endocytic pathway. Fusion already occurs in transport intermediates between early and late endosomes, presumably releasing the nucleocapsid within the lumen of intra-endosomal vesicles, where it remains hidden. Transport to late endosomes is then required for the nucleocapsid to be delivered to the cytoplasm. The latter step, which initiates infection, depends on the late endosomal lipid lysobisphosphatidic acid (LBPA) and its putative effector Alix/AIP1 and is regulated by PI3P signaling via the PI3P-binding protein SNX16. We conclude that the nucleocapsid is exported into the cytoplasm after the back-fusion of internal vesicles with the limiting membrane of late endosomes, and that this process is controlled by the phospholipids LBPA and PI3P, and by their effectors.
doi:10.1038/ncb1269
PMCID: PMC3360589  PMID: 15951806
Animals; Biological Transport; physiology; Cattle; Cell Line; Cricetinae; Cytosol; metabolism; ultrastructure; Endosomal Sorting Complexes Required for Transport; Endosomes; metabolism; ultrastructure; Epithelial Cells; virology; Fibroblasts; virology; Hela Cells; Humans; Lysophospholipids; physiology; Membrane Fusion; drug effects; physiology; Microscopy, Electron; Microscopy, Fluorescence; Monoglycerides; Nucleocapsid; metabolism; Phosphatidylinositol Phosphates; physiology; Phosphoproteins; genetics; physiology; RNA, Viral; biosynthesis; metabolism; Signal Transduction; physiology; Sorting Nexins; Time Factors; Transport Vesicles; metabolism; ultrastructure; Vesicular Transport Proteins; genetics; physiology; Vesicular stomatitis Indiana virus; physiology; Virus Replication; genetics
16.  Induction of GADD34 Is Necessary for dsRNA-Dependent Interferon-β Production and Participates in the Control of Chikungunya Virus Infection 
PLoS Pathogens  2012;8(5):e1002708.
Nucleic acid sensing by cells is a key feature of antiviral responses, which generally result in type-I Interferon production and tissue protection. However, detection of double-stranded RNAs in virus-infected cells promotes two concomitant and apparently conflicting events. The dsRNA-dependent protein kinase (PKR) phosphorylates translation initiation factor 2-alpha (eIF2α) and inhibits protein synthesis, whereas cytosolic DExD/H box RNA helicases induce expression of type I-IFN and other cytokines. We demonstrate that the phosphatase-1 cofactor, growth arrest and DNA damage-inducible protein 34 (GADD34/Ppp1r15a), an important component of the unfolded protein response (UPR), is absolutely required for type I-IFN and IL-6 production by mouse embryonic fibroblasts (MEFs) in response to dsRNA. GADD34 expression in MEFs is dependent on PKR activation, linking cytosolic microbial sensing with the ATF4 branch of the UPR. The importance of this link for anti-viral immunity is underlined by the extreme susceptibility of GADD34-deficient fibroblasts and neonate mice to Chikungunya virus infection.
Author Summary
Nucleic acids detection by multiple molecular sensors results in type-I interferon production, which protects cells and tissues from viral infections. At the intracellular level, the detection of double-stranded RNA by one of these sensors, the dsRNA-dependent protein kinase also leads to the profound inhibition of protein synthesis. We describe here that the inducible phosphatase 1 co-factor Ppp1r15a/GADD34, a well known player in the endoplasmic reticulum unfolded protein response (UPR), is activated during double-stranded RNA detection and is absolutely necessary to allow cytokine production in cells exposed to poly I:C or Chikungunya virus. Our data shows that the cellular response to nucleic acids can reveal unanticipated connections between innate immunity and fundamental stress pathways, such as the ATF4 branch of the UPR.
doi:10.1371/journal.ppat.1002708
PMCID: PMC3355096  PMID: 22615568
17.  Nobiletin Attenuates VLDL Overproduction, Dyslipidemia, and Atherosclerosis in Mice With Diet-Induced Insulin Resistance 
Diabetes  2011;60(5):1446-1457.
OBJECTIVE
Increased plasma concentrations of apolipoprotein B100 often present in patients with insulin resistance and confer increased risk for the development of atherosclerosis. Naturally occurring polyphenolic compounds including flavonoids have antiatherogenic properties. The aim of the current study was to evaluate the effect of the polymethoxylated flavonoid nobiletin on lipoprotein secretion in cultured human hepatoma cells (HepG2) and in a mouse model of insulin resistance and atherosclerosis.
RESEARCH DESIGN AND METHODS
Lipoprotein secretion was determined in HepG2 cells incubated with nobiletin or insulin. mRNA abundance was evaluated by quantitative real-time PCR, and Western blotting was used to demonstrate activation of cell signaling pathways. In LDL receptor–deficient mice (Ldlr−/−) fed a Western diet supplemented with nobiletin, metabolic parameters, gene expression, fatty acid oxidation, glucose homeostasis, and energy expenditure were documented. Atherosclerosis was quantitated by histological analysis.
RESULTS
In HepG2 cells, activation of mitogen-activated protein kinase-extracellular signal–related kinase signaling by nobiletin or insulin increased LDLR and decreased MTP and DGAT1/2 mRNA, resulting in marked inhibition of apoB100 secretion. Nobiletin, unlike insulin, did not induce phosphorylation of the insulin receptor or insulin receptor substrate-1 and did not stimulate lipogenesis. In fat-fed Ldlr−/− mice, nobiletin attenuated dyslipidemia through a reduction in VLDL-triglyceride (TG) secretion. Nobiletin prevented hepatic TG accumulation, increased expression of Pgc1α and Cpt1α, and enhanced fatty acid β-oxidation. Nobiletin did not activate any peroxisome proliferator–activated receptor (PPAR), indicating that the metabolic effects were PPAR independent. Nobiletin increased hepatic and peripheral insulin sensitivity and glucose tolerance and dramatically attenuated atherosclerosis in the aortic sinus.
CONCLUSIONS
Nobiletin provides insight into treatments for dyslipidemia and atherosclerosis associated with insulin-resistant states.
doi:10.2337/db10-0589
PMCID: PMC3292317  PMID: 21471511
18.  Chikungunya Virus Induces IPS-1-Dependent Innate Immune Activation and Protein Kinase R-Independent Translational Shutoff▿  
Journal of Virology  2010;85(1):606-620.
Chikungunya virus (CHIKV) is an arthritogenic mosquito-transmitted alphavirus that is undergoing reemergence in areas around the Indian Ocean. Despite the current and potential danger posed by this virus, we know surprisingly little about the induction and evasion of CHIKV-associated antiviral immune responses. With this in mind we investigated innate immune reactions to CHIKV in human fibroblasts, a demonstrable in vivo target of virus replication and spread. We show that CHIKV infection leads to activation of the transcription factor interferon regulatory factor 3 (IRF3) and subsequent transcription of IRF3-dependent antiviral genes, including beta interferon (IFN-β). IRF3 activation occurs by way of a virus-induced innate immune signaling pathway that includes the adaptor molecule interferon promoter stimulator 1 (IPS-1). Despite strong transcriptional upregulation of these genes, however, translation of the corresponding proteins is not observed. We further demonstrate that translation of cellular (but not viral) genes is blocked during infection and that although CHIKV is found to trigger inactivation of the translational molecule eukaryotic initiation factor subunit 2α by way of the double-stranded RNA sensor protein kinase R, this response is not required for the block to protein synthesis. Furthermore, overall diminution of cellular RNA synthesis is also observed in the presence of CHIKV and transcription of IRF3-dependent antiviral genes appears specifically blocked late in infection. We hypothesize that the observed absence of IFN-β and antiviral proteins during infection results from an evasion mechanism exhibited by CHIKV that is dependent on widespread shutoff of cellular protein synthesis and a targeted block to late synthesis of antiviral mRNA transcripts.
doi:10.1128/JVI.00767-10
PMCID: PMC3014158  PMID: 20962078
19.  Thoracic Duct Fistula after Thyroid Cancer Surgery: Towards a New Treatment? 
Case Reports in Oncology  2011;4(2):255-259.
The use of somatostatin analogs is a new conservative therapeutic approach for the treatment of chyle fistulas developing after thyroid cancer surgery. The combination therapy with a total parenteral nutrition should avoid the high morbidity of a re-intervention with an uncertain outcome. This promising trend is supported by the present case report of a chyle leak occurring after total thyroidectomy with central and lateral neck dissection for a papillary carcinoma, which was treated successfully without immediate or distant sequelae.
doi:10.1159/000328801
PMCID: PMC3124458  PMID: 21734879
Chyle fistula; Octreotide; Somatostatin; Thoracic duct; Thyroid cancer; Thyroid surgery
20.  DC-ATLAS: a systems biology resource to dissect receptor specific signal transduction in dendritic cells 
Immunome Research  2010;6:10.
Background
The advent of Systems Biology has been accompanied by the blooming of pathway databases. Currently pathways are defined generically with respect to the organ or cell type where a reaction takes place. The cell type specificity of the reactions is the foundation of immunological research, and capturing this specificity is of paramount importance when using pathway-based analyses to decipher complex immunological datasets. Here, we present DC-ATLAS, a novel and versatile resource for the interpretation of high-throughput data generated perturbing the signaling network of dendritic cells (DCs).
Results
Pathways are annotated using a novel data model, the Biological Connection Markup Language (BCML), a SBGN-compliant data format developed to store the large amount of information collected. The application of DC-ATLAS to pathway-based analysis of the transcriptional program of DCs stimulated with agonists of the toll-like receptor family allows an integrated description of the flow of information from the cellular sensors to the functional outcome, capturing the temporal series of activation events by grouping sets of reactions that occur at different time points in well-defined functional modules.
Conclusions
The initiative significantly improves our understanding of DC biology and regulatory networks. Developing a systems biology approach for immune system holds the promise of translating knowledge on the immune system into more successful immunotherapy strategies.
doi:10.1186/1745-7580-6-10
PMCID: PMC3000836  PMID: 21092113
21.  NAD(P)H Quinone-Oxydoreductase 1 Protects Eukaryotic Translation Initiation Factor 4GI from Degradation by the Proteasome ▿  
Molecular and Cellular Biology  2009;30(4):1097-1105.
The eukaryotic translation initiation factor 4GI (eIF4GI) serves as a central adapter in cap-binding complex assembly. Although eIF4GI has been shown to be sensitive to proteasomal degradation, how the eIF4GI steady-state level is controlled remains unknown. Here, we show that eIF4GI exists in a complex with NAD(P)H quinone-oxydoreductase 1 (NQO1) in cell extracts. Treatment of cells with dicumarol (dicoumarol), a pharmacological inhibitor of NQO1 known to preclude NQO1 binding to its protein partners, provokes eIF4GI degradation by the proteasome. Consistently, the eIF4GI steady-state level also diminishes upon the silencing of NQO1 (by transfection with small interfering RNA), while eIF4GI accumulates upon the overexpression of NQO1 (by transfection with cDNA). We further reveal that treatment of cells with dicumarol frees eIF4GI from mRNA translation initiation complexes due to strong activation of its natural competitor, the translational repressor 4E-BP1. As a consequence of cap-binding complex dissociation and eIF4GI degradation, protein synthesis is dramatically inhibited. Finally, we show that the regulation of eIF4GI stability by the proteasome may be prominent under oxidative stress. Our findings assign NQO1 an original role in the regulation of mRNA translation via the control of eIF4GI stability by the proteasome.
doi:10.1128/MCB.00868-09
PMCID: PMC2815573  PMID: 20028737
22.  Ribosomal protein mRNAs are translationally-regulated during human dendritic cells activation by LPS 
Immunome Research  2009;5:5.
Background
Dendritic cells (DCs) are the sentinels of the mammalian immune system, characterized by a complex maturation process driven by pathogen detection. Although multiple studies have described the analysis of activated DCs by transcriptional profiling, recent findings indicate that mRNAs are also regulated at the translational level. A systematic analysis of the mRNAs being translationally regulated at various stages of DC activation was performed using translational profiling, which combines sucrose gradient fractionation of polysomal-bound mRNAs with DNA microarray analysis.
Results
Total and polysomal-bound mRNA populations purified from immature, 4 h and 16 h LPS-stimulated human monocyte-derived DCs were analyzed on Affymetrix microarrays U133 2.0. A group of 375 transcripts was identified as translationally regulated during DC-activation. In addition to several biochemical pathways related to immunity, the most statistically relevant biological function identified among the translationally regulated mRNAs was protein biosynthesis itself. We singled-out a cluster of 11 large ribosome proteins mRNAs, which are disengaged from polysomes at late time of maturation, suggesting the existence of a negative feedback loop regulating translation in DCs and linking ribosomal proteins to immuno-modulatory function.
Conclusion
Our observations highlight the importance of translation regulation during the immune response, and may favor the identification of novel protein networks relevant for immunity. Our study also provides information on the potential absence of correlation between gene expression and protein production for specific mRNA molecules present in DCs.
doi:10.1186/1745-7580-5-5
PMCID: PMC2788525  PMID: 19943945
23.  In Vitro Budding of Intralumenal Vesicles into Late Endosomes Is Regulated by Alix and Tsg101 
Molecular Biology of the Cell  2008;19(11):4942-4955.
Endosomes along the degradation pathway leading to lysosomes accumulate membranes in their lumen and thus exhibit a characteristic multivesicular appearance. These lumenal membranes typically incorporate down-regulated EGF receptor destined for degradation, but the mechanisms that control their formation remain poorly characterized. Here, we describe a novel quantitative biochemical assay that reconstitutes the formation of lumenal vesicles within late endosomes in vitro. Vesicle budding into the endosome lumen was time-, temperature-, pH-, and energy-dependent and required cytosolic factors and endosome membrane components. Our light and electron microscopy analysis showed that the compartment supporting the budding process was accessible to endocytosed bulk tracers and EGF receptor. We also found that the EGF receptor became protected against trypsin in our assay, indicating that it was sorted into the intraendosomal vesicles that were formed in vitro. Our data show that the formation of intralumenal vesicles is ESCRT-dependent, because the process was inhibited by the K173Q dominant negative mutant of hVps4. Moreover, we find that the ESCRT-I subunit Tsg101 and its partner Alix control intralumenal vesicle formation, by acting as positive and negative regulators, respectively. We conclude that budding of the limiting membrane toward the late endosome lumen, which leads to the formation of intraendosomal vesicles, is controlled by the positive and negative functions of Tsg101 and Alix, respectively.
doi:10.1091/mbc.E08-03-0239
PMCID: PMC2575168  PMID: 18768755
25.  Hrs and SNX3 Functions in Sorting and Membrane Invagination within Multivesicular Bodies  
PLoS Biology  2008;6(9):e214.
After internalization, ubiquitinated signaling receptors are delivered to early endosomes. There, they are sorted and incorporated into the intralumenal invaginations of nascent multivesicular bodies, which function as transport intermediates to late endosomes. Receptor sorting is achieved by Hrs—an adaptor-like protein that binds membrane PtdIns3P via a FYVE motif—and then by ESCRT complexes, which presumably also mediate the invagination process. Eventually, intralumenal vesicles are delivered to lysosomes, leading to the notion that EGF receptor sorting into multivesicular bodies mediates lysosomal targeting. Here, we report that Hrs is essential for lysosomal targeting but dispensable for multivesicular body biogenesis and transport to late endosomes. By contrast, we find that the PtdIns3P-binding protein SNX3 is required for multivesicular body formation, but not for EGF receptor degradation. PtdIns3P thus controls the complementary functions of Hrs and SNX3 in sorting and multivesicular body biogenesis.
Author Summary
The cell's genetic program is modulated by extracellular signals that activate cell surface receptors and, in turn, intracellular effectors, to regulate transcription. For cells to function normally, these signals must be turned off to avoid permanent activation—a situation often associated with cancer. For many receptors, signaling is repressed, or down-regulated, in a process that first internalizes and then degrades the receptors. After receptors are removed from the cell surface into structures called early endosomes, they are selectively incorporated within vesicles that form inside the endosome. During this process, endosomal membranes are pulled away from the cytoplasm towards the endosome lumen, against the flow of intracellular membrane traffic, eventually resulting in the formation of a “multivesicular body” (vesicles within vesicles). The common view is that these intralumenal vesicles are then delivered to lysosomes, where they are degraded along with their receptor cargo. We have investigated the mechanisms responsible for the biogenesis of intralumenal vesicles in multivesicular bodies. We find that the small protein SNX3, which binds the signaling lipid phosphatidyl inositol-3-phosphate, is necessary for the formation of intralumenal vesicles, but is not involved in the degradation of the cell surface receptor for EGF. Conversely, we find that Hrs, which also binds phosphatidyl inositol-3-phosphate and mediates receptor sorting into intralumenal vesicles, is essential for lysosomal targeting but dispensable for multivesicular body biogenesis. Phosphatidyl inositol-3-phosphate thus controls the complementary functions of Hrs and SNX3 in the sorting of signaling receptors and multivesicular body biogenesis.
SNX3 plays a direct role in the formation of intralumenal vesicles of multivesicular bodies (MVBs) but is not involved in EGF receptor degradation, whereas Hrs is essential for lysosomal targeting but dispensable for MVB biogenesis. Hence, intralumenal vesicle formation in MVB biogenesis can be uncoupled from lysosomal targeting.
doi:10.1371/journal.pbio.0060214
PMCID: PMC2528051  PMID: 18767904

Résultats 1-25 (34)