PMCC PMCC

Conseils de recherche
Les critères de recherche

Avancée
Résultats 1-2 (2)
 

Notices sélectionnées (0)
Aucune

Sélectionner un filtre

Revues
Auteurs
plus »
Année de publication
Type de document
author:("panama, Francesco")
1.  Olive phenolic compounds: metabolic and transcriptional profiling during fruit development 
BMC Plant Biology  2012;12:162.
Background
Olive (Olea europaea L.) fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism.
Results
The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively) during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF), suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development.
Conclusions
Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the olive tree. Our data represent the first step towards the functional characterisation of important genes for the determination of olive fruit quality.
doi:10.1186/1471-2229-12-162
PMCID: PMC3480905  PMID: 22963618
Olea europaea; Phenolics; Secoiridoids; RT-qPCR; Transcriptome; Secondary metabolism
2.  An Italian functional genomic resource for Medicago truncatula 
BMC Research Notes  2008;1:129.
Background
Medicago truncatula is a model species for legumes. Its functional genomics have been considerably boosted in recent years due to initiatives based both in Europe and US. Collections of mutants are becoming increasingly available and this will help unravel the genetic control of important traits for many species of legumes.
Findings
Our report is on the production of three complementary mutant collections of the model species Medicago truncatula produced in Italy in the frame of a national genomic initiative. Well established strategies were used: Tnt1 mutagenesis, TILLING and activation tagging. Both forward and reverse genetics screenings proved the efficiency of the mutagenesis approaches adopted, enabling the isolation of interesting mutants which are in course of characterization. We anticipate that the reported collections will be complementary to the recently established functional genomics tools developed for Medicago truncatula both in Europe and in the United States.
doi:10.1186/1756-0500-1-129
PMCID: PMC2633015  PMID: 19077311

Résultats 1-2 (2)