PMCC PMCC

Conseils de recherche
Les critères de recherche

Avancée
Résultats 1-2 (2)
 

Notices sélectionnées (0)
Aucune

Sélectionner un filtre

Revues
Auteurs
plus »
Année de publication
Type de document
author:("under, Kamil")
1.  In Vitro Analysis of Photosensitizer Accumulation for Assessment of Applicability of Fluorescence Diagnosis of Squamous Cell Carcinoma of Epidermolysis Bullosa Patients 
BioMed Research International  2012;2013:521281.
Epidermolysis bullosa (EB) is a group of inherited skin disorders characterized by blistering following mechanical trauma. Chronic wounds of EB patients often lead to tumors such as squamous cell carcinoma (SCC). Early diagnosis may prevent its invasive growth—frequently the reason of premature mortality of EB-patients. Early detection of tumors is achieved by fluorescence diagnosis (FD), where photosensitizers localize selectively in tumors and fluoresce upon illumination. Excessive accumulation of photosensitizers in inflamed areas, as occasionally found at chronic wounds and tumors due to inflammatory processes, leads to false-positive results in FD. This study analyzed accumulation kinetics of the photosensitizers hypericin and endogenous protoporphyrin IX (PpIX) in different skin cell lines including the three EB subtypes under normal and proinflammatory conditions (stimulated with TNF-alpha). The aim was to assess the applicability of FD of SCC in EB. All cell lines accumulate hypericin or PpIX mostly increasing with incubation time, but with different kinetics. SCC cells of recessive dystrophic EB (RDEB) accumulate less hypericin or PpIX than nonmalignant RDEB cells. Nevertheless, tumor selectivity in vivo might be existent. Non-EB cell lines are more active concerning photosensitizer enrichment. Proinflammatory conditions of skin cell lines seem to have no major influence on photosensitizer accumulation.
doi:10.1155/2013/521281
PMCID: PMC3591193  PMID: 23509735
2.  PIM-1 kinase interacts with the DNA binding domain of the vitamin D receptor: a further kinase implicated in 1,25-(OH)2D3 signaling 
BMC Molecular Biology  2012;13:18.
Background
The vitamin D3 receptor (VDR) is responsible for mediating the pleiotropic and, in part, cell-type-specific effects of 1,25-dihydroxyvitamin D3 (calcitriol) on the cardiovascular and the muscle system, on the bone development and maintenance, mineral homeostasis, cell proliferation, cell differentiation, vitamin D metabolism, and immune response modulation.
Results
Based on data obtained from genome-wide yeast two-hybrid screenings, domain mapping studies, intracellular co-localization approaches as well as reporter transcription assay measurements, we show here that the C-terminus of human PIM-1 kinase isoform2 (amino acid residues 135–313), a serine/threonine kinase of the calcium/calmodulin-regulated kinase family, directly interacts with VDR through the receptor’s DNA-binding domain. We further demonstrate that PIM-1 modulates calcitriol signaling in HaCaT keratinocytes by enhancing both endogenous calcitriol response gene transcription (osteopontin) and an extrachromosomal DR3 reporter response.
Conclusion
These results, taken together with previous reports of involvement of kinase pathways in VDR transactivation, underscore the biological relevance of this novel protein-protein interaction.
doi:10.1186/1471-2199-13-18
PMCID: PMC3404970  PMID: 22720752
Coactivator; PIM-1 kinase; Protein-Protein interaction; Serine/Threonine kinase; Vitamin D; Vitamin D receptor

Résultats 1-2 (2)