Conseils de recherche
Les critères de recherche

Résultats 1-5 (5)

Notices sélectionnées (0)

Sélectionner un filtre

Année de publication
Type de document
author:("kempsey, Andrew T")
1.  Habituation in the Tail Withdrawal Reflex Circuit is Impaired During Aging in Aplysia californica 
The relevance of putative contributors to age-related memory loss are poorly understood. The tail withdrawal circuit of the sea hare, a straightforward neural model, was used to investigate the aging characteristics of rudimentary learning. The simplicity of this neuronal circuit permits attribution of declines in the function of specific neurons to aging declines. Memory was impaired in advanced age animals compared to their performance at the peak of sexual maturity, with habituation training failing to attenuate the tail withdrawal response or to reduce tail motoneuron excitability, as occurred in peak maturity siblings. Baseline motoneuron excitability of aged animals was significantly lower, perhaps contributing to a smaller scope for attenuation. Conduction velocity in afferent fibers to tail sensory neurons (SN) decreased during aging. The findings suggest that age-related changes in tail sensory and motor neurons result in deterioration of a simple form of learning in Aplysia.
PMCID: PMC4751345  PMID: 26903863
short term memory; long term potentiation; pleural ganglion; pedal ganglion; marine invertebrate
2.  Aging in Sensory and Motor Neurons Results in Learning Failure in Aplysia californica 
PLoS ONE  2015;10(5):e0127056.
The physiological and molecular mechanisms of age-related memory loss are complicated by the complexity of vertebrate nervous systems. This study takes advantage of a simple neural model to investigate nervous system aging, focusing on changes in learning and memory in the form of behavioral sensitization in vivo and synaptic facilitation in vitro. The effect of aging on the tail withdrawal reflex (TWR) was studied in Aplysia californica at maturity and late in the annual lifecycle. We found that short-term sensitization in TWR was absent in aged Aplysia. This implied that the neuronal machinery governing nonassociative learning was compromised during aging. Synaptic plasticity in the form of short-term facilitation between tail sensory and motor neurons decreased during aging whether the sensitizing stimulus was tail shock or the heterosynaptic modulator serotonin (5-HT). Together, these results suggest that the cellular mechanisms governing behavioral sensitization are compromised during aging, thereby nearly eliminating sensitization in aged Aplysia.
PMCID: PMC4430239  PMID: 25970633
3.  Age-related deficits in synaptic plasticity rescued by activating PKA or PKC in sensory neurons of Aplysia californica 
Brain aging is associated with declines in synaptic function that contribute to memory loss, including reduced postsynaptic response to neurotransmitters and decreased neuronal excitability. To understand how aging affects memory in a simple neural circuit, we studied neuronal proxies of memory for sensitization in mature vs. advanced age Aplysia californica (Aplysia). L-Glutamate- (L-Glu-) evoked excitatory currents were facilitated by the neuromodulator serotonin (5-HT) in sensory neurons (SN) isolated from mature but not aged animals. Activation of protein kinase A (PKA) and protein kinase C (PKC) signaling rescued facilitation of L-Glu currents in aged SN. Similarly, PKA and PKC activators restored increased excitability in aged tail SN. These results suggest that altered synaptic plasticity during aging involves defects in second messenger systems.
PMCID: PMC4558425  PMID: 26388769
short term memory; long term potentiation; pleural ganglion; pedal ganglion; marine invertebrate
4.  Behavioral aging is associated with reduced sensory neuron excitability in Aplysia californica 
Invertebrate models have advantages for understanding the basis of behavioral aging due to their simple nervous systems and short lifespans. The potential usefulness of Aplysia californica in aging research is apparent from its long history of neurobiological research, but it has been underexploited in this model use. Aging of simple reflexes at both single sensory neuron and neural circuit levels was studied to connect behavioral aging to neurophysiological aging. The tail withdrawal reflex (TWR), righting reflex, and biting response were measured throughout sexual maturity in 3 cohorts of hatchery-reared animals of known age. Reflex times increased and reflex amplitudes decreased significantly during aging. Aging in sensory neurons of animals with deficits in measures of the TWR and biting response resulted in significantly reduced excitability in old animals compared to their younger siblings. The threshold for firing increased while the number of action potentials in response to depolarizing current injection decreased during aging in sensory neurons, but not in tail motoneurons. Glutamate receptor-activated responses in sensory neurons also decreased with aging. In old tail motoneurons, the amplitude of evoked EPSPs following tail shock decreased, presumably due to reduced sensory neuron excitability during aging. The results were used to develop stages of aging relevant to both hatchery-reared and wild-caught Aplysia. Aplysia is a viable aging model in which the contributions of differential aging of components of neural circuits may be assessed.
PMCID: PMC4023074  PMID: 24847260
L-glutamate; NMDA; D-aspartate; pleural ganglion; buccal ganglion
5.  Pharmacological evidence that D-aspartate activates a current distinct from ionotropic glutamate receptor currents in Aplysia californica 
Brain and Behavior  2012;2(4):391-401.
D-Aspartate (D-Asp) activates a nonspecific cation current of unknown identity independent of L-glutamate (L-Glu) in neurons of Aplysia californica. Whole-cell voltage clamp studies were conducted using primary cultures of Aplysia buccal S cluster (BSC) neurons to characterize these receptor channels pharmacologically. The N-methyl-D-aspartate receptor (NMDAR) coagonist glycine potentiated D-Asp currents only at −30 mV, while D-serine did not potentiate D-Asp currents at any amplitude. Portions of D-Asp currents were blocked by the L-Glu antagonists kynurenate, DL-2-amino-5-phosphonopentanoic acid (APV), (2S,3R)-1-(phenanthren-2-carbonyl)piperazine-2,3-dicarboxylic acid (PPDA), and 1,3-dihydro-5-[3-[4-(phenylmethyl)-1–2H-benzimidazol-2-one (TCS46b), suggesting that L-Glu channels, particularly NMDAR-like channels, may partially contribute to D-Asp whole-cell currents. In contrast, L-Glu currents were unaffected by APV, and showed greater block by kynurenate, suggesting that D-Asp and L-Glu act, in part, at different sites. The excitatory amino acid transport blocker DL-threo-b-Benzyloxyaspartic acid (TBOA) blocked a fraction of D-Asp currents, suggesting that currents associated with these transporters also contribute. Non-NMDA L-GluR antagonists that preferentially block alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionic acid (AMPA)/kainate receptors significantly increased D-Asp currents, suggesting a possible allosteric potentiating effect of these antagonists on D-Asp receptors. L-Glu-induced currents were significantly reduced in the presence of bath-applied D-Asp, whereas bath-applied L-Glu had no effect on D-Asp-induced currents. The mixed effects of these agents on D-Asp-induced currents in Aplysia illustrate that the underlying channels are not uniformly characteristic of any known agonist associated channel type.
PMCID: PMC3432962  PMID: 22950043
APV; buccal ganglion; coagonist; electrophysiology; mollusk; NMDA

Résultats 1-5 (5)