PMCC PMCC

Conseils de recherche
Les critères de recherche

Avancée
Résultats 1-6 (6)
 

Notices sélectionnées (0)
Aucune

Sélectionner un filtre

Revues
Année de publication
Type de document
1.  Activation of guanylate cyclase-C attenuates stretch responses and sensitization of mouse colorectal afferents 
Irritable bowel syndrome (IBS) is characterized by altered bowel habits, persistent pain and discomfort, and typically colorectal hypersensitivity. Linaclotide, a peripherally-restricted 14-amino acid peptide approved for the treatment of IBS with constipation, relieves constipation and reduces IBS-associated pain in these patients presumably by activation of guanylate cyclase-C (GC-C), which stimulates production and release of cyclic guanosine monophosphate (cGMP) from intestinal epithelial cells. We investigated whether activation of GC-C by the endogenous agonist uroguanylin or the primary downstream effector of that activation, cGMP, directly modulates responses and sensitization of mechanosensitive colorectal primary afferents. The distal 2 cm of mouse colorectum with attached pelvic nerve was harvested, pinned flat mucosal side up for in vitro single-fiber recordings and the encoding properties of mechanosensitive afferents (serosal, mucosal, muscular and muscular-mucosal) to probing and circumferential stretch studied. Both cGMP (10–300μM) and uroguanylin (1–1000nM) applied directly to colorectal receptive endings significantly reduced responses of muscular and muscular-mucosal afferents to stretch; serosal and mucosal afferents were not affected. Sensitized responses (i.e., increased responses to stretch) of muscular and muscular-mucosal afferents were reversed by cGMP, returning responses to stretch to control. Blocking the transport of cGMP from colorectal epithelia by probenecid, a mechanism validated by studies in cultured intestinal T84 cells, abolished the inhibitory effect of uroguanylin on muscular-mucosal afferents. These results suggest that GC-C agonists like linaclotide alleviate colorectal pain and hypersensitivity by dampening stretch-sensitive afferent mechanosensitivity and normalizing afferent sensitization.
doi:10.1523/JNEUROSCI.5114-12.2013
PMCID: PMC3739058  PMID: 23739979
2.  Gene expression profiling and endothelin in acute experimental pancreatitis 
AIM: To analyze gene expression profiles in an experimental pancreatitis and provide functional reversal of hypersensitivity with candidate gene endothelin-1 antagonists.
METHODS: Dibutyltin dichloride (DBTC) is a chemical used as a polyvinyl carbonate stabilizer/catalyzer, biocide in agriculture, antifouling agent in paint and fabric. DBTC induces an acute pancreatitis flare through generation of reactive oxygen species. Lewis-inbred rats received a single i.v. injection with either DBTC or vehicle. Spinal cord and dorsal root ganglia (DRG) were taken at the peak of inflammation and processed for transcriptional profiling with a cDNA microarray biased for rat brain-specific genes. In a second study, groups of animals with DBTC-induced pancreatitis were treated with endothelin (ET) receptor antagonists [ET-A (BQ123) and ET-B BQ788)]. Spontaneous pain related mechanical and thermal hypersensitivity were measured. Immunohistochemical analysis was performed using anti-ET-A and ET-B antibodies on sections from pancreatic tissues and DRG of the T10-12 spinal segments.
RESULTS: Animals developed acute pancreatic inflammation persisting 7-10 d as confirmed by pathological studies (edema in parenchyma, loss of pancreatic architecture and islets, infiltration of inflammatory cells, neutrophil and mononuclear cells, degeneration, vacuolization and necrosis of acinar cells) and the pain-related behaviors (cutaneous secondary mechanical and thermal hypersensitivity). Gene expression profile was different in the spinal cord from animals with pancreatitis compared to the vehicle control group. Over 260 up-regulated and 60 down-regulated unique genes could be classified into 8 functional gene families: circulatory/acute phase/immunomodulatory; extracellular matrix; structural; channel/receptor/transporter; signaling transduction; transcription/translation-related; antioxidants/chaperones/heat shock; pancreatic and other enzymes. ET-1 was among the 52 candidate genes up-regulated greater than 2-fold in animals with pancreatic inflammation and visceral pain-related behavior. Treatments with the ET-A (BQ123) and ET-B (BQ-788) antagonists revealed significant protection against inflammatory pain related mechanical and thermal hypersensitivity behaviors in animals with pancreatitis (P < 0.05). Open field spontaneous behavioral activity (at baseline, day 6 and 30 min after drug treatments (BQ123, BQ788) showed overall stable activity levels indicating that the drugs produced no undesirable effects on normal exploratory behaviors, except for a trend toward reduction of the active time and increase in resting time at the highest dose (300 μmol/L). Immunocytochemical localization revealed that expression of ET-A and ET-B receptors increased in DRG from animals with pancreatitis. Endothelin receptor localization was combined in dual staining with neuronal marker NeuN, and glia marker, glial fibrillary acidic protein. ET-A was expressed in the cell bodies and occasional nuclei of DRG neurons in naïve animals. However, phenotypic expression of ET-A receptor was greatly increased in neurons of all sizes in animals with pancreatitis. Similarly, ET-B receptor was localized in neurons and in the satellite glia, as well as in the Schwann cell glial myelin sheaths surrounding the axons passing through the DRG.
CONCLUSION: Endothelin-receptor antagonists protect against inflammatory pain responses without interfering with normal exploratory behaviors. Candidate genes can serve as future biomarkers for diagnosis and/or targeted gene therapy.
doi:10.3748/wjg.v18.i32.4257
PMCID: PMC3436040  PMID: 22969188
Gene expression; Endothelin receptors; Pancreatitis; Pain; Dibutyltin dichloride; Hypersensitivity; Hyperalgesia
3.  Proteome characterization of developing grains in bread wheat cultivars (Triticum aestivum L.) 
BMC Plant Biology  2012;12:147.
Background
The analyses of protein synthesis, accumulation and regulation during grain development in wheat are more complex because of its larger genome size compared to model plants such as Arabidopsis and rice. In this study, grains from two wheat cultivars Jimai 20 and Zhoumai 16 with different gluten quality properties were harvested at five development stages, and were used to displayed variable expression patterns of grain proteins.
Results
Proteome characterization during grain development in Chinese bread wheat cultivars Jimai 20 and Zhoumai 16 with different quality properties was investigated by 2-DE and tandem MALDI-TOF/TOF-MS. Identification of 117 differentially accumulated protein spots representing 82 unique proteins and five main expression patterns enabled a chronological description of wheat grain formation. Significant proteome expression differences between the two cultivars were found; these included 14 protein spots that accumulated in both cultivars but with different patterns and 27 cultivar-different spots. Among the cultivar-different protein spots, 14 accumulated in higher abundance in Jimai 20 than in Zhoumai 16, and included NAD-dependent isocitrate dehydrogenase, triticin precursor, LMW-s glutenin subunit and replication factor C-like protein. These proteins are likely to be associated with superior gluten quality. In addition, some proteins such as class II chitinase and peroxidase 1 with isoforms in developing grains were shown to be phosphorylated by Pro-Q Diamond staining and phosphorprotein site prediction. Phosphorylation could have important roles in wheat grain development. qRT-PCR analysis demonstrated that transcriptional and translational expression patterns of many genes were significantly different.
Conclusions
Wheat grain proteins displayed variable expression patterns at different developmental stages and a considerable number of protein spots showed differential accumulation between two cultivars. Differences in seed storage proteins were considered to be related to different quality performance of the flour from these wheat cultivars. Some proteins with isoforms were phosphorylated, and this may reflect their importance in grain development. Our results provide new insights into proteome characterization during grain development in different wheat genotypes.
doi:10.1186/1471-2229-12-147
PMCID: PMC3480910  PMID: 22900893
Wheat; Grain proteome; Phosphorproteins; 2-DE; Tandem MS; qRT-PCR
4.  Systemic RNAi-mediated Gene Silencing in Nonhuman Primate and Rodent Myeloid Cells 
Leukocytes are central regulators of inflammation and the target cells of therapies for key diseases, including autoimmune, cardiovascular, and malignant disorders. Efficient in vivo delivery of small interfering RNA (siRNA) to immune cells could thus enable novel treatment strategies with broad applicability. In this report, we develop systemic delivery methods of siRNA encapsulated in lipid nanoparticles (LNP) for durable and potent in vivo RNA interference (RNAi)-mediated silencing in myeloid cells. This work provides the first demonstration of siRNA-mediated silencing in myeloid cell types of nonhuman primates (NHPs) and establishes the feasibility of targeting multiple gene targets in rodent myeloid cells. The therapeutic potential of these formulations was demonstrated using siRNA targeting tumor necrosis factor-α (TNFα) which induced substantial attenuation of disease progression comparable to a potent antibody treatment in a mouse model of rheumatoid arthritis (RA). In summary, we demonstrate a broadly applicable and therapeutically relevant platform for silencing disease genes in immune cells.
doi:10.1038/mtna.2011.3
PMCID: PMC3381593  PMID: 23344621
delivery; immune cell; siRNA
5.  siRNA knock-down of mutant torsinA restores processing through secretory pathway in DYT1 dystonia cells 
Human molecular genetics  2008;17(10):1436-1445.
Most cases of the dominantly inherited movement disorder, early onset torsion dystonia (DYT1) are caused by a mutant form of torsinA lacking a glutamic acid residue in the C-terminal region (torsinAΔE). TorsinA is an AAA1 protein located predominantly in the lumen of the endoplasmic reticulum (ER) and nuclear envelope apparently involved in membrane structure/movement and processing of proteins through the secretory pathway. A reporter protein Gaussia luciferase (Gluc) shows a reduced rate of secretion in primary fibroblasts from DYT1 patients expressing endogenous levels of torsinA and torsinAΔE when compared with control fibroblasts expressing only torsinA. In this study, small interfering RNA (siRNA) oligonucleotides were identified, which downregulate the levels of torsinA or torsinAΔE mRNA and protein by over 65% following transfection. Transfection of siRNA for torsinA message in control fibroblasts expressing Gluc reduced levels of luciferase secretion compared with the same cells non-transfected or transfected with a non-specific siRNA. Transfection of siRNA selectively inhibiting torsinAΔE message in DYT fibroblasts increased lucifer-ase secretion when compared with cells non-transfected or transfected with a non-specific siRNA. Further, transduction of DYT1 cells with a lentivirus vector expressing torsinA, but not torsinB, also increased secretion. These studies are consistent with a role for torsinA as an ER chaperone affecting processing of proteins through the secretory pathway and indicate that torsinAΔE acts to inhibit this torsinA activity. The ability of allele-specific siRNA for torsinAΔE to normalize secretory function in DYT1 patient cells supports its potential role as a therapeutic agent in early onset torsion dystonia.
doi:10.1093/hmg/ddn032
PMCID: PMC2861568  PMID: 18258738
6.  siRNA knock-down of mutant torsinA restores processing through secretory pathway in DYT1 dystonia cells 
Human Molecular Genetics  2008;17(10):1436-1445.
Most cases of the dominantly inherited movement disorder, early onset torsion dystonia (DYT1) are caused by a mutant form of torsinA lacking a glutamic acid residue in the C-terminal region (torsinAΔE). TorsinA is an AAA+ protein located predominantly in the lumen of the endoplasmic reticulum (ER) and nuclear envelope apparently involved in membrane structure/movement and processing of proteins through the secretory pathway. A reporter protein Gaussia luciferase (Gluc) shows a reduced rate of secretion in primary fibroblasts from DYT1 patients expressing endogenous levels of torsinA and torsinAΔE when compared with control fibroblasts expressing only torsinA. In this study, small interfering RNA (siRNA) oligonucleotides were identified, which downregulate the levels of torsinA or torsinAΔE mRNA and protein by over 65% following transfection. Transfection of siRNA for torsinA message in control fibroblasts expressing Gluc reduced levels of luciferase secretion compared with the same cells non-transfected or transfected with a non-specific siRNA. Transfection of siRNA selectively inhibiting torsinAΔE message in DYT fibroblasts increased luciferase secretion when compared with cells non-transfected or transfected with a non-specific siRNA. Further, transduction of DYT1 cells with a lentivirus vector expressing torsinA, but not torsinB, also increased secretion. These studies are consistent with a role for torsinA as an ER chaperone affecting processing of proteins through the secretory pathway and indicate that torsinAΔE acts to inhibit this torsinA activity. The ability of allele-specific siRNA for torsinAΔE to normalize secretory function in DYT1 patient cells supports its potential role as a therapeutic agent in early onset torsion dystonia.
doi:10.1093/hmg/ddn032
PMCID: PMC2861568  PMID: 18258738

Résultats 1-6 (6)