PMCC PMCC

Conseils de recherche
Les critères de recherche

Avancée
Résultats 1-8 (8)
 

Notices sélectionnées (0)
Aucune

Sélectionner un filtre

Revues
Auteurs
plus »
Année de publication
Type de document
1.  Identifying targets for COPD treatment through gene expression analyses 
Despite the status of chronic obstructive pulmonary disease (COPD) as a major global health problem, no currently available therapies can limit COPD progression. Therefore, an urgent need exists for the development of new and effective treatments for COPD. An improved understanding in the molecular pathogenesis of COPD can potentially identify molecular targets to facilitate the development of new therapeutic modalities. Among the best approaches for understanding the molecular basis of COPD include gene expression profiling techniques, such as serial analysis of gene expression or microarrays. Using these methods, recent studies have mapped comparative gene expression profiles of lung tissues from patients with different stages of COPD relative to healthy smokers or non-smokers. Such studies have revealed a number of differentially-regulated genes associated with COPD progression, which include genes involved in the regulation of inflammation, extracellular matrix, cytokines, chemokines, apoptosis, and stress responses. These studies have shed new light on the molecular mechanisms of COPD, and suggest novel targets for clinical treatments.
PMCID: PMC2629979  PMID: 18990963
COPD; gene expression; therapeutic targets
2.  Autophagy proteins regulate innate immune response by inhibiting NALP3 inflammasome-mediated mitochondrial DNA release 
Nature immunology  2010;12(3):222-230.
Autophagy, a cellular process for organelle and protein turnover, regulates innate immune responses. We demonstrate that depletion of autophagic proteins microtubule associated protein-1 light chain 3B (LC3B) and Beclin 1 enhances caspase-1 activation and secretion of interleukin-1β and interleukin-18. Autophagic protein depletion promoted accumulation of dysfunctional mitochondria and cytosolic translocation of mitochondrial DNA (mtDNA) in response to lipopolysaccharide (LPS) and ATP in macrophages. Release of mtDNA into the cytosol depended on the NALP3 inflammasome and mitochondrial ROS. Cytosolic mtDNA contributed to IL-1β and IL-18 secretion in response to LPS and ATP. LC3B-deficient mice produced more caspase-1-dependent cytokines in two sepsis models and were susceptible to LPS-induced mortality. Our study suggests that autophagic proteins regulate NALP3-dependent inflammation by preserving mitochondrial integrity.
doi:10.1038/ni.1980
PMCID: PMC3079381  PMID: 21151103
3.  Autophagy in cigarette smoke-induced chronic obstructive pulmonary disease 
The molecular and cellular mechanisms underlying the pathogenesis of chronic obstructive pulmonary disease (COPD) remain incompletely understood. We have investigated the potential role of macro-autophagy, a cellular homeostatic mechanism, in COPD and cigarette smoke-induced lung-cell injury. Autophagy is a dynamic process for the turnover of organelles and proteins, which regenerates metabolic precursors through the lysosomal-dependent catabolism of cellular macromolecules. It is typically associated with survival pathways, especially in nutrient deficiency states. The role of autophagy in human diseases is less clear, and has been associated with both protective and detrimental consequences, depending on the disease model. While autophagy is considered cytoprotective, this process is often found in association with cell death, and the relationships between autophagy and cell death remain ambiguous. We have found elevated autophagy in COPD lung specimens, as well as in response to cigarette smoke exposure in vitro and in vivo. In our studies, the activation of autophagic proteins was associated with epithelial cell apoptosis in response to cigarette smoke, with pathogenic implications in COPD. Further studies are needed to determine the functional significance of autophagy in COPD and other diseases of the lung.
doi:10.1586/ers.10.61
PMCID: PMC3081520  PMID: 20923337
apoptosis; autophagy; chronic obstructive pulmonary disease; cigarette smoke; emphysema
4.  Beclin 1 deficiency is associated with increased hypoxia-induced angiogenesis 
Autophagy  2011;7(8):829-839.
Beclin 1, a tumor suppressor protein, acts as an initiator of autophagy in mammals. Heterozygous disruption of Beclin 1 accelerates tumor growth, but the underlying mechanisms remain unclear. We examined the role of Beclin 1 in tumor proliferation and angiogenesis, using a primary mouse melanoma tumor model. Beclin 1 (Becn1+/−) hemizygous mice displayed an aggressive tumor growth phenotype with increased angiogenesis under hypoxia, associated with enhanced levels of circulating erythropoietin but not vascular endothelial growth factor, relative to wild-type mice. Using in vivo and ex vivo assays, we demonstrated increased angiogenic activity in Becn1+/− mice relative to wild-type mice. Endothelial cells from Becn1+/− mice displayed increased proliferation, migration and tube formation in response to hypoxia relative to wild-type cells. Moreover, Becn1+/− cells subjected to hypoxia displayed increased hypoxia-inducible factor-2α (HIF-2α) expression relative to HIF-1α. Genetic interference of HIF-2α but not HIF-1α, dramatically reduced hypoxia-inducible proliferation, migration and tube formation in Becn1+/− endothelial cells. We demonstrated that mice deficient in the autophagic protein Beclin 1 display a pro-angiogenic phenotype associated with the upregulation of HIF-2α and increased erythropoietin production. These results suggest a relationship between Beclin 1 and the regulation of angiogenesis, with implications in tumor growth and development.
doi:10.4161/auto.7.8.15598
PMCID: PMC3149693  PMID: 21685724
angiogenesis; autophagy; beclin 1; hypoxia-inducible factor
5.  Carbon monoxide inhibits Fas activating antibody-induced apoptosis in endothelial cells 
Background
The extrinsic apoptotic pathway initiates when a death ligand, such as the Fas ligand, interacts with its cell surface receptor (ie., Fas/CD95), forming a death-inducing signaling complex (DISC). The Fas-dependent apoptotic pathway has been implicated in several models of lung or vascular injury. Carbon monoxide, an enzymatic product of heme oxygenase-1, exerts antiapoptotic effects at low concentration in vitro and in vivo.
Methods
Using mouse lung endothelial cells (MLEC), we examined the antiapoptotic potential of carbon monoxide against apoptosis induced by the Fas/CD95-activating antibody (Jo2). Carbon monoxide was applied to cell cultures in vitro. The expression and/or activation of apoptosis-related proteins and signaling intermediates were determined using Western Immunoblot and co-immunoprecipitation assays. Cell death was monitored by lactate dehydrogenase (LDH) release assays. Statistical significance was determined by student T-test and a value of P < 0.05 was considered significant.
Results
Treatment of MLEC with Fas-activating antibody (Jo2) induced cell death associated with the formation of the DISC, and activation of caspases (-8, -9, and -3), as well as the pro-apoptotic Bcl-2 family protein Bax. Exposure of MLEC to carbon monoxide inhibited Jo2-induced cell death, which correlated with the inhibition of DISC formation, cleavage of caspases-8, -9, and -3, and Bax activation. Carbon monoxide inhibited the phosphorylation of the Fas-associated death domain-containing protein, as well as its association with the DISC. Furthermore, carbon monoxide induced the expression of the antiapoptotic protein FLIP and increased its association with the DISC.
CO-dependent cytoprotection against Fas mediated apoptosis in MLEC depended in part on activation of ERK1/2-dependent signaling.
Conclusions
Carbon monoxide has been proposed as a potential therapy for lung and other diseases based in part on its antiapoptotic effects in endothelial cells. In vitro, carbon monoxide may inhibit both Fas/caspase-8 and Bax-dependent apoptotic signaling pathways induced by Fas-activating antibody in endothelial cells. Strategies to block Fas-dependent apoptotic pathways may be useful in development of therapies for lung or vascular disorders.
doi:10.1186/2045-9912-1-8
PMCID: PMC3231877  PMID: 22146483
6.  Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice 
Respiratory Research  2008;9(1):45.
Background
Nitric oxide (NO) and carbon monoxide (CO) in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study.
Methods
Expired NO (ENO) and CO (ECO) were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10-/-, A/J, MKK3-/-, JNK1-/-, NOS-2-/- and NOS-3-/-) with and without allergic airway inflammation (AI) induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA) within groups over time of inflammation induction. ENO and ECO were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC), and tin protoporphyrin (SnPP) were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR) were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing.
Results
ENO was significantly elevated in naïve IL-10-/- (9–14 ppb) and NOS-2-/- (16 ppb) mice as compared to others (average: 5–8 ppb), whereas ECO was significantly higher in naïve A/J, NOS-3-/- (3–4 ppm), and MKK3-/- (4–5 ppm) mice, as compared to others (average: 2.5 ppm). As compared to C57Bl6 mice, AR of IL-10-/-, JNK1-/-, NOS-2-/-, and NOS-3-/- mice were decreased, whereas they were greater for A/J and MKK3-/- mice. SMTC significantly decreased ENO by ~30%, but did not change AR in NOS-2-/- mice. SnPP reduced ECO in C57Bl6 and IL-10-/- mice, and increased AR in NOS-2-/- mice. ENO decreased as a function of age in IL-10-/- mice, remaining unchanged in C57Bl6 mice.
Conclusion
These results are consistent with the ideas that: 1) ENO is associated with mouse strain and knockout differences in NO production and AR, 2) alterations of ENO and ECO can be measured non-invasively with induction of allergic AI or inhibition of key gas-producing enzymes, and 3) alterations in AR may be dependent on the relative balance of NO and CO in the airway.
doi:10.1186/1465-9921-9-45
PMCID: PMC2474844  PMID: 18505586
7.  Inverse association of plasma IL-13 and inflammatory chemokines with lung function impairment in stable COPD: a cross-sectional cohort study 
Respiratory Research  2007;8(1):64.
Background
Chronic obstructive pulmonary disease (COPD) is a heterogeneous syndrome characterized by varying degrees of airflow limitation and diffusion impairment. There is increasing evidence to suggest that COPD is also characterized by systemic inflammation. The primary goal of this study was to identify soluble proteins in plasma that associate with the severity of airflow limitation in a COPD cohort with stable disease. A secondary goal was to assess whether unique markers associate with diffusion impairment, based on diffusion capacity of carbon monoxide (DLCO), independent of the forced expiratory volume in 1 second (FEV1).
Methods
A cross sectional study of 73 COPD subjects was performed in order to examine the association of 25 different plasma proteins with the severity of lung function impairment, as defined by the baseline measurements of the % predicted FEV1 and the % predicted DLCO. Plasma protein concentrations were assayed using multiplexed immunobead-based cytokine profiling. Associations between lung function and protein concentrations were adjusted for age, gender, pack years smoking history, current smoking, inhaled corticosteroid use, systemic corticosteroid use and statin use.
Results
Plasma concentrations of CCL2/monocyte chemoattractant protein-1 (CCL2/MCP-1), CCL4/macrophage inflammatory protein-1β (CCL4/MIP -1β), CCL11/eotaxin, and interleukin-13 (IL-13) were inversely associated with the % FEV1. Plasma concentrations of soluble Fas were associated with the % DLCO, whereas CXCL9/monokine induced by interferon-γ (CXCL9/Mig), granulocyte- colony stimulating factor (G-CSF) and IL-13 showed inverse relationships with the % DLCO.
Conclusion
Systemic inflammation in a COPD cohort is characterized by cytokines implicated in inflammatory cell recruitment and airway remodeling. Plasma concentrations of IL-13 and chemoattractants for monocytes, T lymphocytes, and eosinophils show associations with increasing severity of disease. Soluble Fas, G-CSF and CXCL9/Mig may be unique markers that associate with disease characterized by disproportionate abnormalities in DLCO independent of the FEV1.
doi:10.1186/1465-9921-8-64
PMCID: PMC2064925  PMID: 17868461
8.  Heme oxygenase-1 and carbon monoxide in pulmonary medicine 
Respiratory Research  2003;4(1):7.
Heme oxygenase-1 (HO-1), an inducible stress protein, confers cytoprotection against oxidative stress in vitro and in vivo. In addition to its physiological role in heme degradation, HO-1 may influence a number of cellular processes, including growth, inflammation, and apoptosis. By virtue of anti-inflammatory effects, HO-1 limits tissue damage in response to proinflammatory stimuli and prevents allograft rejection after transplantation. The transcriptional upregulation of HO-1 responds to many agents, such as hypoxia, bacterial lipopolysaccharide, and reactive oxygen/nitrogen species. HO-1 and its constitutively expressed isozyme, heme oxygenase-2, catalyze the rate-limiting step in the conversion of heme to its metabolites, bilirubin IXα, ferrous iron, and carbon monoxide (CO). The mechanisms by which HO-1 provides protection most likely involve its enzymatic reaction products. Remarkably, administration of CO at low concentrations can substitute for HO-1 with respect to anti-inflammatory and anti-apoptotic effects, suggesting a role for CO as a key mediator of HO-1 function. Chronic, low-level, exogenous exposure to CO from cigarette smoking contributes to the importance of CO in pulmonary medicine. The implications of the HO-1/CO system in pulmonary diseases will be discussed in this review, with an emphasis on inflammatory states.
doi:10.1186/1465-9921-4-7
PMCID: PMC193681  PMID: 12964953
carbon monoxide; heme oxygenase-1; lung disease

Résultats 1-8 (8)