PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (956760)

Clipboard (0)
None

Related Articles

1.  Short Communication: HIV Type 1 Transmitted Drug Resistance and Evidence of Transmission Clusters Among Recently Infected Antiretroviral-Naive Individuals from Ugandan Fishing Communities of Lake Victoria 
Abstract
Human immunodeficiency virus type 1 (HIV-1) prevalence and incidence in the fishing communities on Lake Victoria in Uganda are high. This population may play a role in driving the HIV epidemic in Uganda including the spread of transmitted drug resistance (TDR). We report data on TDR in this population among antiretroviral (ARV)-naive, recently infected individuals about 5 years after ARV scaling-up in Uganda. We identified phylogenetic transmission clusters and combined these with volunteer life histories in order to understand the sexual networks within this population. From a prospective cohort of 1,000 HIV-negative individuals recruited from five communities, 51 seroconverters were identified over a period of 2 years. From these, whole blood was collected and population sequencing of the HIV-1 pol gene (protease/reverse transcriptase) was performed from plasma. Drug resistance mutations (DRMs) were scored using the 2009 WHO list for surveillance of TDR. TDR prevalence categories were estimated using the WHO recommended truncated sampling technique for the surveillance of TDR for use in resource-limited settings (RLS). Of the samples 92% (47/51) were successfully genotyped. HIV-1 subtype frequencies were 15/47 (32%) A1, 20/47 (43%) D, 1/47 (2%) C, 1/47 (2%) G, and 10/47 (21%) unique recombinant forms. Nonnucleoside reverse transcriptase inhibitor (NNRTI) drug resistance mutation K103N was identified in two individuals and V106A in one (6%) suggesting that the level of TDR was moderate in this population. No nucleoside/tide reverse transcriptase inhibitor (NRTI) or protease inhibitor (PI) DRMs were detected. In this study, we identified five transmission clusters supported by high bootstrap values and low genetic distances. Of these, one pair included the two individuals with K103N. Two of the genotypic clusters corresponded with reported sexual partnerships as detected through prior in-depth interviews. The level of TDR to NNRTIs in these ARV-naive individuals was moderate by WHO threshold survey categorization. The transmission clusters suggest a high degree of sexual partner mixing between members of these communities.
doi:10.1089/aid.2012.0123
PMCID: PMC3636596  PMID: 23173702
2.  First Line Treatment Response in Patients with Transmitted HIV Drug Resistance and Well Defined Time Point of HIV Infection: Updated Results from the German HIV-1 Seroconverter Study 
PLoS ONE  2014;9(5):e95956.
Background
Transmission of drug-resistant HIV-1 (TDR) can impair the virologic response to antiretroviral combination therapy. Aim of the study was to assess the impact of TDR on treatment success of resistance test-guided first-line therapy in the German HIV-1 Seroconverter Cohort for patients infected with HIV between 1996 and 2010. An update of the prevalence of TDR and trend over time was performed.
Methods
Data of 1,667 HIV-infected individuals who seroconverted between 1996 and 2010 were analysed. The WHO drug resistance mutations list was used to identify resistance-associated HIV mutations in drug-naïve patients for epidemiological analysis. For treatment success analysis the Stanford algorithm was used to classify a subset of 323 drug-naïve genotyped patients who received a first-line cART into three resistance groups: patients without TDR, patients with TDR and fully active cART and patients with TDR and non-fully active cART. The frequency of virologic failure 5 to 12 months after treatment initiation was determined.
Results
Prevalence of TDR was stable at a high mean level of 11.9% (198/1,667) in the HIV-1 Seroconverter Cohort without significant trend over time. Nucleotide reverse transcriptase inhibitor resistance was predominant (6.0%) and decreased significantly over time (OR = 0.92, CI = 0.87–0.98, p = 0.01). Non-nucleoside reverse transcriptase inhibitor (2.4%; OR = 1.00, CI = 0.92–1.09, p = 0.96) and protease inhibitor resistance (2.0%; OR = 0.94, CI = 0.861.03, p = 0.17) remained stable. Virologic failure was observed in 6.5% of patients with TDR receiving fully active cART, 5,6% of patients with TDR receiving non-fully active cART and 3.2% of patients without TDR. The difference between the three groups was not significant (p = 0.41).
Conclusion
Overall prevalence of TDR remained stable at a rather high level. No significant differences in the frequency of virologic failure were identified during first-line cART between patients with TDR and fully-active cART, patients with TDR and non-fully active cART and patients without TDR.
doi:10.1371/journal.pone.0095956
PMCID: PMC4006817  PMID: 24788613
3.  Increase of Transmitted Drug Resistance among HIV-Infected Sub-Saharan Africans Residing in Spain in Contrast to the Native Population 
PLoS ONE  2011;6(10):e26757.
Background
The prevalence of transmitted HIV drug resistance (TDR) is stabilizing or decreasing in developed countries. However, this trend is not specifically evaluated among immigrants from regions without well-implemented antiretroviral strategies.
Methods
TDR trends during 1996–2010 were analyzed among naïve HIV-infected patients in Spain, considering their origin and other factors. TDR mutations were defined according to the World Health Organization list.
Results
Pol sequence was available for 732 HIV-infected patients: 292 native Spanish, 226 sub-Saharan Africans (SSA), 114 Central-South Americans (CSA) and 100 from other regions. Global TDR prevalence was 9.7% (10.6% for Spanish, 8.4% for SSA and 7.9% for CSA). The highest prevalences were found for protease inhibitors (PI) in Spanish (3.1%), for non-nucleoside reverse transcriptase inhibitors (NNRTI) in SSA (6.5%) and for nucleoside reverse transcriptase inhibitors (NRTI) in both Spanish and SSA (6.5%). The global TDR rate decreased from 11.3% in 2004–2006 to 8.4% in 2007–2010. Characteristics related to a decreasing TDR trend in 2007-10 were Spanish and CSA origin, NRTI- and NNRTI-resistance, HIV-1 subtype B, male sex and infection through injection drug use. TDR remained stable for PI-resistance, in patients infected through sexual intercourse and in those carrying non-B variants. However, TDR increased among SSA and females. K103N was the predominant mutation in all groups and periods.
Conclusion
TDR prevalence tended to decrease among HIV-infected native Spanish and Central-South Americans, but it increased up to 13% in sub-Saharan immigrants in 2007–2010. These results highlight the importance of a specific TDR surveillance among immigrants to prevent future therapeutic failures, especially when administering NNRTIs.
doi:10.1371/journal.pone.0026757
PMCID: PMC3201965  PMID: 22046345
4.  Analysis of transmitted drug resistance and HIV-1 subtypes using dried serum spots of recently HIV-infected individuals in 2013 in Germany 
Journal of the International AIDS Society  2014;17(4Suppl 3):19670.
Introduction
The Robert Koch Institute (RKI) aimed to assess a molecular surveillance strategy based on filter-dried serum spots (DSS) of all newly diagnosed HIV infections in Germany. In 2013, diagnostic laboratories sent DSS to the RKI representing 55% of the newly diagnosed HIV infections reported to the RKI (protection against infection act). DSS were first tested serologically to identify recently acquired infections (<140 days duration of infection); those classified as “recent infection” were processed for HIV-1 genotyping. The aim of this study was to assess the level of TDR and the current HIV-1 subtypes in the main HIV transmission group categories (TrGrpC) in 2013: men who have sex with men (MSM), women/men with heterosexual contacts (HET) and injecting drug users (IDUs).
Materials and Methods
DSS were tested for recency of infection using the BED capture EIA. Viral RNA from “recent infections” was amplified by HIV-1 group M generic pol-RT-PCR covering all resistance-associated positions in the HIV-1 protease (AS1-99) and reverse transcriptase (AS1-252) if viral loads were ≥6,500 copies/mL. PCR amplicons were sequenced (Sanger) to analyze genotypic resistance and the HIV-1 subtype. Results were merged to data from the HIV report, i.e. the TrGrpC.
Results
In 2013, 1027 DSS were classified as recent HIV infections (506 MSM, 118 HET, 31 IDUs, 6 others, 366 unknown). RNA was extracted from 703 recent cases and 389/503 samples with sufficient viral load were PCR-positive. By June 2014, 276/389 samples were sequenced: TDR was identified in 13% (35/276) of the recent infections including single (PI, NRTI, NNRTI) and dual drug class resistant strains (NRTI/NNRTI; NNRTI/PI). 18% (51/276) of recent HIV-1 infections were caused by non-B subtypes (A1, C, CRF01_AE, CRF02_AG, D, F, G, URFs). TDR was observed at comparable levels in all TrGrpC. Proportions of non-B infections were significantly higher in HET (78%; 14/18) and IDUs (60%; 3/5) compared to MSM (8%; 14/169) (p<0.01).
Conclusions
The proportion of TDR was similar but the proportion of HIV-1 subtype non-B infections was higher as previously described for Germany based on results from the German HIV-1 Seroconverter Cohort [1,2]. This difference could be the result of a broadened inclusion of HET and IDUs due to the sampling method used making this study representative for molecular surveillance of HIV-1 in Germany.
doi:10.7448/IAS.17.4.19670
PMCID: PMC4225335  PMID: 25397420
5.  Antiretroviral drug susceptibility among drug-naive adults with recent HIV infection in Rakai, Uganda 
AIDS (London, England)  2009;27(7):845-852.
Objective
To analyze antiretroviral drug susceptibility in HIV from recently infected adults in Rakai, Uganda, prior to the availability of antiretroviral drug treatment.
Methods
Samples obtained at the time of HIV seroconversion (1998–2003) were analyzed using the GeneSeq HIV and PhenoSense HIV assays (Monogram Biosciences, Inc., South San Francisco, California, USA).
Results
Test results were obtained for 104 samples (subtypes: 26A, 1C, 66D, 9A/D, 1C/D, 1 intersubtype recombinant). Mutations used for genotypic surveillance of transmitted antiretroviral drug resistance were identified in six samples: three had nucleoside reverse transcriptase inhibitor (NRTI) surveillance mutations (two had M41L, one had K219R), and three had protease inhibitor surveillance mutations (I47V, F53L, N88D); none had nonnucleoside reverse transcriptase inhibitor (NNRTI) surveillance mutations. Other resistance-associated mutations were identified in some samples. However, none of the samples had a sufficient number of mutations to predict reduced antiretroviral drug susceptibility. Ten (9.6%) of the samples had reduced phenotypic susceptibility to at least one drug (one had partial susceptibility to didanosine, one had nevirapine resistance, and eight had resistance or partial susceptibility to at least one protease inhibitor). Fifty-three (51%) of the samples had hypersusceptibility to at least one drug (seven had zidovudine hypersusceptibility, 28 had NNRTI hypersusceptibility, 34 had protease inhibitor hypersusceptibility). Delavirdine hyper-susceptibility was more frequent in subtype A than D. In subtype D, efavirenz hypersusceptibility was associated with substitutions at codon 11 in HIV-reverse transcriptase.
Conclusion
Phenotyping detected reduced antiretroviral drug susceptibility and hypersusceptibility in HIV from some antiretroviral-naive Ugandan adults that was not predicted by genotyping. Phenotyping may complement genotyping for analysis of antiretroviral drug susceptibility in populations with nonsubtype B HIV infection.
doi:10.1097/QAD.0b013e328327957a
PMCID: PMC2676205  PMID: 19276794
antiretroviral drug; hypersusceptibility; phenotype; resistance; subtype; Uganda
6.  Efficacy of Short-Course AZT Plus 3TC to Reduce Nevirapine Resistance in the Prevention of Mother-to-Child HIV Transmission: A Randomized Clinical Trial 
PLoS Medicine  2009;6(10):e1000172.
Neil Martinson and colleagues report a randomized trial of adding short-course zidovudine+lamivudine to reduce drug resistance from single-dose nevirapine used to prevent mother-to-child transmission of HIV.
Background
Single-dose nevirapine (sdNVP)—which prevents mother-to-child transmission of HIV—selects non-nucleoside reverse-transcriptase inhibitor (NNRTI) resistance mutations in the majority of women and HIV-infected infants receiving it. This open-label, randomised trial examined the efficacy of short-course zidovudine (AZT) and lamivudine (3TC) with sdNVP in reducing NNRTI resistance in mothers, and as a secondary objective, in infants, in a setting where sdNVP was standard-of-care.
Methods and Findings
sdNVP alone, administered at the onset of labour and to the infant, was compared to sdNVP with AZT plus 3TC, given as combivir (CBV) for 4 (NVP/CBV4) or 7 (NVP/CBV7) days, initiated simultaneously with sdNVP in labour; their newborns received the same regimens. Women were randomised 1∶1∶1. HIV-1 resistance was assessed by population sequencing at: baseline, 2, and 6 wk after birth. An unplanned interim analysis resulted in early stopping of the sdNVP arm. 406 pregnant women were randomised and took study medication (sdNVP 74, NVP/CBV4 164, and NVP/CBV7 168). HIV-1 resistance mutations emerged in 59.2%, 11.7%, and 7.3% of women in the sdNVP, NVP/CBV4, and NVP/CBV7 arms by 6 wk postpartum; differences between NVP-only and both NVP/CBV arms were significant (p<0.0001), but the difference between NVP/CBV4 and NVP/CBV7 was not (p = 0.27). Estimated efficacy comparing combined CBV arms with sdNVP was 85.6%. Similar resistance reductions were seen in infants who were HIV-infected by their 6-wk visit.
Conclusions
A short course of AZT plus 3TC, supplementing maternal and infant sdNVP, reduces emergent NNRTI resistance mutations in both mothers and their infants. However, this trial was not powered to detect small differences between the CBV arms.
Trial registration
www.ClinicalTrials.gov NCT 00144183
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Currently, about 33 million people are infected with the human immunodeficiency virus (HIV), which causes AIDS. HIV can be treated with combination antiretroviral therapy (ART), commonly three individual antiretroviral drugs that together efficiently suppress the replication of the virus. HIV infection of a child by an HIV-positive mother during pregnancy, labor, delivery, or breastfeeding is called mother-to-child transmission (MTCT). In 2007, an estimated 420,000 children were newly infected with HIV, the majority through MTCT. Most of these mothers and children live in sub-Saharan Africa where child and maternal mortality rates are high and mortality in HIV-infected children is extremely high. MTCT is preventable and there is a global commitment, agreed at the UN General Assembly Session on HIV/AIDS in 2001, to reduce the proportion of infants infected with HIV by 50% by 2010.
Why Was This Study Done?
In many resource-limited settings, MTCT is prevented by giving a single dose of nevirapine (an antiretroviral drug which has a long duration in the body and protects the fetus during labor and delivery only) to HIV-infected women in labor and also to a baby within 72 hours of birth. However, nevirapine, a non-nucleoside reverse-transcriptase inhibitor (NNRTI), which suppresses the replication of the virus, is associated with increased resistance of HIV, in mother and child, to NNRTI. This resistance reduces the effectiveness of future treatments of both mother and child with combination ART that includes an NNRTI; such regimens are the mainstay for long-term treatment of HIV in developing countries. The researchers investigated whether giving other antiretroviral drugs with nevirapine, during labor and delivery, to both mother and her newborn reduced the chances of them developing resistance to NNRTIs.
What Did the Researchers Do and Find?
The researchers selected 406 HIV-positive pregnant women for study across five sites in South Africa between February 2003 and May 2007. The women and their newborn babies were randomly assigned to receive, either (i) a single dose of nevirapine, (ii) a single dose of nevirapine plus combivir (zidovudine combined with lamivudine) for four days, or (iii) a single dose of nevirapine plus combivir for seven days. At two days, two weeks, and six weeks after delivery blood was collected from mothers and babies. HIV virus from blood samples was analyzed for resistance mutations, and mothers and children with resistance mutations were monitored for a further 96 weeks until no resistance was detected or combination ART (also called “HAART”) was started. Enrollment into the single-dose nevirapine arm was stopped early because a very high rate of NNRTI resistance mutations was found and other investigators reported long-term bad consequences of NNRTI-resistance on subsequent ART. The two nevirapine plus combivir arms were continued. The researchers found that selection of resistance mutations by single-dose nevirapine was reduced in mother and child by the addition of zidovudine and lamivudine for a short period; resistance mutations were found in 59.2% of women who got nevirapine only but only 11.7%, and 7.3% of women treated nevirapine plus four days combivir, and nevirapine plus seven days combivir respectively. A reduction was also seen in new NNRTI resistant mutations in the HIV-infected infants that received combivir. The study did not have enough women to show that there was a real difference between the resistance in the four-day and seven-day combivir regimens.
What Do These Findings Mean?
These findings show that a short-course treatment of zidovudine and lamivudine in addition to a single dose of nevirapine during labor and birth reduces the selection of NNRTI resistance mutations in both mother and child. The drug regimens appeared safe, and easy to provide and adhere to. Preliminary results from this study contributed to a change in clinical practice for the care of pregnant women with HIV; in 2004 the World Health Organisation guidelines introduced a short course of combivir with nevirapine for the management of pregnant HIV-infected women. However, the study had some limitations. It used HIV-positive women who were mainly infected with a subtype of HIV called HIV-1 clade C and who had a lot of virus in their blood. NNRTI resistance after treatment with nevirapine is more common in clade C than in others and this study does not address the effect of these combinations for preventing NNRTI resistance in other HIV subtypes. Also, World Health Organization, national, and international guidelines recommend combination ART during pregnancy, as it decreases HIV transmission from mother to child in the uterus to <2% in resource-limited settings. Although long-term combination treatment may not be available in all locations, this study does not tell us how the short-term combinations during and after delivery tested would compare to longer-term combinations given to pregnant women in reducing both HIV transmission and HIV drug resistance.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000172.
This study is further discussed in a PLoS Medicine Perspective by Lehman et al.
The US Centers for Disease Control and Prevention provide information for HIV treatment and prevention
MedlinePlus provides extensive information on symptoms and treatment for HIV/AIDS as well as access to related clinical trials and medical literature
aidsmap, a nonprofit, nongovernmental organization provides information on HIV and supporting those living with HIV
The World Health Organization gives information on the prevention of mother-to-child transmission of HIV
doi:10.1371/journal.pmed.1000172
PMCID: PMC2760761  PMID: 19859531
7.  Genetic diversity and drug resistance among newly diagnosed and antiretroviral treatment-naive HIV-infected individuals in western Yunnan: a hot area of viral recombination in China 
BMC Infectious Diseases  2012;12:382.
Background
The emergence of an HIV-1 epidemic in China was first recognized in Dehong, western Yunnan. Due to its geographic location, Dehong contributed greatly in bridging HIV-1 epidemics in Southeast Asia and China through drug trafficking and injection drug use; and also extensively to the HIV genetic diversity in Yunnan and China. We attempt to monitor HIV-1 in this area by studying the HIV-1 genetic distribution and transmitted drug resistance (TDR) in various at-risk populations.
Methods
Blood samples from a total of 320 newly HIV-1 diagnosed individuals, who were antiretroviral therapy (ART)-naive, were collected from January 2009 to December 2010 in 2 counties in Dehong. HIV-1 subtypes and pol gene drug resistance (DR) mutations were genotyped.
Results
Among 299 pol sequences successfully genotyped (93.4%), subtype C accounted for 43.1% (n=129), unique recombinant forms (URFs) for 18.4% (n=55), CRF01_AE for 17.7% (n=54), B for 10.7% (n=32), CRF08_BC for 8.4% (n=25) and CRF07_BC for 1.7% (n=5). Subtype distribution in patients infected by different transmission routes varied. In contract to the previous finding of CRF01_AE predominance in 2002-2006, subtype C predominated in both injecting drug users (IDUs) and heterosexually transmitted populations in this study. Furthermore, we found a high level of BC, CRF01_AE/C and CRF01_AE/B/C recombinants suggesting the presence of active viral recombination in the area. TDR associated mutations were identified in 4.3% (n=13) individuals. A total of 1.3% of DR were related to protease inhibitors (PIs), including I85IV, M46I and L90M; 0.3% to nucleoside reverse transcriptase inhibitors (NRTIs), including M184I; and 2.7% to non-nucleoside reverse transcriptase inhibitors (NNRTIs), including K103N/S, Y181C, K101E and G190A.
Conclusion
Our work revealed diverse HIV-1 subtype distributions and intersubtype recombinations. We also identified a low but significant TDR mutation rate among ART-naive patients. These findings enhance our understanding of HIV-1 evolution and are valuable for the development and implementation of a comprehensive public health approach to HIV-1 DR prevention and treatment in the region.
doi:10.1186/1471-2334-12-382
PMCID: PMC3552723  PMID: 23270497
HIV-1; Genetic diversity; Drug resistance; Injecting drug use; Dehong; China
8.  Trends and Predictors of Transmitted Drug Resistance (TDR) and Clusters with TDR in a Local Belgian HIV-1 Epidemic 
PLoS ONE  2014;9(7):e101738.
We aimed to study epidemic trends and predictors for transmitted drug resistance (TDR) in our region, its clinical impact and its association with transmission clusters. We included 778 patients from the AIDS Reference Center in Leuven (Belgium) diagnosed from 1998 to 2012. Resistance testing was performed using population-based sequencing and TDR was estimated using the WHO-2009 surveillance list. Phylogenetic analysis was performed using maximum likelihood and Bayesian techniques. The cohort was predominantly Belgian (58.4%), men who have sex with men (MSM) (42.8%), and chronically infected (86.5%). The overall TDR prevalence was 9.6% (95% confidence interval (CI): 7.7–11.9), 6.5% (CI: 5.0–8.5) for nucleoside reverse transcriptase inhibitors (NRTI), 2.2% (CI: 1.4–3.5) for non-NRTI (NNRTI), and 2.2% (CI: 1.4–3.5) for protease inhibitors. A significant parabolic trend of NNRTI-TDR was found (p = 0.019). Factors significantly associated with TDR in univariate analysis were male gender, Belgian origin, MSM, recent infection, transmission clusters and subtype B, while multivariate and Bayesian network analysis singled out subtype B as the most predictive factor of TDR. Subtype B was related with transmission clusters with TDR that included 42.6% of the TDR patients. Thanks to resistance testing, 83% of the patients with TDR who started therapy had undetectable viral load whereas half of the patients would likely have received a suboptimal therapy without this test. In conclusion, TDR remained stable and a NNRTI up-and-down trend was observed. While the presence of clusters with TDR is worrying, we could not identify an independent, non-sequence based predictor for TDR or transmission clusters with TDR that could help with guidelines or public health measures.
doi:10.1371/journal.pone.0101738
PMCID: PMC4086934  PMID: 25003369
9.  HIV drug resistance surveillance in low- and middle-income countries: 2004 to 2010 
Background
At the end of 2011, over 8 million people were receiving antiretroviral therapy (ART) in low- and middle-income countries (LMIC), a 26-fold increase from 2003. Some degree of HIV drug resistance (HIVDR) will emerge among populations on combination ART even when high levels of adherence are achieved. In 2004, the World Health Organization (WHO) initiated global HIVDR surveillance to monitor emergence and transmission of HIVDR in countries scaling-up ART.
Methods
WHO HIVDR surveillance strategy was designed to inform public health decision-making regarding choice of ART and to identify ART programme factors which could be adjusted to minimize HIVDR emergence. The strategy includes (1) surveillance of transmitted HIVDR (TDR) in recently infected populations, (2) surveillance of acquired HIVDR (ADR) in populations on ART and (3) monitoring of early warning indicators (EWI) of HIVDR which are ART programme factors favouring HIVDR emergence. Surveys used standardized protocols. Epidemiological and sequence data were quality assured.
Results
TDR: Eighty-two surveys were conducted in 30 countries in 2004 to 2010, assessing 3588 recently infected individuals. Pooled analysis indicates an overall prevalence of 3.1% TDR to at least one drug class, 1.6% to non-nucleoside reverse transcriptase inhibitor (NNRTI), 1.3% to nucleoside reverse transcriptase inhibitor (NRTI) and 0.7% to protease inhibitor (PI). Levels of NNRTI resistance, particularly in the areas surveyed in Africa, increased over time, reaching 3.4% (95% CI=1.8 to 5.2%) in 2009. Greater ART coverage was associated, though modestly, with increased prevalence of TDR to NNRTI (P-value adjusted for region=0.039). ADR: Thirty-six ADR surveys assessing 6370 people in 12 LMIC were conducted in 2007 to 2010. HIVDR prevalence to any drug among those initiating ART ranged from 4.8% (95% CI=3.8 to 6.0%) in 2007 to 6.8% (95% CI=4.8 to 9.0%) in 2010. Ninety per cent of patients alive and on therapy at 12 months achieved viral load <1000 c/mL. Among people with virological failure, 72% had HIVDR to at least one drug. EWI: EWIs were monitored at 2017 clinics in 50 countries assessing 131,686 people since 2004. Overall, 75% of clinics met the target of 100% of patients receiving appropriate ART; 69% of clinics met the <20% target for lost to follow-up at 12 months; and only 65% of clinics provided a continuous supply of ART during a 12-month period.
Conclusion
Expansion of ART in LMIC has resulted in an overall increase in HIVDR, particularly to NNRTI in Africa. EWIs reveal important gaps in service delivery and programme performance. While these data call for continued and improved scale up of surveillance, they also suggest that resistance is under control in the areas surveyed, and the majority of patients initiating or switching therapy are likely to respond to currently available first- and second-line therapy.
doi:10.7448/IAS.15.6.18083
PMCID: PMC3512549
10.  Transmitted antiretroviral drug resistance in treatment naïve HIV-infected persons in London in 2011 to 2013 
Journal of the International AIDS Society  2014;17(4Suppl 3):19747.
Introduction
Previously published UK data on HIV transmitted drug resistance (TDR) shows that it ranges between 3 and 9.4% [1,2]. However, there are no recent data from populations where HIV transmission rates are increasing. The aim of this study was to assess the prevalence of TDR in untreated HIV-infected individuals attending three HIV specialist clinics under the HIV Directorate, Chelsea and Westminster Hospital and based throughout London – the Kobler Clinic, 56 Dean Street and West London Centre for Sexual Health.
Methods
We included all patients with a HIV diagnosis, no history of antiretroviral therapy (ART) intake, attending one of the three clinics (Kobler (K), 56 Dean Street (DS) and West London (WL)), between 2011 and 2013 who started antiretrovirals. Reverse transcriptase (RT) and protease region sequencing was performed using Vircotype virtual phenotype resistance analysis. Drug resistance mutations were identified according to Stanford University HIV Drug Resistance Database (http://hivdb.stanford.edu/).
Results
Among 1705 HIV-1-infected patients enrolled in the study, 1252 were males (919 were MSM), 107 were females and 346 had no gender recorded. Ethnicity was 51.1% white British/Irish/other, 6.1% African, 2.1% Caribbean, 2.8% Asian, 1.3% Indian/Pakistani/Bangladeshi, 4.2%, other, 3.2% not stated, and 29.2% unknown. 547 were from K (84.3% males, 48.3% MSM), 826 were from DS (84.3% males, 71.9% MSM), and 109 from WL (87.2% males, 56.0% MSM), 223 from other sites not specified. 77.5% (1321 of 1705) of patients had baseline viral resistance testing performed. Prevalence of primary resistance in those with a baseline viral resistance test was 13.5% overall: 19.3% in K, 14.9% in DS, and 14.7% in WL. The most common mutations detected were: NRTI: 184V, 215F, 41L; NNRTI 103N, 179D, 90I; PI 90M, 46I, and 82A. Among patients who tested with TDR, 79.1% had one single mutation, 18.7% and 2.2% exhibited dual or triple class-resistant viruses, respectively.
Conclusions
This study across a large HIV Medicine Directorate reported an overall TDR prevalence which is higher than that previously published and with significant rates of NNRTI resistance at baseline.
doi:10.7448/IAS.17.4.19747
PMCID: PMC4225370  PMID: 25397492
11.  Effectiveness of Non-nucleoside Reverse-Transcriptase Inhibitor-Based Antiretroviral Therapy in Women Previously Exposed to a Single Intrapartum Dose of Nevirapine: A Multi-country, Prospective Cohort Study 
PLoS Medicine  2010;7(2):e1000233.
In a comparative cohort study, Jeffrey Stringer and colleagues investigate the risk of ART failure in women who received single-dose nevirapine for PMTCT, and assess the duration of increased risk.
Background
Intrapartum and neonatal single-dose nevirapine (NVP) reduces the risk of mother-to-child HIV transmission but also induces viral resistance to non-nucleoside reverse transcriptase inhibitor (NNRTI) drugs. This drug resistance largely fades over time. We hypothesized that women with a prior single-dose NVP exposure would have no more than a 10% higher cumulative prevalence of failure of their NNRTI-containing antiretroviral therapy (ART) over the first 48 wk of therapy than would women without a prior exposure.
Methods and Findings
We enrolled 355 NVP-exposed and 523 NVP-unexposed women at two sites in Zambia, one site in Kenya, and two sites in Thailand into a prospective, non-inferiority cohort study and followed them for 48 wk on ART. Those who died, discontinued NNRTI-containing ART, or had a plasma viral load ≥400 copies/ml at either the 24 wk or 48 wk study visits and confirmed on repeat testing were characterized as having failed therapy. Overall, 114 of 355 NVP-exposed women (32.1%) and 132 of 523 NVP-unexposed women (25.2%) met criteria for treatment failure. The difference in failure rates between the exposure groups was 6.9% (95% confidence interval [CI] 0.8%–13.0%). The failure rates of women stratified by our predefined exposure interval categories were as follows: 47 of 116 women in whom less than 6 mo elapsed between exposure and starting ART failed therapy (40%; p<0.001 compared to unexposed women); 25 of 67 women in whom 7–12 mo elapsed between exposure and starting ART failed therapy (37%; p = 0.04 compared to unexposed women); and 42 of 172 women in whom more than 12 mo elapsed between exposure and starting ART failed therapy (24%; p = 0.82 compared to unexposed women). Locally weighted regression analysis also indicated a clear inverse relationship between virologic failure and the exposure interval.
Conclusions
Prior exposure to single-dose NVP was associated with an increased risk of treatment failure; however, this risk seems largely confined to women with a more recent exposure. Women requiring ART within 12 mo of NVP exposure should not be prescribed an NNRTI-containing regimen as first-line therapy.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every year, acquired immunodeficiency syndrome (AIDS) kills nearly 300,000 children. At the end of 2008, 2.1 million children were positive for the human immunodeficiency virus (HIV), the cause of AIDS, and in that year alone more than 400,000 children were newly infected with HIV. Most HIV-positive children acquire the virus from their mothers during pregnancy or birth or through breastfeeding, so-called mother-to-child transmission (MTCT). Without intervention, 15%–30% of babies born to HIV-positive women become infected with HIV during pregnancy and delivery, and a further 5%–20% become infected through breastfeeding. These rates of infection can be greatly reduced by treating the mother and her newborn baby with antiretroviral drugs. A single dose of nevirapine (a “non-nucleoside reverse transcriptase inhibitor” or NNRTI) given to the mother at the start of labor and to the baby soon after birth reduces the risk of MTCT by nearly a half; a further reduction in risk can be achieved by giving the mother and her baby additional antiretroviral drugs during pregnancy, around the time of birth, and while breast-feeding.
Why Was This Study Done?
Single-dose nevirapine is the mainstay of MTCT prevention programs in many poor countries but can induce resistance to nevirapine and to other NNRTIs. The drugs used to treat HIV infections fall into several different classes defined by how they stop viral growth. HIV can become resistant to any of these drugs and a virus strain that is resistant to one member of a drug class is often also resistant to other members of the same class. Because most first-line antiretroviral therapies (ARTs; cocktails of antiretroviral drugs) used in developing countries contain an NNRTI and because HIV-positive mothers eventually need ART to safeguard their own health, the resistance to NNRTIs that is induced in women by single-dose nevirapine might decrease the chances that ART will work for them later. In this multi-country, prospective cohort study, the researchers compare the effectiveness of NNRTI-containing ART in a group (cohort) of women previously exposed to single-dose nevirapine during childbirth to its effectiveness in a group of unexposed women. They also investigate whether the length of time between nevirapine exposure and ART initiation affects ART effectiveness.
What Did the Researchers Do and Find?
The researchers enrolled 355 HIV-positive nevirapine-exposed women and 523 HIV-positive nevirapine-unexposed women in Zambia, Kenya, and Thailand who were just starting NNRTI-containing ART and followed them for 48 weeks. They defined ART failure as death, discontinuation of NNRTI-containing ART, or a high virus load in the blood (virologic failure) at 24 or 48 weeks. ART failed in nearly a third of the nevirapine-exposed women but in only a quarter of the nevirapine-unexposed women. Women who began ART within 6 months of taking single-dose nevirapine to prevent MTCT were twice as likely to experience ART failure as women not exposed to single-dose nevirapine. Women who began ART 7–12 months after single-dose nevirapine had a slightly increased risk of ART failure compared to unexposed women but this increased risk was not statistically significant; that is, it could have occurred by chance. Women who began ART more than 12 months after single-dose nevirapine did not have an increased risk of ART failure compared to unexposed women. Finally, the researchers used a statistical method called locally weighted regression analysis to confirm that an increase in the interval between single-dose nevirapine and ART initiation decreased the risk of virologic failure.
What Do These Findings Mean?
These findings, which confirm and extend the results of previous studies and which are likely to be generalizable to other resource-poor countries, indicate that single-dose nevirapine given to women to prevent MTCT increases their risk of subsequent ART failure. More positively, they also show that this increased failure risk is largely confined to women who begin ART within a year of exposure to nevirapine. Because of the study design, it is possible that the nevirapine-exposed women share some additional, undefined characteristic that makes them more likely to fail ART than unexposed women. Even so, these findings suggest that, provided NNRTI-containing ART is not given to HIV-positive women within a year of nevirapine exposure, single-dose nevirapine can be safely used to prevent MTCT without compromising the mother's future antiretroviral treatment options.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000233.
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS, on treatments for HIV/AIDS, and on HIV infection in infants and children
HIV InSite has comprehensive information on all aspects of HIV/AIDS
Information is available from Avert, an international AIDS charity, on many aspects of HIV/AIDS, including information on children, HIV, and AIDS and on preventing mother-to-child transmission of HIV (in English and Spanish)
UNICEF also has information about children and HIV and AIDS (in several languages)
The World Health Organization has information on mother-to-child transmission of HIV
doi:10.1371/journal.pmed.1000233
PMCID: PMC2821896  PMID: 20169113
12.  Transmitted Antiretroviral Drug Resistance among Acute and Recent HIV Infections in North Carolina, 1998 to 2007 
Antiviral therapy  2009;14(5):673-678.
Background
Transmitted drug resistance (TDR) limits antiretroviral options, complicating management of HIV-positive patients. HIV disproportionately affects the Southern United States (US), but available national estimates of TDR prevalence principally reflect large metropolitan centers outside this region.
Methods
The Duke/UNC Acute HIV Program has collected data on acute or recent HIV infections (ARHI) in North Carolina (NC) since 1998. Acute infections represent antibody-negative, RNA-positive subjects; recent infection was determined by history of HIV testing, or concordance between detuned ELISA and antibody avidity assays. Genotypic sequence data from the earliest collected pre-treatment plasma sample were analyzed with the Stanford HIV Database and screened for Surveillance Drug Resistance Mutations (SDRMs).
Results
253 individuals with ARHI between 1998 and May 2007 had complete genotypic sequence data for analysis; 39.5% were acute infections, 78.7% were male, 64.8% were non-white, and 53.8% were men who have sex with men. The overall prevalence of TDR was 17.8%, with SDRMs for non-nucleoside reverse transcriptase inhibitors (NNRTIs) in 9.5% of the cohort. Mutations for nucleos(t)ide RT inhibitors (NRTIs) were detected in 7.5%, and for protease inhibitors (PIs) in 3.2%. K103N was the most common mutation (7.5%). Thymidine analogue mutations were found in 4.7% of samples; the most common PI SDRM was L90M (2.4%). Dual-or triple-class antiretroviral resistance was rare, encountered in only six samples (2.4%).
Conclusions
The prevalence of TDR in NC is similar to estimates from US metropolitan areas. These findings have implications for initial regimen selection and secondary prevention efforts outside of large, metropolitan HIV epicenters.
PMCID: PMC2860724  PMID: 19704170
HIV Infections/epidemiology; HIV Infections/transmission; North Carolina/epidemiology; Drug resistance, viral; Antiretroviral therapy, highly active
13.  National Prevalence and Trends of HIV Transmitted Drug Resistance in Mexico 
PLoS ONE  2011;6(11):e27812.
Background
Transmitted drug resistance (TDR) remains an important concern for the management of HIV infection, especially in countries that have recently scaled-up antiretroviral treatment (ART) access.
Methodology/Principal Findings
We designed a study to assess HIV diversity and transmitted drug resistance (TDR) prevalence and trends in Mexico. 1655 ART-naïve patients from 12 Mexican states were enrolled from 2005 to 2010. TDR was assessed from plasma HIV pol sequences using Stanford scores and the WHO TDR surveillance mutation list. TDR prevalence fluctuations over back-projected dates of infection were tested. HIV subtype B was highly prevalent in Mexico (99.9%). TDR prevalence (Stanford score>15) in the country for the study period was 7.4% (95% CI, 6.2∶8.8) and 6.8% (95% CI, 5.7∶8.2) based on the WHO TDR surveillance mutation list. NRTI TDR was the highest (4.2%), followed by NNRTI (2.5%) and PI (1.7%) TDR. Increasing trends for NNRTI (p = 0.0456) and PI (p = 0.0061) major TDR mutations were observed at the national level. Clustering of viruses containing minor TDR mutations was observed with some apparent transmission pairs and geographical effects.
Conclusions
TDR prevalence in Mexico remains at the intermediate level and is slightly lower than that observed in industrialized countries. Whether regional variations in TDR trends are associated with differences in antiretroviral drug usage/ART efficacy or with local features of viral evolution remains to be further addressed.
doi:10.1371/journal.pone.0027812
PMCID: PMC3217006  PMID: 22110765
14.  Emergence of Drug Resistance Is Associated with an Increased Risk of Death among Patients First Starting HAART 
PLoS Medicine  2006;3(9):e356.
Background
The impact of the emergence of drug-resistance mutations on mortality is not well characterized in antiretroviral-naïve patients first starting highly active antiretroviral therapy (HAART). Patients may be able to sustain immunologic function with resistant virus, and there is limited evidence that reduced sensitivity to antiretrovirals leads to rapid disease progression or death. We undertook the present analysis to characterize the determinants of mortality in a prospective cohort study with a median of nearly 5 y of follow-up. The objective of this study was to determine the impact of the emergence of drug-resistance mutations on survival among persons initiating HAART.
Methods and Findings
Participants were antiretroviral therapy naïve at entry and initiated triple combination antiretroviral therapy between August 1, 1996, and September 30, 1999. Marginal structural modeling was used to address potential confounding between time-dependent variables in the Cox proportional hazard regression models. In this analysis resistance to any class of drug was considered as a binary time-dependent exposure to the risk of death, controlling for the effect of other time-dependent confounders. We also considered each separate class of mutation as a binary time-dependent exposure, while controlling for the presence/absence of other mutations. A total of 207 deaths were identified among 1,138 participants over the follow-up period, with an all cause mortality rate of 18.2%. Among the 679 patients with HIV-drug-resistance genotyping done before initiating HAART, HIV-drug resistance to any class was observed in 53 (7.8%) of the patients. During follow-up, HIV-drug resistance to any class was observed in 302 (26.5%) participants. Emergence of any resistance was associated with mortality (hazard ratio: 1.75 [95% confidence interval: 1.27, 2.43]). When we considered each class of resistance separately, persons who exhibited resistance to non-nucleoside reverse transcriptase inhibitors had the highest risk: mortality rates were 3.02 times higher (95% confidence interval: 1.99, 4.57) for these patients than for those who did not exhibit this type of resistance.
Conclusions
We demonstrated that emergence of resistance to non-nucleoside reverse transcriptase inhibitors was associated with a greater risk of subsequent death than was emergence of protease inhibitor resistance. Future research is needed to identify the particular subpopulations of men and women at greatest risk and to elucidate the impact of resistance over a longer follow-up period.
Emergence of resistance to both non-nucleoside reverse transcriptase inhibitors and protease inhibitors was associated with a higher risk of subsequent death, but the risk was greater in patients with NNRTI-resistant HIV.
Editors' Summary
Background.
In the 1980s, infection with the human immunodeficiency virus (HIV) was effectively a death sentence. HIV causes AIDS (acquired immunodeficiency syndrome) by replicating inside immune system cells and destroying them, which leaves infected individuals unable to fight off other viruses and bacteria. The first antiretroviral drugs were developed quickly, but it soon became clear that single antiretrovirals only transiently suppress HIV infection. HIV mutates (accumulates random changes to its genetic material) very rapidly and, although most of these changes (or mutations) are bad for the virus, by chance some make it drug resistant. Highly active antiretroviral therapy (HAART), which was introduced in the mid-1990s, combines three or four antiretroviral drugs that act at different stages of the viral life cycle. For example, they inhibit the reverse transcriptase that the virus uses to replicate its genetic material, or the protease that is necessary to assemble new viruses. With HAART, the replication of any virus that develops resistance to one drug is inhibited by the other drugs in the mix. As a consequence, for many individuals with access to HAART, AIDS has become a chronic rather than a fatal disease. However, being on HAART requires patients to take several pills a day at specific times. In addition, the drugs in the HAART regimens often have side effects.
Why Was This Study Done?
Drug resistance still develops even with HAART, often because patients don't stick to the complicated regimens. The detection of resistance to one drug is usually the prompt to change a patient's drug regimen to head off possible treatment failure. Although most patients treated with HAART live for many years, some still die from AIDS. We don't know much about how the emergence of drug-resistance mutations affects mortality in patients who are starting antiretroviral therapy for the first time. In this study, the researchers looked at how the emergence of drug resistance affected survival in a group of HIV/AIDS patients in British Columbia, Canada. Here, everyone with HIV/AIDS has access to free medical attention, HAART, and laboratory monitoring, and full details of all HAART recipients are entered into a central reporting system.
What Did the Researchers Do and Find?
The researchers enrolled people who started antiretroviral therapy for the first time between August 1996 and September 1999 into the HAART Observational Medical Evaluation and Research (HOMER) cohort. They then excluded anyone who was infected with already drug-resistant HIV strains (based on the presence of drug-resistance mutations in viruses isolated from the patients) at the start of therapy. The remaining 1,138 patients were followed for an average of five years. All the patients received either two nucleoside reverse transcriptase inhibitors and a protease inhibitor, or two nucleoside and one non-nucleoside reverse transcriptase inhibitor (NNRTI). Nearly a fifth of the study participants died during the follow-up period. Most of these patients actually had drug-sensitive viruses, possibly because they had neglected taking their drugs to such an extent that there had been insufficient drug exposure to select for drug-resistant viruses. In a quarter of the patients, however, HIV strains resistant to one or more antiretroviral drugs emerged during the study (again judged by looking for mutations). Detailed statistical analyses indicated that the emergence of any drug resistance nearly doubled the risk of patients dying, and that people carrying viruses resistant to NNRTIs were three times as likely to die as those without resistance to this class of antiretroviral drug.
What Do These Findings Mean?
These results provide new information about the emergence of drug-resistant HIV during HAART and possible effects on the long-term survival of patients. In particular, they suggest that clinicians should watch carefully for the emergence of resistance to NNRTIs in their patients. Because this type of resistance is often due to poor adherence to drug regimens, these results also suggest that increased efforts should be made to ensure that patients comply with the prescribed HAART regimens, especially those whose antiretroviral therapy includes NNRTIs. As with all studies in which a group of individuals who share a common characteristic are studied over time, it is possible that some other, unmeasured difference between the patients who died and those who didn't—rather than emerging drug resistance—is responsible for the observed differences in survival. Additional studies are needed to confirm the findings here, and to investigate whether specific subpopulations of patients are at particular risk of developing drug resistance and/or dying during HAART.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0030356.
US National Institute of Allergy and Infectious Diseases fact sheet on HIV infection and AIDS
US Department of Health and Human Services information on AIDS, including details of approved drugs for the treatment of HIV infection
US Centers for Disease Control and Prevention information on HIV/AIDS
Aidsmap, information on HIV and AIDS provided by the charity NAM, which includes details on antiretroviral drugs
doi:10.1371/journal.pmed.0030356
PMCID: PMC1569883  PMID: 16984218
15.  Transmitted Drug Resistance in Persons with Acute/Early HIV-1 in San Francisco, 2002-2009 
PLoS ONE  2010;5(12):e15510.
Background
Transmitted HIV-1 drug resistance (TDR) is an ongoing public health problem, representing 10–20% of new HIV infections in many geographic areas. TDR usually arises from two main sources: individuals on antiretroviral therapy (ART) who are failing to achieve virologic suppression, and individuals who acquired TDR and transmit it while still ART-naïve. TDR rates can be impacted when novel antiretroviral medications are introduced that allow for greater virologic suppression of source patients. Although several new HIV medications were introduced starting in late 2007, including raltegravir, maraviroc, and etravirine, it is not known whether the prevalence of TDR was subsequently affected in 2008–2009.
Methodology/Principal Findings
We performed population sequence genotyping on individuals who were diagnosed with acute or early HIV (<6 months duration) and who enrolled in the Options Project, a prospective cohort, between 2002 and 2009. We used logistic regression to compare the odds of acquiring drug-resistant HIV before versus after the arrival of new ART (2005–2007 vs. 2008–2009). From 2003–2007, TDR rose from 7% to 24%. Prevalence of TDR was then 15% in 2008 and in 2009. While the odds of acquiring TDR were lower in 2008–2009 compared to 2005–2007, this was not statistically significant (odds ratio 0.65, 95% CI 0.31–1.38; p = 0.27).
Conclusions
Our study suggests that transmitted drug resistance rose from 2003–2007, but this upward trend did not continue in 2008 and 2009. Nevertheless, the TDR prevalence in 2008–2009 remained substantial, emphasizing that improved management strategies for drug-resistant HIV are needed if TDR is to be further reduced. Continued surveillance for TDR will be important in understanding the full impact of new antiretroviral medications.
doi:10.1371/journal.pone.0015510
PMCID: PMC3000814  PMID: 21170322
16.  Decreased Phenotypic Susceptibility to Etravirine in Patients with Predicted Genotypic Sensitivity 
PLoS ONE  2014;9(7):e101508.
Background
A sensitive, phenotypic reverse transcriptase (RT)-based drug susceptibility assay for the detection of etravirine (ETR) resistance in patient isolates was developed and compared with the results from direct sequencing and ultra-deep pyrosequencing (UDPS).
Methods
Samples were obtained from 15 patients with antiretroviral therapy (ART) failure and from five non-nucleoside reverse transcriptase inhibitor (NNRTI)-naïve patients of whom four were infected by an NNRTI-resistant strain (transmitted drug resistance, TDR). In five patients, two consecutive samples (a and b) were taken for follow up of the virological response. HIV-1 RT was purified and drug susceptibility (IC50) to ETR was estimated. Direct sequencing was performed in all samples and UDPS in samples from nine patients.
Results
Increased IC50 to ETR was found in samples from 13 patients where direct sequencing predicted resistance in only four. UDPS identified additional (N = 11) NNRTI resistance associated mutations (RAMs) in six of nine tested patients. During early failure, IC50 increases were observed in three of six patients without any ETR-RAMs detected by direct sequencing. In further two patients, who stopped NNRTI before sampling, increased IC50 values were found shortly after, despite absence of ETR-RAMs. In two patients who had stopped NNRTI for >1 year, a concordance between phenotype and genotypes was found. Two patients with TDR had increased IC50 despite no ETR-RAMs were detected by direct sequencing. UDPS revealed additional ETR-RAMs in four patients with a discrepancy between phenotype and direct sequencing.
Conclusions
The RT-based phenotypic assay showed decreased ETR susceptibility in patients where direct sequencing predicted ETR-sensitive virus. This increased phenotypic sensitivity was to a large extent supported by UDPS and treatment history. Our method could be valuable for further studies on the phenotypic kinetics of NNRTI resistance. The clinical relevance remains to be studied in larger patient-populations.
doi:10.1371/journal.pone.0101508
PMCID: PMC4084891  PMID: 25000302
17.  Low Prevalence of Transmitted HIV Type 1 Drug Resistance Among Antiretroviral-Naive Adults in a Rural HIV Clinic in Kenya 
Abstract
Low levels of HIV-1 transmitted drug resistance (TDR) have previously been reported from many parts of sub-Saharan Africa (sSA). However, recent data, mostly from urban settings, suggest an increase in the prevalence of HIV-1 TDR. Our objective was to determine the prevalence of TDR mutations among HIV-1-infected, antiretroviral (ARV)-naive adults enrolling for care in a rural HIV clinic in Kenya. Two cross-sectional studies were carried out between July 2008 and June 2010. Plasma samples from ARV-naive adults (>15 years old) at the time of registering for care after HIV diagnosis and before starting ARVs were used. A portion of the pol subgenomic region of the virus containing the protease and part of the reverse transcriptase genes was amplified and sequenced. TDR mutations were identified and interpreted using the Stanford HIV drug resistance database and the WHO list for surveillance of drug resistance strains. Overall, samples from 182 ARV-naive adults [mean age (95% CI): 34.9 (33.3–36.4) years] were successfully amplified and sequenced. Two TDR mutations to nucleoside reverse transcriptase inhibitors [n=1 (T215D)] and protease inhibitors [n=1 (M46L)] were identified, giving an overall TDR prevalence of 1.1% (95% CI: 0.1–3.9). Despite reports of an increase in the prevalence of HIV-1 TDR in some urban settings in sSA, we report a prevalence of HIV-1 TDR of less than 5% at a rural HIV clinic in coastal Kenya. Continued broader surveillance is needed to monitor the extent of TDR in sSA.
doi:10.1089/aid.2012.0167
PMCID: PMC3537300  PMID: 22900472
18.  Primary Drug Resistance in South Africa: Data from 10 Years of Surveys 
Abstract
HIV-1 transmitted drug resistance (TDR) could reverse the gains of antiretroviral rollout. To ensure that current first-line therapies remain effective, TDR levels in recently infected treatment-naive patients need to be monitored. A literature review and data mining exercise was carried out to determine the temporal trends in TDR in South Africa. In addition, 72 sequences from seroconvertors identified from Africa Centre's 2010 HIV surveillance round were also examined for TDR. Publicly available data on TDR were retrieved from GenBank, curated in RegaDB, and analyzed using the Calibrated Population Resistance Program. There was no evidence of TDR from the 2010 rural KwaZulu Natal samples. Ten datasets with a total of 1618 sequences collected between 2000 and 2010 were pooled to provide a temporal analysis of TDR. The year with the highest TDR rate was 2002 [6.67%, 95% confidence interval (CI): 3.09–13.79%; n=6/90]. After 2002, TDR levels returned to <5% (WHO low-level threshold) and showed no statistically significant increase in the interval between 2002 and 2010. The most common mutations were associated with NNRTI resistance, K103N, followed by Y181C and Y188C/L. Five sequences had multiple resistance mutations associated with NNRTI resistance. There is no evidence of TDR in rural KwaZulu-Natal. TDR levels in South Africa have remained low following a downward trend since 2003. Continuous vigilance in monitoring of TDR is needed as more patients are initiated and maintained onto antiretroviral therapy.
doi:10.1089/aid.2011.0284
PMCID: PMC3358100  PMID: 22251009
19.  Transmitted Drug Resistance among People Living with HIV/Aids at Major Cities of Sao Paulo State, Brazil 
Advances in Virology  2013;2013:878237.
Human immunodeficiency virus type 1 (HIV-1) transmitted drug resistance (TDR) is an important public health issue. In Brazil, low to intermediate resistance levels have been described. We assessed 225 HIV-1 infected, antiretroviral naïve individuals, from HIV Reference Centers at two major metropolitan areas of Sao Paulo (Sao Paulo and Campinas), the state that concentrates most of the Brazilian Aids cases. TDR was analyzed by Stanford Calibrated Population Resistance criteria (CPR), and mutations were observed in 17 individuals (7.6%, 95% CI: 4.5%–11.9%). Seventy-six percent of genomes (13/17) with TDR carried a nonnucleoside reverse transcriptase inhibitor (NNRTI) resistance mutation, mostly K103N/S (9/13, 69%), potentially compromising the preferential first-line therapy suggested by the Brazilian HIV Treatment Guideline that recommends efavirenz-based combinations. Moreover, 6/17 (35%) had multiple mutations associated with resistance to one or more classes. HIV-1 B was the prevalent subtype (80%); other subtypes include HIV-1 F and C, mosaics BC, BF, and single cases of subtype A1 and CRF02_AG. The HIV Reference Center of Campinas presented more cases with TDR, with a significant association of TDR with clade B infection (P < 0.05).
doi:10.1155/2013/878237
PMCID: PMC3562575  PMID: 23401688
20.  Transmitted HIV Resistance to First-Line Antiretroviral Therapy in Lima, Peru 
Abstract
Transmission of drug-resistant HIV (TDR) has been associated with virologic failure of “first-line,” nonnucleoside reverse transcriptase inhibitor (NNRTI)-based antiretroviral therapy (ART). A national ART program began in Peru in 2004. We evaluated the prevalence of TDR in individuals initiating ART and their virologic outcome during 2 years of ART. HIV-infected, ARV-naive subjects who met criteria to start ART in Lima, Peru were enrolled in a longitudinal observational study between July 2007 and February 2009. Blood plasma and cells obtained prior to ART initiation were assessed for antiretroviral (ARV) resistance by an oligonucleotide ligation assay (OLA) sensitive to 2% mutant at reverse transcriptase (RT) codons K103N, Y181C, G190A, and M184V and a subset by consensus sequencing. A total of 112 participants were enrolled; the mean CD4 was 134±89 cells/μl and the median plasma HIV RNA was 93,556 copies/ml (IQR 62,776–291,364). Drug resistance mutations conferring high-level resistance to ARV were rare, detected in one of 96 (1%) evaluable participants. This subject had the Y181C mutation detected in both plasma and peripheral blood mononuclear cells (PBMCs) at a concentration of 100% by OLA and consensus sequencing; nevertheless nevirapine-ART suppressed her viral replication. Consensus sequencing of 37 (19%) participants revealed multiple polymorphisms that occasionally have been associated with low-level reductions in ARV susceptibility. A low prevalence of TDR was detected among Peruvians initiating ART. Given the increasing availability of ART, continuing surveillance is needed to determine if TDR increases and the mutant codons associated with virologic failure.
doi:10.1089/aid.2011.0131
PMCID: PMC3316114  PMID: 21819256
21.  Evolution of Primary HIV Drug Resistance in a Subtype C Dominated Epidemic in Mozambique 
PLoS ONE  2013;8(7):e68213.
Objective
In Mozambique, highly active antiretroviral treatment (HAART) was introduced in 2004 followed by decentralization and expansion, resulting in a more than 20-fold increase in coverage by 2009. Implementation of HIV drug resistance threshold surveys (HIVDR-TS) is crucial in order to monitor the emergence of transmitted viral resistance, and to produce evidence-based recommendations to support antiretroviral (ARV) policy in Mozambique.
Methods
World Health Organization (WHO) methodology was used to evaluate transmitted drug resistance (TDR) in newly diagnosed HIV-1 infected pregnant women attending ante-natal clinics in Maputo and Beira to non-nucleoside reverse transcriptase inhibitors (NNRTI), nucleoside reverse transcriptase inhibitors (NRTI) and protease inhibitors (PI). Subtypes were assigned using REGA HIV-1 subtyping tool and phylogenetic trees constructed using MEGA version 5.
Results
Although mutations associated with resistance to all three drug were detected in these surveys, transmitted resistance was analyzed and classified as <5% in Maputo in both surveys for all three drug classes. Transmitted resistance to NNRTI in Beira in 2009 was classified between 5–15%, an increase from 2007 when no NNRTI mutations were found. All sequences clustered with subtype C.
Conclusions
Our results show that the epidemic is dominated by subtype C, where the first-line option based on two NRTI and one NNRTI is still effective for treatment of HIV infection, but intermediate levels of TDR found in Beira reinforce the need for constant evaluation with continuing treatment expansion in Mozambique.
doi:10.1371/journal.pone.0068213
PMCID: PMC3728366  PMID: 23935858
22.  N348I in the Connection Domain of HIV-1 Reverse Transcriptase Confers Zidovudine and Nevirapine Resistance 
PLoS Medicine  2007;4(12):e335.
Background
The catalytically active 66-kDa subunit of the human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) consists of DNA polymerase, connection, and ribonuclease H (RNase H) domains. Almost all known RT inhibitor resistance mutations identified to date map to the polymerase domain of the enzyme. However, the connection and RNase H domains are not routinely analysed in clinical samples and none of the genotyping assays available for patient management sequence the entire RT coding region. The British Columbia Centre for Excellence in HIV/AIDS (the Centre) genotypes clinical isolates up to codon 400 in RT, and our retrospective statistical analyses of the Centre's database have identified an N348I mutation in the RT connection domain in treatment-experienced individuals. The objective of this multidisciplinary study was to establish the in vivo relevance of this mutation and its role in drug resistance.
Methods and Findings
The prevalence of N348I in clinical isolates, the time taken for it to emerge under selective drug pressure, and its association with changes in viral load, specific drug treatment, and known drug resistance mutations was analysed from genotypes, viral loads, and treatment histories from the Centre's database. N348I increased in prevalence from below 1% in 368 treatment-naïve individuals to 12.1% in 1,009 treatment-experienced patients (p = 7.7 × 10−12). N348I appeared early in therapy and was highly associated with thymidine analogue mutations (TAMs) M41L and T215Y/F (p < 0.001), the lamivudine resistance mutations M184V/I (p < 0.001), and non-nucleoside RTI (NNRTI) resistance mutations K103N and Y181C/I (p < 0.001). The association with TAMs and NNRTI resistance mutations was consistent with the selection of N348I in patients treated with regimens that included both zidovudine and nevirapine (odds ratio 2.62, 95% confidence interval 1.43–4.81). The appearance of N348I was associated with a significant increase in viral load (p < 0.001), which was as large as the viral load increases observed for any of the TAMs. However, this analysis did not account for the simultaneous selection of other RT or protease inhibitor resistance mutations on viral load. To delineate the role of this mutation in RT inhibitor resistance, N348I was introduced into HIV-1 molecular clones containing different genetic backbones. N348I decreased zidovudine susceptibility 2- to 4-fold in the context of wild-type HIV-1 or when combined with TAMs. N348I also decreased susceptibility to nevirapine (7.4-fold) and efavirenz (2.5-fold) and significantly potentiated resistance to these drugs when combined with K103N. Biochemical analyses of recombinant RT containing N348I provide supporting evidence for the role of this mutation in zidovudine and NNRTI resistance and give some insight into the molecular mechanism of resistance.
Conclusions
This study provides the first in vivo evidence that treatment with RT inhibitors can select a mutation (i.e., N348I) outside the polymerase domain of the HIV-1 RT that confers dual-class resistance. Its emergence, which can happen early during therapy, may significantly impact on a patient's response to antiretroviral therapies containing zidovudine and nevirapine. This study also provides compelling evidence for investigating the role of other mutations in the connection and RNase H domains in virological failure.
Analyzing HIV sequences from a Canadian cohort, Gilda Tachedjian and colleagues identify a common mutation in a little-studied domain of reverse transcriptase that confers resistance to two drug classes.
Editors' Summary
Background.
In the 1980s, infection with the human immunodeficiency virus (HIV), which causes acquired immunodeficiency syndrome (AIDS), was a death sentence. Although the first antiretroviral drugs (compounds that block HIV's life cycle) were developed quickly, single antiretrovirals only transiently suppress HIV infection. HIV rapidly accumulates random changes (mutations) in its genetic material, some of which make it drug resistant. Nowadays, there are many different antiretrovirals. Some inhibit the viral protease, an enzyme used to assemble new viruses. Others block reverse transcriptase (RT), which makes replicates of the genes of the virus. Nucleoside/nucleotide RT inhibitors (NRTIs; for example, zidovudine—also called AZT—and lamivudine) and non-nucleoside RT inhibitors (NNRTIs; for example, nevirapine and efavirenz) interfere with the activity of RT by binding to different sites in its so-called “DNA polymerase domain,” the part of the enzyme that constructs copies of the viral genes. Highly active antiretroviral therapy (HAART), which was introduced in the mid 1990s, combines several antiretrovirals (usually a protease inhibitor and two NRTIs or an NNRTI and two NRTIs) so that the replication of any virus that develops resistance to one drug is inhibited by the other drugs in the mix. When treated with HAART, HIV infection is usually a chronic, stable condition rather than a fatal disease.
Why Was This Study Done?
Unfortunately, HIV that is resistant to drugs still develops in some patients. To improve the prevention and management of drug resistance, a better understanding of the mutations that cause resistance is needed. Resistance to RT inhibitors usually involves mutations in the DNA polymerase domain that reduce the efficacy of NRTIs (including thymidine analogue mutations—also known as TAMs—and lamivudine-resistance mutations) and NNRTIs. Blood tests that detect these resistance mutations (genotype tests) have been used for several years to guide individualized selection of HIV drugs. Recently, however, mutations outside the DNA polymerase domain have also been implicated in resistance to RT inhibitors. In this study, the researchers have used data and samples collected since the mid 1990s by Canada's British Columbia Centre for Excellence in HIV/AIDS to investigate the clinical relevance of a mutation called N348I. This mutation changes an asparagine (a type of amino acid) to an isoleucine in a region of RT known as the connection domain. The researchers have also investigated how this mutation causes resistance to RT inhibitors in laboratory tests.
What Did the Researchers Do and Find?
The researchers analyzed the first two-thirds of the RT gene in viruses isolated from a large number of the Centre's patients. Virus carrying the N348I mutation was present in less than one in 100 patients whose HIV infection had never been treated, but in more than one in 10 treatment-experienced patients. The mutation appeared early in therapy, often in viruses that had TAMs, a lamivudine-resistance mutation called M184V/I, and/or NNRTI resistance mutations. Patients treated with zidovudine and nevirapine were 2.6 times more likely to have the N348I mutation than patients not treated with these drugs. Furthermore, the appearance of the N348I mutation often coincided with an increase in viral load, although other mutations that appeared at a similar time could have contributed to this increase. When the researchers introduced the N348I mutation into HIV growing in the laboratory, they found that it decreased the susceptibility of the virus to zidovudine and to NNRTIs.
What Do These Findings Mean?
These findings show that the treatment of patients with RT inhibitors can select a drug-resistant HIV variant that has a mutation outside the enzyme's DNA polymerase domain. Because this N348I mutation, which is commonly selected in vivo and has also been seen in other studies, confers resistance to two classes of RT inhibitors and can emerge early during therapy, it could have a large impact on patient responses to antiviral regimens that contain zidovudine and nevirapine. Although these findings do not show that the N348I mutation alone causes treatment failure, they may have implications for genotypic and phenotypic resistance testing, which is often used to guide treatment decisions. At present, genotype tests for resistance to RT inhibitors look for mutations only in the DNA polymerase domain of RT. This study is the first to demonstrate that it might be worth looking for the N348I mutation (and for other mutations outside the DNA polymerase domain) to improve the ability of genotypic and phenotypic resistance tests to predict treatment outcomes.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040335.
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS
HIV InSite has comprehensive information on all aspects of HIV/AIDS, including links to fact sheets (in English, French, and Spanish) about antiretrovirals, and chapters explaining antiretroviral resistance testing
NAM, a UK registered charity, provides information about all aspects of HIV and AIDS, including fact sheets on types of HIV drugs, drug resistance, and resistance tests (in English, Spanish, French, Portuguese, and Russian)
The US Centers for Disease Control and Prevention provides information on HIV/AIDS and on treatment (in English and Spanish)
AIDSinfo, a service of the US Department of Health and Human Services provides information for patients on HIV and its treatment
doi:10.1371/journal.pmed.0040335
PMCID: PMC2100143  PMID: 18052601
23.  Transmitted Drug Resistance in the CFAR Network of Integrated Clinical Systems Cohort: Prevalence and Effects on Pre-Therapy CD4 and Viral Load 
PLoS ONE  2011;6(6):e21189.
Human immunodeficiency virus type 1 (HIV-1) genomes often carry one or more mutations associated with drug resistance upon transmission into a therapy-naïve individual. We assessed the prevalence and clinical significance of transmitted drug resistance (TDR) in chronically-infected therapy-naïve patients enrolled in a multi-center cohort in North America. Pre-therapy clinical significance was quantified by plasma viral load (pVL) and CD4+ cell count (CD4) at baseline. Naïve bulk sequences of HIV-1 protease and reverse transcriptase (RT) were screened for resistance mutations as defined by the World Health Organization surveillance list. The overall prevalence of TDR was 14.2%. We used a Bayesian network to identify co-transmission of TDR mutations in clusters associated with specific drugs or drug classes. Aggregate effects of mutations by drug class were estimated by fitting linear models of pVL and CD4 on weighted sums over TDR mutations according to the Stanford HIV Database algorithm. Transmitted resistance to both classes of reverse transcriptase inhibitors was significantly associated with lower CD4, but had opposing effects on pVL. In contrast, position-specific analyses of TDR mutations revealed substantial effects on CD4 and pVL at several residue positions that were being masked in the aggregate analyses, and significant interaction effects as well. Residue positions in RT with predominant effects on CD4 or pVL (D67 and M184) were re-evaluated in causal models using an inverse probability-weighting scheme to address the problem of confounding by other mutations and demographic or risk factors. We found that causal effect estimates of mutations M184V/I ( pVL) and D67N/G ( and pVL) were compensated by K103N/S and K219Q/E/N/R. As TDR becomes an increasing dilemma in this modern era of highly-active antiretroviral therapy, these results have immediate significance for the clinical management of HIV-1 infections and our understanding of the ongoing adaptation of HIV-1 to human populations.
doi:10.1371/journal.pone.0021189
PMCID: PMC3118815  PMID: 21701595
24.  Transmitted Antiretroviral Drug Resistance in New York State, 2006-2008: Results from a New Surveillance System 
PLoS ONE  2012;7(8):e40533.
Background
HIV transmitted drug resistance (TDR) is a public health concern because it has the potential to compromise antiretroviral therapy (ART) at the population level. In New York State, high prevalence of TDR in a local cohort and a multiclass resistant case cluster led to the development and implementation of a statewide resistance surveillance system.
Methodology
We conducted a cross-sectional analysis of the 13,109 cases of HIV infection that were newly diagnosed and reported in New York State between 2006 and 2008, including 4,155 with HIV genotypes drawn within 3 months of initial diagnosis and electronically reported to the new resistance surveillance system. We assessed compliance with DHHS recommendations for genotypic resistance testing and estimated TDR among new HIV diagnoses.
Principal Findings
Of 13,109 new HIV diagnoses, 9,785 (75%) had laboratory evidence of utilization of HIV-related medical care, and 4,155 (43%) had a genotype performed within 3 months of initial diagnosis. Of these, 11.2% (95% confidence interval [CI], 10.2%–12.1%) had any evidence of TDR. The proportion with mutations associated with any antiretroviral agent in the NNRTI, NRTI or PI class was 6.3% (5.5%–7.0%), 4.3% (3.6%–4.9%) and 2.9% (2.4%–3.4%), respectively. Multiclass resistance was observed in <1%. TDR did not increase significantly over time (p for trend = 0.204). Men who have sex with men were not more likely to have TDR than persons with heterosexual risk factor (OR 1.0 (0.77–1.30)). TDR to EFV+TDF+FTC and LPV/r+TDF+FTC regimens was 7.1% (6.3%–7.9%) and 1.4% (1.0%–1.8%), respectively.
Conclusions/Significance
TDR appears to be evenly distributed and stable among new HIV diagnoses in New York State; multiclass TDR is rare. Less than half of new diagnoses initiating care received a genotype per DHHS guidelines.
doi:10.1371/journal.pone.0040533
PMCID: PMC3412856  PMID: 22879878
25.  Major HIV resistance mutations in untreated Romanian patients  
Journal of Medicine and Life  2011;4(2):151-157.
Drug resistance mutations are frequently detected in antiretroviral–naive HIV positive patients, however the data on transmitted resistance in non-B subtypes are limited. As HIV1 subtype F is prevalent in Romania, our goal is to analyze resistance mutations in the pol gene of HIV–1 isolates from drug–naive Romanian patients. HIV–1 pol gene from 12 untreated patients, newly diagnosed (n = 6) and chronically infected (n=6), with detectable HIV RNA viral load was genotyped and the viral subtype was determined by using the Stanford database algorithm. 8/12 strains belonged to the F subtype, 1/12 to the G subtype, and the rest of the studied strains appeared to be K/F, A/F and J/F inter–subtype recombinant forms. The prevalence of HIV–1 strains with at least one major drug resistance mutation in the studied group was unexpectedly high. Major mutations associated with NRTI, NNRTI and PI resistance were detected in 6/12 patients, 2/12 patients and 3/12 patients, respectively; in addition all viral strains had minor mutations in the protease gene. Newly diagnosed patients harbored resistant variants more often than chronically infected ones (4/6 vs. 2/6) did. These data support the use of genotypic resistance testing in treatment–naive HIV positive patients, in order to guide the selection of the first line of antiretrovirals, due to the fact that persons with transmitted drug resistance have a higher risk for both virologic failure and development of resistance at treatment initiation.
HIV–Human immunodeficiency virus; TDR–transmitted drug resistance; HAART–highly active antiretroviral therapy ; SDRM–surveillance list of drug resistance mutations ; NRTIs–nucleos(t)idic reverse–transcriptase inhibitors; NNRTIs– non–nucleosidic reverse transcriptase inhibitors; PIs–protease inhibitors; TAMs–thy–midine analogue mutations; 3TC –lamivudine ; FTC–emtricitabine ; ddI –didanosine ; ABC–abacavir ; ZDV–zidovudine ; d4T–stavudine ; TDF –tenofovir
PMCID: PMC3124271  PMID: 21776297
HIV; subtype F; naive patients; transmitted drug resistance

Results 1-25 (956760)