PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (872293)

Clipboard (0)
None

Related Articles

1.  Associations of Cigarette Smoking and Polymorphisms in Brain-Derived Neurotrophic Factor and Catechol-O-Methyltransferase with Neurocognition in Alcohol Dependent Individuals during Early Abstinence 
Chronic cigarette smoking and polymorphisms in brain-derived neurotrophic factor (BDNF) and catechol-O-methyltransferase (COMT) are associated with neurocognition in normal controls and those with various neuropsychiatric conditions. The influence of BDNF and COMT on neurocognition in alcohol dependence is unclear. The primary goal of this report was to investigate the associations of single nucleotide polymorphisms (SNPs) in BDNF Val66Met (rs6265) and COMT Val158Met (rs4680) with neurocognition in a treatment-seeking alcohol dependent cohort and determine if neurocognitive differences between non-smokers and smokers previously observed in this cohort persist when controlled for these functional SNPs. Genotyping was conducted on 70 primarily male treatment-seeking alcohol dependent participants (ALC) who completed a comprehensive neuropsychological battery after 33 ± 9 days of monitored abstinence. After controlling for COMT and BDNF genotypes, smoking ALC performed significantly worse than non-smoking ALC on the domains of auditory-verbal and visuospatial learning and memory, cognitive efficiency, general intelligence, processing speed, and global neurocognition. In smoking ALC, greater number of years of smoking over lifetime was related to poorer performance on multiple domains after controlling for genotypes and alcohol consumption. In addition, COMT Met homozygotes were superior to Val homozygotes on measures of executive skills and showed trends for higher general intelligence and visuospatial skills, while COMT Val/Met heterozygotes showed significantly better general intelligence than Val homozygotes. COMT Val homozygotes performed better than heterozygotes on auditory-verbal memory. BDNF genotype was not related to any neurocognitive domain. The findings are consistent with studies in normal controls and neuropsychiatric cohorts that reported COMT Met carriers demonstrated better performance on measures of executive skills and general intelligence. Results also indicated that the poorer performance of smoking compared to non-smoking ALC across multiple neurocognitive domains was not mediated by COMT or BDNF genotype. Overall, the findings lend support to the expanding clinical movement to make smoking cessation programs available to smokers at the inception of treatment for alcohol/substance use disorders.
doi:10.3389/fphar.2012.00178
PMCID: PMC3469037  PMID: 23087644
cigarette smoking; brain-derived neurotrophic factor; catechol-O-methyltransferase; neurocognition; alcohol dependence
2.  Human Aging Magnifies Genetic Effects on Executive Functioning and Working Memory 
We demonstrate that common genetic polymorphisms contribute to the increasing heterogeneity of cognitive functioning in old age. We assess two common Val/Met polymorphisms, one affecting the Catechol-O-Methyltransferase (COMT) enzyme, which degrades dopamine (DA) in prefrontal cortex (PFC), and the other influencing the brain-derived neurotrophic factor (BDNF) protein. In two tasks (Wisconsin Card Sorting and spatial working memory), we find that effects of COMT genotype on cognitive performance are magnified in old age and modulated by BDNF genotype. Older COMT Val homozygotes showed particularly low levels of performance if they were also BDNF Met carriers. The age-associated magnification of COMT gene effects provides novel information on the inverted U-shaped relation linking dopaminergic neuromodulation in PFC to cognitive performance. The modulation of COMT effects by BDNF extends recent evidence of close interactions between frontal and medial-temporal circuitries in executive functioning and working memory.
doi:10.3389/neuro.09.001.2008
PMCID: PMC2525971  PMID: 18958202
genes; dopamine; executive functions; prefrontal cortex; aging
3.  Executive functions and selective attention are favored in middle-aged healthy women carriers of the Val/Val genotype of the catechol-o-methyltransferase gene: a behavioral genetic study 
Background
Cognitive deficits such as poor memory, the inability to concentrate, deficits in abstract reasoning, attention and set-shifting flexibility have been reported in middle-aged women. It has been suggested that cognitive decline may be due to several factors which include hormonal changes, individual differences, normal processes of aging and age-related changes in dopaminergic neurotransmission. Catechol-O-methyltransferase (COMT), a common functional polymorphism, has been related to executive performance in young healthy volunteers, old subjects and schizophrenia patients. The effect of this polymorphism on cognitive function in middle-aged healthy women is not well known. The aim of the current study was to investigate whether measures of executive function, sustained attention, selective attention and verbal fluency would be different depending on the COMT genotype and task demand.
Method
We genotyped 74 middle-aged healthy women (48 to 65 years old) for the COMT Val158Met polymorphism. We analyzed the effects of this polymorphism on executive functions (Wisconsin Card Sorting Test), selective attention (Stroop test), sustained attention (Continuous Performance Test) and word generation (Verbal Fluency test), which are cognitive functions that involve the frontal lobe.
Results
There were 27 women with the Val/Val COMT genotype, 15 with the Met/Met genotype, and 32 with the Val/Met genotype. Women carriers of the Val/Val genotype performed better in executive functions, as indicated by a lower number of errors committed in comparison with the Met/Met or Val/Met groups. The correct responses on selective attention were higher in the Val/Val group, and the number of errors committed was higher in the Met/Met group during the incongruence trial in comparison with the Val/Val group. Performance on sustained attention and the number of words generated did not show significant differences between the three genotypes.
Conclusion
These findings indicate that middle-aged women carriers of the Val158 allele, associated with high-activity COMT, showed significant advantage over Met allele in executive processes and cognitive flexibility. These results may help to explain, at least in part, individual differences in cognitive decline in middle-aged women with dopamine-related genes.
doi:10.1186/1744-9081-6-67
PMCID: PMC2987980  PMID: 21029471
4.  Genetic and Vascular Modifiers of Age-Sensitive Cognitive Skills: Effects of COMT, BDNF, ApoE and Hypertension 
Neuropsychology  2009;23(1):105-116.
Cognitive phenotypes emerge from multiple genetic and environmental influences. Several single nucleotide polymorphisms have been linked to neural and cognitive variation in healthy adults. We examined contribution of three polymorphisms frequently associated with individual differences in cognition (Catechol-O-Methyl-Transferase Val158Met, Brain-Derived-Neurotrophic-Factor Val66Met, and Apolipoprotein E ɛ4) and a vascular risk factor (hypertension) as well as their interactions in a sample of 189 volunteers (age 18–82). Genotypes were determined from buccal culture samples, and cognitive performance was assessed in four age-sensitive domains – fluid intelligence, executive function (inhibition), associative memory, and processing speed. We found that younger age and COMT Met/Met genotype, associated with low COMT activity and higher prefrontal dopamine content, were independently linked to better performance in most of the tested domains. Homozygotes for Val allele of BDNF polymorphism exhibited better associative memory and faster speed of processing than the Met allele carriers, with greater effect for women and persons with hypertension. Carriers of ApoE ɛ4 allele evidenced steeper age-related increase in costs of Stroop color interference, but showed no negative effects on memory. The findings indicate that age-related cognitive differences in multiple domains are differentially affected by distinct genetic factors and their interactions with vascular health status.
doi:10.1037/a0013487
PMCID: PMC2729285  PMID: 19210038
aging; genetics; cognition; COMT; BDNF; APOE; vascular risk; memory; fluid intelligence; single nucleotide polymorphisms; genetic association; speed of processing
5.  Catechol-O-methyltransferase (COMT) influences the connectivity of the prefrontal cortex at rest 
Neuroimage  2013;68(C):49-54.
Catechol-O-methyltransferase (COMT) modulates dopamine in the prefrontal cortex (PFC) and influences PFC dopamine-dependent cognitive task performance. A human COMT polymorphism (Val158Met) alters enzyme activity and is associated with both the activation and functional connectivity of the PFC during task performance, particularly working memory. Here, we used functional magnetic resonance imaging and a data-driven, independent components analysis (ICA) approach to compare resting state functional connectivity within the executive control network (ECN) between young, male COMT Val158 (n = 27) and Met158 (n = 28) homozygotes. COMT genotype effects on grey matter were assessed using voxel-based morphometry. COMT genotype significantly modulated functional connectivity within the ECN, which included the head of the caudate, and anterior cingulate and frontal cortical regions. Val158 homozygotes showed greater functional connectivity between a cluster within the left ventrolateral PFC and the rest of the ECN (using a threshold of Z > 2.3 and a family-wise error cluster significance level of p < 0.05). This difference occurred in the absence of any alterations in grey matter. Our data show that COMT Val158Met affects the functional connectivity of the PFC at rest, complementing its prominent role in the activation and functional connectivity of this region during cognitive task performance. The results suggest that genotype-related differences in prefrontal dopaminergic tone result in neuroadaptive changes in basal functional connectivity, potentially including subtle COMT genotype-dependent differences in the relative coupling of task-positive and task-negative regions, which could in turn contribute to its effects on brain activation, connectivity, and behaviour.
Highlights
► We studied the impact of COMT Val158Met genotype on resting state connectivity. ► We compared resting state functional connectivity in Val/Val vs. Met/Met men. ► We focussed on the predominantly prefrontal (PFC) executive control network (ECN). ► The ECN was identified using a group ICA approach. ► We found greater resting PFC functional connectivity in Val/Val vs. Met/Met men.
doi:10.1016/j.neuroimage.2012.11.059
PMCID: PMC3566589  PMID: 23228511
Resting state network; Dopamine; Working memory; Prefrontal cortex; Polymorphism; fMRI
6.  Catechol-O-Methyltransferase Val158Met Polymorphism on the Relationship between White Matter Hyperintensity and Cognition in Healthy People 
PLoS ONE  2014;9(2):e88749.
Background
White matter lesions can be easily observed on T2-weighted MR images, and are termed white matter hyperintensities (WMH). Their presence may be correlated with cognitive impairment; however, the relationship between regional WMH volume and catechol-O-methyltransferase (COMT) Val158Met polymorphism in healthy populations remains unclear.
Methods
We recruited 315 ethnic Chinese adults with a mean age of 54.9±21.8 years (range: 21–89 y) to examine the genetic effect of COMT on regional WMH and the manner in which they interact to affect cognitive function in a healthy adult population. Cognitive tests, structural MRI scans, and genotyping of COMT were conducted for each participant.
Results
Negative correlations between the Digit Span Forward (DSF) score and frontal WMH volumes (r = −.123, P = .032, uncorrected) were noted. For the genetic effect of COMT, no significant difference in cognitive performance was observed among 3 genotypic groups. However, differences in WMH volumes over the subcortical region (P = .016, uncorrected), whole brain (P = .047, uncorrected), and a trend over the frontal region (P = .050, uncorrected) were observed among 3 COMT genotypic groups. Met homozygotes and Met/Val heterozygotes exhibited larger WMH volumes in these brain regions than the Val homozygotes. Furthermore, a correlation between the DSF and regional WMH volume was observed only in Met homozygotes. The effect size (cohen’s f) revealed a small effect.
Conclusions
The results indicate that COMT might modulate WMH volumes and the effects of WMH on cognition.
doi:10.1371/journal.pone.0088749
PMCID: PMC3923794  PMID: 24551149
7.  Age-Related Olfactory Decline is Associated with the BDNF Val66met Polymorphism: Evidence from a Population-Based Study 
The present study investigates the effect of the brain-derived neurotrophic factor (BDNF) val66met polymorphism on change in olfactory function in a large scale, longitudinal population-based sample (n = 836). The subjects were tested on a 13 item force-choice odor identification test on two test occasions over a 5-year-interval. Sex, education, health-related factors, and semantic ability were controlled for in the statistical analyses. Results showed an interaction effect of age and BDNF val66met on olfactory change, such that the magnitude of olfactory decline in the older age cohort (70–90 years old at baseline) was larger for the val homozygote carriers than for the met carriers. The older met carriers did not display larger age-related decline in olfactory function compared to the younger group. The BDNF val66met polymorphism did not affect the rate of decline in the younger age cohort (45–65 years). The findings are discussed in the light of the proposed roles of BDNF in neural development and maintenance.
doi:10.3389/fnagi.2010.00024
PMCID: PMC2893376  PMID: 20589104
brain-derived neurotrophic factor; val66met; olfaction; odor identification; aging
8.  Does COMT genotype influence the effects of d-amphetamine on executive functioning? 
Genes, brain, and behavior  2012;12(1):13-20.
In a widely cited study, Mattay et al. (2003) reported that amphetamine (0.25 mg/kg oral, or 17mg for a 68kg individual) impaired behavioral and brain indices of executive functioning, measured using the Wisconsin Card Sorting Task (WCST) and N-Back working memory task, in 6 individuals homozygous for the met allele of the val158met polymorphism in the catechol-O-methyltransferase (COMT) gene, whereas it improved executive functioning in 10 individuals homozygous for the more active val allele. We attempted to replicate their behavioral findings in a larger sample, using similar executive functioning tasks and a broader range of amphetamine doses. Over four sessions, n = 200 healthy normal adults received oral placebo, d-amphetamine 5mg, 10mg, and 20mg (average of 0.07, 0.15 and 0.29 mg/kg), under counterbalanced double-blind conditions, and completed WCST and N-back tests of executive functioning. Amphetamine had typical effects on blood pressure and processing speed but did not affect executive functioning. COMT genotype (val158met) was not related to executive functioning under placebo or amphetamine conditions, even when we compared only the homozygous val/val and met/met genotypes at the highest dose of amphetamine (20 mg). Thus, we were not able to replicate the behavioral interaction between COMT and amphetamine seen in Mattay et al. (Mattay et al., 2003). We discuss possible differences between the studies and the implications of our findings for the use of COMT genotyping to predict clinical responses to dopaminergic drugs, and the use of intermediate phenotypes in genetic research.
doi:10.1111/gbb.12012
PMCID: PMC3553317  PMID: 23231539
COMT genotype; executive functioning; working memory; d-amphetamine; genetics; stimulant response
9.  BDNF Val66Met Polymorphism Influences Age Differences in Microstructure of the Corpus Callosum 
Brain-derived neurotrophic factor (BDNF) plays an important role in neuroplasticity and promotes axonal growth, but its secretion, regulated by a BDNF gene, declines with age. The low-activity (met) allele of common polymorphism BDNF val66met is associated with reduced production of BDNF. We examined whether age-related reduction in the integrity of cerebral white matter (WM) depends on the BDNF val66met genotype. Forty-one middle-aged and older adults participated in the study. Regional WM integrity was assessed by fractional anisotropy (FA) computed from manually drawn regions of interest in the genu and splenium of the corpus callosum on diffusion tensor imaging scans. After controlling for effects of sex and hypertension, we found that only the BDNF 66met carriers displayed age-related declines in the splenium FA, whereas no age-related declines were shown by BDNF val homozygotes. No genotype-related differences were observed in the genu of the corpus callosum. This finding is consistent with a view that genetic risk for reduced BDNF affects posterior regions that otherwise are considered relatively insensitive to normal aging. Those individuals with a genetic predisposition for decreased BDNF expression may not be able to fully benefit from BDNF-based plasticity and repair mechanisms.
doi:10.3389/neuro.09.019.2009
PMCID: PMC2737488  PMID: 19738930
brain; diffusion tensor imaging; genetics; MRI; white matter; aging; brain-derived neurotrophic factor; single nucleotide polymorphism
10.  COMT and Cognition: Main Effects and Interaction with Educational Attainment 
Genes, brain, and behavior  2008;8(1):36-42.
Studies in children have shown that the genetic influence on cognition is positively correlated with socioeconomic status. COMT Val158Met, a common, functional polymorphism, has been implicated in executive cognition and working memory. Imaging studies have shown that the variant Met allele is associated with more efficient pre-frontal cortical processing and better attention but also emotional vulnerability to stress. We hypothesized that COMT Val158Met genotype would interact with years of education (yrs ed), one indicator of socioeconomic adversity, to predict cognitive task performance. We therefore administered the WAIS-R to 328 community-derived, genotyped, Plains American Indians (mean yrs ed = 12; range = 5 to 18). We found significant genotypic effects on WAIS-R measures of long-term memory, working memory and attention. The Met allele was associated with improved performance in the Information and Picture Completion subscales; Met/Met homozygotes performed the best. COMT genotype interacted with yrs ed to influence Information and Block Design scores: Met allele carriers' scores improved markedly with increasing yrs ed whereas the scores of Val/Val individuals were only marginally influenced by yrs ed. There was a crossover of effects at 11-12 yrs ed: in the less educated group, Met allele carriers actually performed worse than Val/Val individuals perhaps due to emotional vulnerability to educational adversity, but in the better educated group, Met allele carriers excelled. Our study in Plains American Indians has shown that COMT Val158Met influences several aspects of cognition and some of its effects are moderated by educational adversity.
doi:10.1111/j.1601-183X.2008.00441.x
PMCID: PMC2693269  PMID: 19076243
working memory; long-term memory; attention; WAIS-R; COMT Val158Met; education; resilience; anxiety
11.  Brain-derived neurotrophic factor (Val66Met) polymorphism and olfactory ability in young adults 
Background
Brain- derived neurotrophic factor (BDNF) is linked to neurodegenerative diseases (e.g. Alzheimer disease and Parkinson disease) which are often characterized by olfactory impairment. A specific single nucleotide polymorphism of the BDNF gene, the Val66Met, modulates intracellular trafficking and activity-dependent secretion of BDNF protein. The aim of this study was to investigate a possible association between brain- derived neurotrophic factor Val66Met polymorphism and olfactory function, a well-known biomarker for neurodegeneration, in healthy young adults. A total of 101 subjects (45 males, age 38.7 ± 9.4 years) were assessed using the Sniffin’ Sticks Extended Test, a highly reliable commercial olfactory test composed of three sub-parts, calculating olfactory threshold (sensitivity), odor discrimination and odor identification. The Val66Met polymorphism was determined by polymerase chain reaction -restriction fragment length polymorphism (PCR-RFLP) analysis.
Results
An impaired function in Met carriers was found, especially when compared to subjects with Val/Val genotype, in the threshold (5.5 ± 2.0 vs 6.5 ± 1.8, p = 0.009), discrimination (10.3± 2.5 vs 11.9 ± 2.2, p = 0.002), and identification task (13.3 ± 1.6 vs 14.1 ± 1.3, p = 0.007), as well as in the overall TDI Score (29.1 ± 4.5 vs 32.6 ± 3.9, p < 0.001).
Conclusions
These findings appear to have implications for the evaluation of olfactory function and the relation of its impairment to cognitive decline and neurodegenerative disease.
doi:10.1186/1423-0127-20-57
PMCID: PMC3750534  PMID: 23924085
Olfactory function; Brain - derived neurotrophic factor; Val66Met polymorphism
12.  Affect-Modulated Startle: Interactive Influence of Catechol-O-Methyltransferase Val158Met Genotype and Childhood Trauma 
PLoS ONE  2012;7(6):e39709.
The etiology of emotion-related disorders such as anxiety or affective disorders is considered to be complex with an interaction of biological and environmental factors. Particular evidence has accumulated for alterations in the dopaminergic and noradrenergic system – partly conferred by catechol-O-methyltransferase (COMT) gene variation – for the adenosinergic system as well as for early life trauma to constitute risk factors for those conditions. Applying a multi-level approach, in a sample of 95 healthy adults, we investigated effects of the functional COMT Val158Met polymorphism, caffeine as an adenosine A2A receptor antagonist (300 mg in a placebo-controlled intervention design) and childhood maltreatment (CTQ) as well as their interaction on the affect-modulated startle response as a neurobiologically founded defensive reflex potentially related to fear- and distress-related disorders. COMT val/val genotype significantly increased startle magnitude in response to unpleasant stimuli, while met/met homozygotes showed a blunted startle response to aversive pictures. Furthermore, significant gene-environment interaction of COMT Val158Met genotype with CTQ was discerned with more maltreatment being associated with higher startle potentiation in val/val subjects but not in met carriers. No main effect of or interaction effects with caffeine were observed. Results indicate a main as well as a GxE effect of the COMT Val158Met variant and childhood maltreatment on the affect-modulated startle reflex, supporting a complex pathogenetic model of the affect-modulated startle reflex as a basic neurobiological defensive reflex potentially related to anxiety and affective disorders.
doi:10.1371/journal.pone.0039709
PMCID: PMC3382176  PMID: 22745815
13.  COMT Val158Met Polymorphism Modulates Cognitive Effects of Dietary Intervention 
A common single nucleotide polymorphism (SNP) in the gene encoding catechol-O-methyltransferase (COMT), Val158Met, is thought to influence cognitive performance due to differences in prefrontal dopaminergic neurotransmission. Previous studies lend support for the hypothesis that the “at risk” genotype comprising two Val-alleles (low dopamine) might benefit more from plasticity-enhancing interventions than carriers of one or two Met-alleles. This study aimed to determine whether the response to dietary interventions, known to modulate cognition, is dependent on COMT genotype. Blood samples of 35 healthy elderly subjects (61.3 years ±8 SD; 19 women, 16 men, BMI: 28.2 kg/m2 ±4 SD) were genotyped for COMT Val158Met by standard procedures (Val/Val = 6; Val/Met = 20; Met/Met = 9). Subjects had previously completed a randomized controlled trial investigating the effects of caloric restriction (CR) or enhancement of unsaturated fatty acids (UFA) on immediate and delayed verbal recognition memory. Homozygous Val/Val-carriers had significantly lower memory scores than Met-carriers at baseline (p < 0.001). Significant interactions of genotype and dietary intervention with regard to cognition were found: CR- and UFA enhancement-induced memory improvements of Val/Val-carriers were considerably greater than those of Met-carriers (ANOVA p's < 0.02). The current study shows for the first time that cognitive effects of dietary interventions are dependent on COMT Val158Met genotype. Our findings lend further support to the hypothesis that an “at risk” genotype might benefit more from plasticity-enhancing interventions than the “not at risk” genotype. This might help to develop individualized therapies in future research based on genetic background.
doi:10.3389/fnagi.2010.00146
PMCID: PMC2990456  PMID: 21119769
COMT; diet; aging; genetic variation; cognition; memory
14.  COMT Val158Met polymorphism, cognitive stability and cognitive flexibility: an experimental examination 
Background
Dopamine in prefrontal cortex (PFC) modulates core cognitive processes, notably working memory and executive control. Dopamine regulating genes and polymorphisms affecting PFC - including Catechol-O-Methyltransferase (COMT) Val158Met - are crucial to understanding the molecular genetics of cognitive function and dysfunction. A mechanistic account of the COMT Val158Met effect associates the Met allele with increased tonic dopamine transmission underlying maintenance of relevant information, and the Val allele with increased phasic dopamine transmission underlying the flexibility of updating new information. Thus, consistent with some earlier work, we predicted that Val carriers would display poorer performance when the maintenance component was taxed, while Met carriers would be less efficient when rapid updating was required.
Methods
Using a Stroop task that manipulated level of required cognitive stability and flexibility, we examined reaction time performance of patients with schizophrenia (n = 67) and healthy controls (n = 186) genotyped for the Val/Met variation.
Results
In both groups we found a Met advantage for tasks requiring cognitive stability, but no COMT effect when a moderate level of cognitive flexibility was required, or when a conflict cost measure was calculated.
Conclusions
Our results do not support a simple stability/flexibility model of dopamine COMT Val/Met effects and suggest a somewhat different conceptualization and experimental operationalization of these cognitive components.
doi:10.1186/1744-9081-6-53
PMCID: PMC2945991  PMID: 20836853
15.  Cognitive impairment in elderly women: the relative importance of selected genes, lifestyle factors, and comorbidities 
Background
A variety of factors contribute to the development of cognitive impairment in elderly people. Previous studies have focused upon a single or a few risk factors. In this study we assessed and compared the significance of a wide variety of potential risk factors for cognitive impairment in postmenopausal women.
Methods
A total of 208 pairs of elderly women (mean age = 73.2 years) were examined in a cross-sectional case-control study. Each pair consisted of a case (with impaired cognition) and a control subject matched by age and educational status. Cognitive functions were determined using a modified version of the Blessed test. Participants were also subjected to a general clinical examination and they were interviewed to collect information on lifestyle practices and comorbid disorders. Genotypes for the apolipoprotein E (APOE) epsilon4, catechol-O-methyltransferase (COMT) Val/Met, and brain-derived neurotropic growth factor (BDNF) Val/Met polymorphisms were determined. Data were analyzed by conditional logistic regression.
Results
We identified a set of risk factors for age-related cognitive impairment. A statistical model for assessment of the importance of these factors was constructed. The factors in this model were physical exercise (odds ratio [OR] = 0.50, 95% confidence interval [CI] = 0.32–0.78), regular alcohol consumption (OR = 0.49, 95% CI = 0.29–0.83), metabolic syndrome (OR = 2.83, 95% CI = 1.26–6.39), depression (OR = 3.24, 95% CI = 1.28–8.22), and the APOE epsilon4 allele (OR = 1.76, 95% CI = 1.09–2.83). Also COMT genotype was present as a risk factor in the statistical model (p = 0.08).
Conclusions
Lifestyle risk factors, comorbid disorders, and genetic factors contribute to development of age-related cognitive impairment. The two former groups of risk factors appear to be particular important in this respect.
PMCID: PMC2671785  PMID: 19412468
age-related cognitive impairment; risk factors; lifestyle choices; comorbid disorders; genetic susceptibility
16.  The Brain-Derived Neurotrophic Factor Val66Met Polymorphism Moderates an Effect of Physical Activity on Working Memory Performance 
Psychological science  2013;24(9):1770-1779.
Physical activity enhances cognitive performance, yet individual variability in its effectiveness limits its widespread therapeutic application. Genetic differences might be one source of this variation. For example, carriers of the methionine-specifying (Met) allele of the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism have reduced secretion of BDNF and poorer memory, yet physical activity increases BDNF levels. To determine whether the BDNF polymorphism moderated an association of physical activity with cognitive functioning among 1,032 midlife volunteers (mean age = 44.59 years), we evaluated participants’ performance on a battery of tests assessing memory, learning, and executive processes, and evaluated their physical activity with the Paffenbarger Physical Activity Questionnaire. BDNF genotype interacted robustly with physical activity to affect working memory, but not other areas of cognitive functioning. In particular, greater levels of physical activity offset a deleterious effect of the Met allele on working memory performance. These findings suggest that physical activity can modulate domain-specific genetic (BDNF) effects on cognition.
doi:10.1177/0956797613480367
PMCID: PMC3947596  PMID: 23907543
BDNF; physical activity; working memory; executive function; genetics; visual memory; episodic memory
17.  Differential Genetic and Epigenetic Regulation of catechol-O-methyltransferase is Associated with Impaired Fear Inhibition in Posttraumatic Stress Disorder 
The catechol-O-methyltransferase (COMT) enzyme is critical for the catabolic regulation of synaptic dopamine, resulting in altered cortical functioning. The COMT Val158Met polymorphism has been implicated in human mental illness, with Met/Met homozygotes associated with increased susceptibility to posttraumatic stress disorder (PTSD). Our primary objective was to examine the intermediate phenotype of fear inhibition in PTSD stratified by COMT genotype (Met/Met, Val/Met, and Val/Val) and differential gene regulation via methylation status at CpG sites in the COMT promoter region. More specifically, we examined the potential interaction of COMT genotype and PTSD diagnosis on fear-potentiated startle during fear conditioning and extinction and COMT DNA methylation levels (as determined using genomic DNA isolated from whole blood). Participants were recruited from medical and gynecological clinics of an urban hospital in Atlanta, GA, USA. We found that individuals with the Met/Met genotype demonstrated higher fear-potentiated startle to the CS− (safety signal) and during extinction of the CS+ (danger signal) compared to Val/Met and Val/Val genotypes. The PTSD+ Met/Met genotype group had the greatest impairment in fear inhibition to the CS− (p = 0.006), compared to Val carriers. In addition, the Met/Met genotype was associated with DNA methylation at four CpG sites, two of which were associated with impaired fear inhibition to the safety signal. These results suggest that multiple differential mechanisms for regulating COMT function – at the level of protein structure via the Val158Met genotype and at the level of gene regulation via differential methylation – are associated with impaired fear inhibition in PTSD.
doi:10.3389/fnbeh.2013.00030
PMCID: PMC3622057  PMID: 23596403
catechol-O-methyltransferase; fear-potentiated startle; posttraumatic stress disorder; epigenetic; methylation; trauma
18.  COMT Val158Met Genotype Determines the Direction of Cognitive Effects Produced by Catechol-O-Methyltransferase Inhibition 
Biological Psychiatry  2012;71(6):538-544.
Background
Catechol-O-methyltransferase (COMT) metabolizes dopamine. The COMT Val158Met polymorphism influences its activity, and multiple neural correlates of this genotype on dopaminergic phenotypes, especially working memory, have been reported. COMT activity can also be regulated pharmacologically by COMT inhibitors. The inverted-U relationship between cortical dopamine signaling and working memory predicts that the effects of COMT inhibition will differ according to COMT genotype.
Methods
Thirty-four COMT Met158Met (Met-COMT) and 33 COMT Val158Val (Val-COMT) men were given a single 200-mg dose of the brain-penetrant COMT inhibitor tolcapone or placebo in a randomized, double-blind, between-subjects design. They completed the N-back task of working memory and a gambling task.
Results
In the placebo group, Met-COMT subjects outperformed Val-COMT subjects on the 2- back, and they were more risk averse. Tolcapone had opposite effects in the two genotype groups: it worsened N-back performance in Met-COMT subjects but enhanced it in Val-COMT subjects. Tolcapone made Met-COMT subjects less risk averse but Val-COMT subjects more so. In both tasks, tolcapone reversed the baseline genotype differences.
Conclusions
Depending on genotype, COMT inhibition can enhance or impair working memory and increase or decrease risky decision making. To our knowledge, the data are the clearest demonstration to date that the direction of effect of a drug can be influenced by a polymorphism in its target gene. The results support the inverted-U model of dopamine function. The findings are of translational relevance, because COMT inhibitors are used in the adjunctive treatment of Parkinson's disease and are under evaluation in schizophrenia and other disorders.
doi:10.1016/j.biopsych.2011.12.023
PMCID: PMC3314969  PMID: 22364739
Catechol-o-methyltransferase; decision making; pharmacogenetics; polymorphism; tolcapone; working memory
19.  Association of BDNF and COMT genotypes with cognitive processing of anti-smoking PSAs 
Genes, brain, and behavior  2011;10(8):862-867.
Anti-smoking public service announcements (PSAs) often use persuasive arguments to attempt to influence attitudes about smoking. The persuasiveness of a PSA has previously been associated with factors that influence the cognitive processing of its message. Genetic factors that influence cognitive processing might thus affect individuals' responses to the persuasive arguments presented in PSAs. In the current study, we examined polymorphisms in the genes encoding brain-derived neurotrophic factor (BDNF Val66Met) and catechol-O-methyltransferase (COMT Val158Met), which affect cognitive processing in the prefrontal cortex, to identify genetic factors associated with self-reported outcomes of message processing, perceived effectiveness, and quitting intentions among smokers viewing PSAs. 120 smokers viewed sets of 4 PSAs which varied with respect to features of argument strength and message sensation value. We observed significant associations of BDNF genotype with central processing, narrative processing, perceived effectiveness of the anti-smoking PSAs, and participant quitting intentions; the BDNF Met allele was associated with lower scores on all these measures. Central processing acted as a mediator of the association of genotype with quitting intentions and perceived effectiveness. There was a significant interaction of COMT genotype by argument strength in the model of narrative processing, such that individuals homozygous for the COMT Val allele reported higher narrative processing in the high argument strength condition, but not in the low argument strength condition. To our knowledge, this is the first study to identify genetic factors associated with cognitive processing of anti-smoking public service announcements.
doi:10.1111/j.1601-183X.2011.00726.x
PMCID: PMC4000094  PMID: 21883922
BDNF; COMT; genetics; cognitive processing; public service announcements
20.  The val158met polymorphism of human catechol-O-methyltransferase (COMT) affects anterior cingulate cortex activation in response to painful laser stimulation 
Molecular Pain  2010;6:32.
Background
Pain is a complex experience with sensory, emotional and cognitive aspects. Genetic and environmental factors contribute to pain-related phenotypes such as chronic pain states. Genetic variations in the gene coding for catechol-O-methyltransferase (COMT) have been suggested to affect clinical and experimental pain-related phenotypes including regional μ-opioid system responses to painful stimulation as measured by ligand-PET (positron emission tomography). The functional val158met single nucleotide polymorphism has been most widely studied. However, apart from its impact on pain-induced opioid release the effect of this genetic variation on cerebral pain processing has not been studied with activation measures such as functional magnetic resonance imaging (fMRI), PET or electroencephalography. In the present fMRI study we therefore sought to investigate the impact of the COMT val158met polymorphism on the blood oxygen level-dependent (BOLD) response to painful laser stimulation.
Results
57 subjects were studied. We found that subjects homozygous for the met158 allele exhibit a higher BOLD response in the anterior cingulate cortex (ACC), foremost in the mid-cingulate cortex, than carriers of the val158 allele.
Conclusion
This result is in line with previous studies that reported higher pain sensitivity in homozygous met carriers. It adds to the current literature in suggesting that this behavioral phenotype may be mediated by, or is at least associated with, increased ACC activity. More generally, apart from one report that focused on pain-induced opioid release, this is the first functional neuroimaging study showing an effect of the COMT val158met polymorphism on cerebral pain processing.
doi:10.1186/1744-8069-6-32
PMCID: PMC2887789  PMID: 20509977
21.  Comprehensive interrogation of CpG island methylation in the gene encoding COMT, a key estrogen and catecholamine regulator 
Background
The catechol-O-methyltransferase (COMT) enzyme has been widely studied due to its multiple roles in neurological functioning, estrogen biology, and methylation metabolic pathways. Numerous studies have investigated variation in the large COMT gene, with the majority focusing on single nucleotide polymorphisms (SNPs). This body of work has linked COMT genetic variation with a vast array of conditions, including several neurobehavioral disorders, pain sensitivity, and multiple human cancers. Based on COMT’s numerous biological roles and recent studies suggesting that methylation of the COMT gene impacts COMT gene expression, we comprehensively interrogated methylation in over 200 CpG dinucleotide sequences spanning the length of the COMT gene.
Methods
Using saliva-derived DNA from a non-clinical sample of human subjects, we tested for associations between COMT CpG methylation and factors reported to interact with COMT genetic effects, including demographic factors and alcohol use. Finally, we tested associations between COMT CpG methylation state and COMT gene expression in breast cancer cell lines. We interrogated >200 CpGs in 13 amplicons spanning the 5’ UTR to the last exon of the CpG dinucleotide-rich COMT gene in n = 48 subjects, n = 11 cell lines and 1 endogenous 18S rRNA control.
Results
With the exception of the CpG island in the 5’UTR and 1st exon, all other CpG islands were strongly methylated with typical dynamic ranges between 50-90%. In the saliva samples, methylation of multiple COMT loci was associated with socioeconomic status or ethnicity. We found associations between methylation at numerous loci and genotype at the functional Val 158 Met SNP (rs4680), and most of the correlations between methylation and demographic and alcohol use factors were Val 158 Met allele-specific. Methylation at several of these loci also associated with COMT gene expression in breast cancer cell lines.
Conclusions
We report the first comprehensive interrogation of COMT methylation. We corroborate previous findings of variation in COMT methylation with gene expression and the Val 158 Met genotype, and also report novel associations with socioeconomic status (SES) and ethnicity at several methylated loci. These results point to novel mechanisms for COMT regulation, which may have broad therapeutic implications.
doi:10.1186/1755-8794-7-5
PMCID: PMC3910242  PMID: 24460628
22.  Executive Attention in Schizophrenic Males and the Impact of COMT Val108/158Met Genotype on Performance on the Attention Network Test 
Schizophrenia Bulletin  2008;34(6):1231-1239.
Background: Executive control of attention in schizophrenia has recently been assessed by means of the Attention Network Test (ANT). In the past, for tasks assessing executive attention, findings in schizophrenia have been contradictory, among others suggesting a lack of increased stimulus interference effects. Attention and executive functioning are substantially influenced by candidate genes of schizophrenia, including the functional single-nucleotide polymorphism catechol-o-methyltransferase (COMT) Val108/158Met, with task-dependent, specific effects of Met allele load on cognitive function. Therefore, we aimed at investigating executive attention in schizophrenic patients (SZP) as compared with healthy controls (HC), and to assess the specific impact of COMT Val108/158Met on executive attention, using ANT. Methods: We applied ANT to 63 SZP and 40 HC. We calculated a general linear model to investigate the influence of affection status and the COMT Val108/158Met genotype on executive attention as assessed by the ANT. Results: Multivariate analysis of variance revealed a significant effect of group on executive attention. SZP exhibited smaller conflict effects in the ANT. Met allele load significantly modulated executive attention efficiency, with homozygous Met individuals showing low overall reaction time but increased effects conflicting stimulus information in executive attention. Conclusions: Our data suggest a disease-related dissociation of executive attention with reduced conflict effects in SZP. Furthermore, they support the hypothesis of differential tonic-phasic dopamine activation and specific dopamine level effects in different cognitive tasks, which helps interpreting contradictory findings of Met allele load on cognitive performance. Disease status seems to modulate the impact of COMT Val108/158Met on cognitive performance.
doi:10.1093/schbul/sbm155
PMCID: PMC2632487  PMID: 18199630
schizophrenia; endophenotype; genetics; attention; dopamine
23.  BDNF Val66Met Impairs Fluoxetine-Induced Enhancement of Adult Hippocampus Plasticity 
Neuropsychopharmacology  2012;37(5):1297-1304.
Recently, a single-nucleotide polymorphism (SNP) in the brain-derived neurotrophic factor (BDNF) gene (BDNF Val66Met) has been linked to the development of multiple forms of neuropsychiatric illness. This SNP, when genetically introduced into mice, recapitulates core phenotypes identified in human BDNF Val66Met carriers. In mice, this SNP also leads to elevated expression of anxiety-like behaviors that are not rescued with the prototypic selective serotonin reuptake inhibitor (SSRI), fluoxetine. A prominent hypothesis is that SSRI-induced augmentation of BDNF protein expression and the beneficial trophic effects of BDNF on neural plasticity are critical components for drug response. Thus, these mice represent a potential model to study the biological mechanism underlying treatment-resistant forms of affective disorders. To test whether the BDNF Val66Met SNP alters SSRI-induced changes in neural plasticity, we used wild-type (BDNFVal/Val) mice, and mice homozygous for the BDNF Val66Met SNP (BDNFMet/Met). We assessed hippocampal BDNF protein levels, survival rates of adult born cells, and synaptic plasticity (long-term potentiation, LTP) in the dentate gyrus either with or without chronic (28-day) fluoxetine treatment. BDNFMet/Met mice had decreased basal BDNF protein levels in the hippocampus that did not significantly increase following fluoxetine treatment. BDNFMet/Met mice had impaired survival of newly born cells and LTP in the dentate gyrus; the LTP effects remained blunted following fluoxetine treatment. The observed effects of the BDNF Val66Met SNP on hippocampal BDNF expression and synaptic plasticity provide a possible mechanistic basis by which this common BDNF SNP may impair efficacy of SSRI drug treatment.
doi:10.1038/npp.2011.318
PMCID: PMC3306891  PMID: 22218094
BDNF Val66Met SNP; hippocampus; neurogenesis; plasticity; fluoxetine; LTP; animal models; biological psychiatry; plasticity; neurophysiology; BDNF Val66Met; anxiety-like behavior; hippocampus; fluoxetine; LTP
24.  Catechol-O-methyltransferase val158met genotype determines effect of reboxetine on emotional memory in healthy male volunteers 
Background
Catechol-O-methyltransferase (COMT) metabolizes catecholamines in the prefrontal cortex (PFC). A common polymorphism in the COMT gene (COMT val158met) has pleiotropic effects on cognitive and emotional processing. The met allele has been associated with enhanced cognitive processing but impaired emotional processing relative to the val allele.
Methods
We genotyped healthy, white men in relation to the COMT val158met polymorphism. They were given a single 4 mg dose of the selective noradrenaline reuptake inhibitor (NRI) reboxetine or placebo in a randomized, double-blind between-subjects model and then completed an emotional memory task 2 hours later.
Results
We included 75 men in the study; 41 received reboxetine and 34 received placebo. In the placebo group, met/met carriers did not demonstrate the usual memory advantage for emotional stimuli that was observed in val carriers. Reboxetine restored this emotional enhancement of memory in met/met carriers, but had no significant effect in val carriers.
Limitations
We studied only men, thus limiting the generalizability of our findings. We also relied on self-reported responses to screening questions to establish healthy volunteer status, and in spite of the double-blind design, participants were significantly better than chance at identifying their intervention allocation.
Conclusion
Emotional memory is impaired in healthy met homozygotes and selectively improved in this group by reboxetine. This has potential translational implications for the use of reboxetine, which is currently licensed as an antidepressant in several countries, and edivoxetine, a new selective NRI currently in development.
doi:10.1503/jpn.130131
PMCID: PMC3997609  PMID: 24467942
25.  BDNF Val66Met polymorphism and protein levels in Amniotic Fluid 
BMC Neuroscience  2010;11:16.
Background
Brain-Derived Neurotrophic Factor (BDNF) is a neurotrophin which plays survival- and growth-promoting activity in neuronal cells and it is involved in cellular plasticity mechanisms as it controls activity dependent synaptic transmission. A functional polymorphism (Val66Met) in the pro-region of BDNF, which affects the intracellular trafficking of proBDNF has been associated with memory and cognitive deficits as well as to an increased susceptibility for several psychiatric disorders especially those with a neurodevelopmental origin. To date, no study has evaluated the influence of the Val66Met polymorphism on BDNF levels in a peripheral system that may reflect fetal neurodevelopment. Therefore we investigated in amniotic fluids (AF) obtained from 139 healthy women during 15-17 week of pregnancy, BDNF protein levels in correlation with the Val66Met polymorphism.
Results
Interestingly we found a significant BDNF protein levels reduction in 55 Met carriers (Val/Met and Met/Met) (p = 0.002) as compared to 84 non carriers (Val/Val), and no effect of fetus gender, maternal age or gestation week on BDNF levels has been observed.
Conclusion
These results, although explorative, indicate that during fetal life the Val66Met genotype might influences BDNF protein levels in AF supporting the involvement of this polymorphism in behavioral and functional brain individual differences in the adulthood.
doi:10.1186/1471-2202-11-16
PMCID: PMC2831906  PMID: 20141627

Results 1-25 (872293)