PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (505822)

Clipboard (0)
None

Related Articles

1.  Mus spicilegus Endogenous Retrovirus HEMV Uses Murine Sodium-Dependent Myo-Inositol Transporter 1 as a Receptor 
Journal of Virology  2012;86(11):6341-6344.
We sought to determine the relationship between two recent additions to the murine leukemia virus (MLV) ecotropic subgroup: Mus cervicolor isolate M813 and Mus spicilegus endogenous retrovirus HEMV. Though divergent in sequence, the two viruses share an Env protein with similarly curtailed VRA and VRB regions, and infection by both is restricted to mouse cells. HEMV and M813 displayed reciprocal receptor interference, suggesting that they share a receptor. Expression of the M813 receptor murine sodium-dependent myo-inositol transporter 1 (mSMIT1) allowed previously nonpermissive cells to be infected by HEMV, indicating that mSMIT1 also serves as a receptor for HEMV. Our findings add HEMV as a second member to the MLV subgroup that uses mSMIT1 to gain entry into cells.
doi:10.1128/JVI.00083-12
PMCID: PMC3372175  PMID: 22457525
2.  GRB2 Interaction with the Ecotropic Murine Leukemia Virus Receptor, mCAT-1, Controls Virus Entry and Is Stimulated by Virus Binding 
Journal of Virology  2012;86(3):1421-1432.
For retroviruses such as HIV-1 and murine leukemia virus (MLV), active receptor recruitment and trafficking occur during viral entry. However, the underlying mechanisms and cellular factors involved in the process are largely uncharacterized. The viral receptor for ecotropic MLV (eMLV), a classical model for retrovirus infection mechanisms and pathogenesis, is mouse cationic amino acid transporter 1 (mCAT-1). Growth factor receptor-bound protein 2 (GRB2) is an adaptor protein that has been shown to couple cell surface receptors, such as epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor, to intracellular signaling events. Here we examined if GRB2 could also play a role in controlling infection by retroviruses by affecting receptor function. The GRB2 RNA interference (RNAi)-mediated suppression of endogenous GRB2 resulted in a consistent and significant reduction of virus binding and membrane fusion. The binding between eMLV and cells promoted increased GRB2–mCAT-1 interactions, as detected by immunoprecipitation. Consistently, the increased colocalization of GRB2 and mCAT-1 signals was detected by confocal microscopy. This association was time dependent and paralleled the kinetics of cell-virus membrane fusion. Interestingly, unlike the canonical binding pattern seen for GRB2 and growth factor receptors, GRB2–mCAT-1 binding does not depend on the GRB2-SH2 domain-mediated recognition of tyrosine phosphorylation on the receptor. The inhibition of endogenous GRB2 led to a reduction in surface levels of mCAT-1, which was detected by immunoprecipitation and by a direct binding assay using a recombinant MLV envelope protein receptor binding domain (RBD). Consistent with this observation, the expression of a dominant negative GRB2 mutant (R86K) resulted in the sequestration of mCAT-1 from the cell surface into intracellular vesicles. Taken together, these findings suggest a novel role for GRB2 in ecotropic MLV entry and infection by facilitating mCAT-1 trafficking.
doi:10.1128/JVI.05993-11
PMCID: PMC3264351  PMID: 22090132
3.  Cerebellum-specific and age-dependent expression of an endogenous retrovirus with intact coding potential 
Retrovirology  2011;8:82.
Background
Endogenous retroviruses (ERVs), including murine leukemia virus (MuLV) type-ERVs (MuLV-ERVs), are presumed to occupy ~10% of the mouse genome. In this study, following the identification of a full-length MuLV-ERV by in silico survey of the C57BL/6J mouse genome, its distribution in different mouse strains and expression characteristics were investigated.
Results
Application of a set of ERV mining protocols identified a MuLV-ERV locus with full coding potential on chromosome 8 (named ERVmch8). It appears that ERVmch8 shares the same genomic locus with a replication-incompetent MuLV-ERV, called Emv2; however, it was not confirmed due to a lack of relevant annotation and Emv2 sequence information. The ERVmch8 sequence was more prevalent in laboratory strains compared to wild-derived strains. Among 16 different tissues of ~12 week-old female C57BL/6J mice, brain homogenate was the only tissue with evident expression of ERVmch8. Further ERVmch8 expression analysis in six different brain compartments and four peripheral neuronal tissues of C57BL/6J mice revealed no significant expression except for the cerebellum in which the ERVmch8 locus' low methylation status was unique compared to the other brain compartments. The ERVmch8 locus was found to be surrounded by genes associated with neuronal development and/or inflammation. Interestingly, cerebellum-specific ERVmch8 expression was age-dependent with almost no expression at 2 weeks and a plateau at 6 weeks.
Conclusions
The ecotropic ERVmch8 locus on the C57BL/6J mouse genome was relatively undermethylated in the cerebellum, and its expression was cerebellum-specific and age-dependent.
doi:10.1186/1742-4690-8-82
PMCID: PMC3207890  PMID: 21992658
4.  Murine Endogenous Retrovirus MuERV-L Is the Progenitor of the “Orphan” Epsilon Viruslike Particles of the Early Mouse Embryo▿  
Journal of Virology  2007;82(3):1622-1625.
Viruslike particles which displayed a peculiar wheellike appearance that distinguished them from A-, B- or C-type particles had previously been described in the early mouse embryo. The maximum expression of these so-called epsilon particles was observed in two-cell-stage embryos, followed by their rapid decline at later stages of development and no particles detected at the zygote one-cell stage. Here, we show that these particles are in fact produced by a newly discovered murine endogenous retrovirus (ERV) belonging to the widespread family of mammalian ERV-L elements and named MuERV-L. Using antibodies that we raised against the Gag protein of these elements, Western blot analysis and in toto immunofluorescence studies of the embryos at various stages disclosed the same developmental expression profile as that observed for epsilon particles. Using expression vectors for cloned, full-length, entirely coding MuERV-L copies and cell transfection, direct identification of the epsilon particles was finally achieved by high-resolution electron microscopy.
doi:10.1128/JVI.02097-07
PMCID: PMC2224431  PMID: 18045933
5.  Identification of a group of Mus dunni endogenous virus-like endogenous retroviruses from the C57BL/6J mouse genome: proviral genomes, strain distribution, expression characteristics, and genomic integration profile 
About 10 % of the mouse genome is occupied by sequences associated with endogenous retroviruses (ERVs). However, a comprehensive profile of the mouse ERVs and related elements has not been established yet. In this study, we identified a group of ERVs from the mouse genome and characterized their biological properties. Using a custom ERV mining protocol, 191 ERVs (159 loci reported previously and 32 new loci), tentatively named Mus dunni endogenous virus (MDEV)-like ERVs (MDL-ERVs), were mapped on the C57BL/6J mouse genome. Seven of them retained putative full coding potentials for three retroviral polypeptides (gag, pol, and env). Among the 57 mouse strains examined, all but the Mus pahari/Ei strain had PCR amplicons corresponding to a conserved MDL-ERV region. Interestingly, the Mus caroli/EiJ’s amplicon was somewhat larger than the others, coinciding with a substantial phylogenetic distance between the MDL-ERV populations of Mus caroli/EiJ and C57BL/6J strains. MDLERVs were highly expressed in the lung, spleen, and thymus of C57BL/6J mice compared to the brain, heart, kidney, and liver. Seven MDL-ERVs were mapped in the introns of six annotated genes. Of interest, some MDL-ERVs were mapped periodically on three clusters in the chromosome X. The finding that these MDL-ERVs were one of several types of retroelements, which form mosaic-repeat units of tandem arrays, suggests that the formation of the mosaicrepeat unit preceded the tandem arrangement event. Further studies are warranted to understand the biological roles of MDL-ERVs in both normal and pathologic conditions.
doi:10.1007/s10577-012-9322-z
PMCID: PMC3535300  PMID: 23197326
6.  N-Linked Glycosylation Is Required for XC Cell-Specific Syncytium Formation by the R Peptide-Containing Envelope Protein of Ecotropic Murine Leukemia Viruses 
Journal of Virology  2003;77(13):7510-7516.
The XC cell line undergoes extensive syncytium formation after infection with ecotropic murine leukemia viruses (MLVs) and is frequently used to titrate these viruses. This cell line is unique in its response to the ecotropic MLV envelope protein (Env) in that it undergoes syncytium formation with cells expressing Env protein containing R peptide (R+ Env), which is known to suppress the fusogenic potential of the Env protein in other susceptible cells. To analyze the ecotropic receptor, CAT1, in XC cells, a mouse CAT1 tagged with the influenza virus hemagglutinin epitope (mCAT1-HA)-expressing retroviral vector was inoculated into XC and NIH 3T3 cells. The molecular size of the mCAT1-HA protein expressed in XC cells was smaller than that in NIH 3T3 cells due to altered N glycosylation in XC cells. Treatment of XC cells with tunicamycin significantly suppressed the formation of XC cell syncytia induced by the R+ Env protein but not that induced by the R− Env protein. This result indicates that N glycosylation is required for XC cell-specific syncytium formation by the R+ Env protein. The R+ Env protein induced syncytia in XC cells expressing a mutant mCAT1 lacking both of two N glycosylation sites, and tunicamycin treatment suppressed syncytium formation by R+ Env in those cells. This suggests that N glycosylation of a molecule(s) other than the receptor is required for the induction of XC cell syncytia by the R+ Env protein.
doi:10.1128/JVI.77.13.7510-7516.2003
PMCID: PMC164801  PMID: 12805451
7.  A Proline-Rich Motif Downstream of the Receptor Binding Domain Modulates Conformation and Fusogenicity of Murine Retroviral Envelopes 
Journal of Virology  1998;72(12):9955-9965.
The entry of retroviruses into cells depends on receptor recognition by the viral envelope surface subunit SU followed by membrane fusion, which is thought to be mediated by a fusion peptide located at the amino terminus of the envelope transmembrane subunit TM. Several fusion determinants have been previously identified in murine leukemia virus (MLV) envelopes, but their functional interrelationships as well as the processes involved in fusion activation upon retroviral receptor recognition remain unelucidated. Despite both structural and functional similarities of their envelope glycoproteins, ecotropic and amphotropic MLVs display two different postbinding properties: (i) while amphotropic MLVs fuse the cells at neutral pH, penetration of ecotropic MLVs is relatively acid pH dependent and (ii) ecotropic envelopes are more efficient than amphotropic envelopes in inducing cell-to-cell fusion and syncytium formation. By exploiting the latter characteristic in the analysis of chimeras of ecotropic and amphotropic MLV envelopes, we show here that substitution of the ecotropic MLV proline-rich region (PRR), located in the SU between the amino-terminal receptor binding domain and the TM-interacting SU carboxy-terminal domains, is sufficient to revert the amphotropic low-fusogenic phenotype into a high-fusogenic one. Furthermore, we have identified potential β-turns in the PRR that control the stability of SU-TM associations as well as the thresholds required to trigger either cell-to-cell or virus-to-cell fusion. These data, demonstrating that the PRR functions as a signal which induces envelope conformational changes leading to fusion, have enabled us to derive envelopes which can infect cells harboring low levels of available amphotropic receptors.
PMCID: PMC110509  PMID: 9811733
8.  The Mouse IAPE Endogenous Retrovirus Can Infect Cells through Any of the Five GPI-Anchored EphrinA Proteins 
PLoS Pathogens  2011;7(10):e1002309.
The IAPE (Intracisternal A-type Particles elements with an Envelope) family of murine endogenous retroelements is present at more than 200 copies in the mouse genome. We had previously identified a single copy that proved to be fully functional, i.e. which can generate viral particles budding out of the cell and infectious on a series of cells, including human cells. We also showed that IAPE are the progenitors of the highly reiterated IAP elements. The latter are now strictly intracellular retrotransposons, due to the loss of the envelope gene and re-localisation of the associated particles in the course of evolution. In the present study we searched for the cellular receptor of the IAPE elements, by using a lentiviral human cDNA library and a pseudotype assay on transduced cells. We identified Ephrin A4, a GPI-anchored molecule involved in several developmental processes, as a receptor for the IAPE pseudotypes. We also found that the other 4 members of the Ephrin A family –but not those of the closely related Ephrin B family- were also able to mediate IAPE cell entry, thus significantly increasing the amount of possible cell types susceptible to IAPE infection. We show that these include mouse germline cells, as illustrated by immunohistochemistry experiments, consistent with IAPE genomic amplification by successive re-infection. We propose that the uncovered properties of the identified receptors played a role in the accumulation of IAPE elements in the mouse genome, and in the survival of a functional copy.
Author Summary
In mammals, nearly half the genome is composed of reiterated scattered sequences. Some of them, called endogenous retroviruses, have a structure similar to that observed for the integrated form of infectious retroviruses. The current theory to account for their presence is that an infectious retrovirus once infected the germline of its host. This viral genome was then transmitted to the progeny and expressed from there, producing new infectious particles, which could re-infect new germline cells and thus increase the viral genomic copy number. However no evidence has yet been provided to support this model. In this study, we identify a family of five cellular proteins, the Ephrin As, as receptors for a model mouse family of endogenous retroviruses, the IAPE elements. We analyse their expression pattern and show that both the oocytes and some male germline cells express Ephrin A proteins and can thus be infected by IAPE particles. This finding strongly supports the current model of ERVs amplification. In addition, the IAPE envelope ability to use five different cellular receptors suggests that it might be impossible for the host to evolve a resistance against this viral element, and provides a clue on how the IAPE family survived so long in the mouse genome.
doi:10.1371/journal.ppat.1002309
PMCID: PMC3197615  PMID: 22028653
9.  Resurrection of endogenous retroviruses in antibody-deficient mice 
Nature  2012;491(7426):774-778.
The mammalian host has developed a long-standing symbiotic relationship with a considerable number of microbial species. These include the microbiota on environmental surfaces, such as the respiratory and gastrointestinal tracks1, and also endogenous retroviruses (ERVs), comprising a substantial fraction of the mammalian genome2,3. The long-term consequences for the host of interaction with these microbial species can range from mutualism to parasitism and are not always completely understood. The potential impact of one microbial symbiont on another is even less clear. We have studied the control of ERVs in the commonly-used C57BL/6 (B6) mouse strain, which lacks endogenous murine leukaemia viruses (MLVs) able to replicate in murine cells. We demonstrate the spontaneous emergence of fully infectious ecotropic4 MLV (eMLV) in B6 mice with a range of distinct immune deficiencies affecting antibody production. These recombinant retroviruses establish infection of immunodeficient mouse colonies, and ultimately result in retrovirus-induced lymphomas. Notably, ERV activation in immune-deficient mice is prevented in husbandry conditions associated with reduced or absent intestinal microbiota. Our results shed light onto a previously unappreciated role for immunity in the control of ERVs and provide a potential mechanistic link between immune activation by microbial triggers and a range of pathologies associated with ERVs, including cancer.
doi:10.1038/nature11599
PMCID: PMC3511586  PMID: 23103862
10.  A recessive genetic screen for host factors required for retroviral infection in a library of insertionally mutated Blm-deficient embryonic stem cells 
Genome Biology  2007;8(4):R48.
A recessive genetic screen of an insertionally mutated Blm-/- ES cell library identifies host factors required for retroviral infection, and confirms that mCat-1 is the ecotropic murine leukaemia virus receptor in ES cells.
Background
Host factors required for retroviral infection are potential targets for the modulation of diseases caused by retroviruses. During the retroviral life cycle, numerous cellular factors interact with the virus and play an essential role in infection. Cultured embryonic stem (ES) cells are susceptible to retroviral infection, therefore providing access to all of the genes required for this process to take place. In order to identify the host factors involved in retroviral infection, we designed and implemented a scheme for identifying ES cells that are resistant to retroviral infection and subsequent cloning of the mutated gene.
Results
A library of mutant ES cells was established by genome-wide insertional mutagenesis in Blm-deficient ES cells, and a screen was performed by superinfection of the library at high multiplicity with a recombinant retrovirus carrying a positive and negative selection cassette. Stringent negative selection was then used to exclude the infected ES cells. We successfully recovered five independent clones of ES cells that are resistant to retroviral infection. Analysis of the mutations in these clones revealed four different homozygous and one compound heterozygous mutation in the mCat-1 locus, which confirms that mCat-1 is the ecotropic murine leukemia virus receptor in ES cells.
Conclusion
We have demonstrated the feasibility and reliability of this recessive genetic approach to identifying critical genes required for retroviral infection in ES cells; the approach provides a unique opportunity to recover other cellular factors required for retroviral infection. The resulting insertionally mutated Blm-deficient ES cell library might also provide access to essential host cell components that are required for infection and replication for other types of virus.
doi:10.1186/gb-2007-8-4-r48
PMCID: PMC1895998  PMID: 17407599
11.  Role of Chimeric Murine Leukemia Virus env β-Turn Polyproline Spacers in Receptor Cooperation 
Journal of Virology  2001;75(18):8478-8486.
We have previously reported a set of Moloney murine leukemia virus derived envelopes retargeted to the Pit-2 phosphate transporter molecule, by insertion of the Pit-2 binding domain (BD) at the N terminus of the ecotropic retroviral envelope glycoproteins (S. Valsesia-Wittmann et al., J. Virol. 70:2059-2064, 1996). The resulting chimeric envelopes share two BDs: an additional N-terminal BD (Pit-2 BD) and the BD of the ecotropic envelope (mCAT-1 BD). By inserting a variety of different amino acid spacers between the two binding domains, we showed that retroviruses can potentially use the targeted cell surface receptor Pit-2, the ecotropic retroviral receptor mCAT-1, or both receptors cooperatively for entry into target cell (S. Valsesia-Wittmann et al., EMBO J 6:1214–1223, 1997). An extreme example of receptor cooperativity was encountered when envelopes with specific proline-rich interdomain spacers (PRO spacers) were tested: both receptors had to be coexpressed at the surface of the targeted cells to cooperatively allow infection. Here, we characterized the role of PRO spacer in the cooperation of receptors. We have shown that the particular organization of the PRO spacer—a β-turn polyproline—was responsible for the cooperative effect. In the native configuration of the viruses, the structure masked the regions located downstream of the PRO spacer, thus the mCAT-1 BD. After interaction with the targeted Pit-2 receptor, the BD of the backbone envelope became accessible, and we demonstrated that interaction between the mCAT-1 BD and the mCAT-1 receptor is absolutely necessary. This interaction leads to natural fusion triggering and entry of viruses into targeted cells.
doi:10.1128/JVI.75.18.8478-8486.2001
PMCID: PMC115093  PMID: 11507193
12.  Multiple Gag Domains Contribute to Selective Recruitment of Murine Leukemia Virus (MLV) Env to MLV Virions 
Journal of Virology  2013;87(3):1518-1527.
Retroviruses, like all enveloped viruses, must incorporate viral glycoproteins to form infectious particles. Interactions between the glycoprotein cytoplasmic tail and the matrix domain of Gag are thought to direct recruitment of glycoproteins to native virions for many retroviruses. However, retroviruses can also incorporate glycoproteins from other viruses to form infectious virions known as pseudotyped particles. The glycoprotein murine leukemia virus (MLV) Env can readily form pseudotyped particles with many retroviruses, suggesting a generic mechanism for recruitment. Here, we sought to identify which components of Gag, particularly the matrix domain, contribute to recruitment of MLV Env into retroviral particles. Unexpectedly, we discovered that the matrix domain of HIV-1 Gag is dispensable for generic recruitment, since it could be replaced with a nonviral membrane-binding domain without blocking active incorporation of MLV Env into HIV virions. However, MLV Env preferentially assembles with MLV virions. When MLV and HIV particles are produced from the same cell, MLV Env is packaged almost exclusively by MLV particles, thus preventing incorporation into HIV particles. Surprisingly, the matrix domain of MLV Gag is not required for this selectivity, since MLV Gag containing the matrix domain from HIV is still able to outcompete HIV particles for MLV Env. Although MLV Gag is sufficient for selective incorporation to occur, no single Gag domain dictates the selectivity. Our findings indicate that Env recruitment is more complex than previously believed and that Gag assembly/budding sites have fundamental properties that affect glycoprotein incorporation.
doi:10.1128/JVI.02604-12
PMCID: PMC3554149  PMID: 23152533
13.  Intracellular Trafficking of Gag and Env Proteins and Their Interactions Modulate Pseudotyping of Retroviruses 
Journal of Virology  2004;78(13):7153-7164.
Glycoproteins derived from most retroviruses and from several families of enveloped viruses can form infectious pseudotypes with murine leukemia virus (MLV) and lentiviral core particles, like the MLV envelope glycoproteins (Env) that are incorporated on either virus type. However, coexpression of a given glycoprotein with heterologous core proteins does not always give rise to highly infectious viral particles, and restrictions on pseudotype formation have been reported. To understand the mechanisms that control the recruitment of viral surface glycoproteins on lentiviral and retroviral cores, we exploited the fact that the feline endogenous retrovirus RD114 glycoprotein does not efficiently pseudotype lentiviral cores derived from simian immunodeficiency virus, whereas it is readily incorporated onto MLV particles. Our results indicate that recruitment of glycoproteins by the MLV and lentiviral core proteins occurs in intracellular compartments and not at the cell surface. We found that Env and core protein colocalization in intracytoplasmic vesicles is required for pseudotype formation. By investigating MLV/RD114 Env chimeras, we show that signals in the cytoplasmic tail of either glycoprotein differentially influenced their intracellular localization; that of MLV allows endosomal localization and hence recruitment by both lentiviral and MLV cores. Furthermore, we found that upon membrane binding, MLV core proteins could relocalize Env glycoproteins in late endosomes and allow their incorporation on viral particles. Thus, intracellular colocalization, as well as interactions between Env and core proteins, may influence the recruitment of the glycoprotein onto viral particles and generate infectious pseudotyped viruses.
doi:10.1128/JVI.78.13.7153-7164.2004
PMCID: PMC421692  PMID: 15194792
14.  Evolutionary history of bovine endogenous retroviruses in the Bovidae family 
Background
Endogenous retroviruses (ERVs) are genomic elements of retroviral origin that are present in the genomes of almost all vertebrates. In cattle, more than 13,000 elements related to ERVs have been detected, and based on the pol gene, 24 families or groups of bovine ERVs have been described. However, information about ERVs in other bovids and the presence of families of related bovine ERVs in different species of the Bovidae family is scarce.
Results
The 24 families of bovine ERVs previously detected in cattle (Bos taurus) were also detected in zebus (Bos indicus) and yaks (Bos grunniens). In addition, six new families, named BoERV25 to BoERV30, were detected in the three Bos species. Five more ruminant species were screened for related ERVs: 26 families were detected in these species, but four families (BoERV24, BoERV26, BoERV28 and BoERV29) were specific to cattle, zebus, yaks and buffalo. An analysis of the homology of the ERVs of cattle, zebus and yaks revealed that the level of LTR divergence was similar between ERVs from cattle and zebus but was less similar between with ERVs from cattle and yaks. In addition, purifying selection was detected in the genes and retroviral regions of clusters of ERVs of cattle, zebus and yaks.
Conclusions
In this work, the 24 ERV families previously identified in cattle were also found in two other species in the Bos genus. In addition, six new bovine ERV families were detected. Based on LTR divergence, the most recently inserted families are from Class II. The divergence of the LTR, used as an indirect estimate of the ERV insertion time, seemed to be influenced by the differences in genome evolution since the divergence of the species. In addition, purifying selection could be acting on clusters of ERVs from different species.
doi:10.1186/1471-2148-13-256
PMCID: PMC3879100  PMID: 24256121
15.  GENOME-WIDE EXPRESSION PROFILES OF ENDOGENOUS RETROVIRUSES IN LYMPHOID TISSUES AND THEIR BIOLOGICAL PROPERTIES 
Virology  2008;373(2):263-273.
Endogenous retroviruses (ERVs) constitute approximately 8−10% of the human and mouse genome. Some autoimmune diseases are attributed to the altered expression of ERVs. In this study, we examined the ERV expression profiles in lymphoid tissues and analyzed their biological properties. Tissues (spleen, thymus, and lymph nodes [axillary, inguinal, and mesenteric]) from C57BL/6J mice were analyzed for differential murine ERV (MuERV) expression by RT-PCR examination of polymorphic U3 sequences. Each tissue had a unique profile of MuERV expression. A genomic map identifying 60 putative MuERVs was established using 22 unique U3s as probes and their biological properties (primer binding site, coding potential, transcription regulatory element, tropism, recombination event, and integration age) were characterized. Interestingly, 12 putative MuERVs retained intact coding potentials for all three polypeptides essential for virus assembly and replication. We suggest that MuERV expression is differentially regulated in conjunction with the transcriptional environment of individual lymphoid tissues.
doi:10.1016/j.virol.2007.10.043
PMCID: PMC2427371  PMID: 18187179
endogenous retrovirus; spleen; thymus; lymph node; coding potential; transcription; genome
16.  Identification of an ancient endogenous retrovirus, predating the divergence of the placental mammals 
The evolutionary arms race between mammals and retroviruses has long been recognized as one of the oldest host–parasite interactions. Rapid evolution rates in exogenous retroviruses have often made accurate viral age estimations highly problematic. Endogenous retroviruses (ERVs), however, integrate into the germline of their hosts, and are subjected to their evolutionary rates. This study describes, for the first time, a retroviral orthologue predating the divergence of placental mammals, giving it a minimum age of 104–110 Myr. Simultaneously, other orthologous selfish genetic elements (SGEs), inserted into the ERV sequence, provide evidence for the oldest individual mammalian-wide interspersed repeat and medium-reiteration frequency interspersed repeat mammalian repeats, with the same minimum age. The combined use of shared SGEs and reconstruction of viral orthologies defines new limits and increases maximum ‘lookback’ times, with subsequent implications for the field of paleovirology.
doi:10.1098/rstb.2012.0503
PMCID: PMC3758187  PMID: 23938752
retrovirus evolution; mammalian evolution; selfish genetic elements; mammalian-wide interspersed repeat; genomics; paleovirology
17.  In vitro binding of purified murine ecotropic retrovirus envelope surface protein to its receptor, MCAT-1. 
Journal of Virology  1997;71(11):8096-8102.
An amino-terminal portion of the Friend murine leukemia virus (MLV) envelope surface protein [SU, residues 1 to 236 [SU:(1-236)]] and its receptor, MCAT-1, were each purified from insect cells after expression by using recombinant baculoviruses. Friend SU:(1-236) bound specifically to Xenopus oocytes that expressed MCAT-1 with an affinity (Kd, 55 nM) similar to that of viral SU binding to permissive cells. Direct binding of Friend SU:(1-236) to purified MCAT-1 was observed in detergent and after reconstitution into liposomes. Analysis of binding demonstrated that MCAT-1 and Friend SU:(1-236) interact with a stoichiometry of near 1:1. These findings demonstrate that the amino-terminal domain from the SU of ecotropic murine retroviruses contains an MCAT-1 binding domain.
PMCID: PMC192264  PMID: 9343158
18.  Properties of the Naturally Occurring Soluble Surface Glycoprotein of Ecotropic Murine Leukemia Virus: Binding Specificity and Possible Conformational Change after Binding to Receptor 
Journal of Virology  2000;74(4):1815-1826.
Ecotropic murine leukemia virus (MuLV) infection is initiated by the interaction between the surface glycoprotein (SU) of the virus and its cell-surface receptor mCAT-1. We investigated the SU-receptor interaction by using a naturally occurring soluble SU which was encoded by the envelope (env) gene of a defective endogenous MuLV, Fv-4r. Binding of the SU to mCAT-1-positive mouse cells was completed by 1 min at 37°C. The SU could not bind to mouse cells that were persistently infected by ecotropic MuLVs (but not amphotropic or dualtropic MuLVs) or transfected with wild-type ecotropic env genes or a mutant env gene which can express only precursor Env protein that is restricted to retention in the endoplasmic reticulum. These cells were also resistant to superinfection by ecotropic MuLVs. Thus, superinfection resistance correlated with the lack of SU-binding capacity. After binding to the cells, the SU appeared to undergo some conformational changes within 1 min in a temperature-dependent manner. This was suggested by the different properties of two monoclonal antibodies (MAbs) reactive with the same C-terminal half of the Fv-4r SU domain, including a proline-rich motif which was shown to be important for conformation of the SU and interaction between the SU and the transmembrane protein. One MAb reacting with the soluble SU bound to cells was dissociated by a temperature shift from 4 to 37°C. Such dissociation was not observed in cells synthesizing the SU or when another MAb was used, indicating that the dissociation was not due to a temperature-dependent release of the MAb but to possible conformational changes in the SU.
PMCID: PMC111660  PMID: 10644355
19.  Retroviral vectors displaying functional antibody fragments. 
Nucleic Acids Research  1993;21(5):1081-1085.
We have made retrovirus particles displaying a functional antibody fragment. We fused the gene encoding an antibody fragment directed against a hapten with that encoding the viral envelope protein (Pr80env) of the ecotropic Moloney murine leukemia virus. The fusion gene was co-expressed in ecotropic retroviral packaging cells with a retroviral plasmid carrying the neomycin phosphotransferase gene (neo), and retroviral particles with specific hapten binding activities were recovered. Furthermore the hapten-binding particles were able to transfer the neo gene and the antibody-envelope fusion gene to mouse fibroblasts. In principle, the display of antibody fragments on the surface of recombinant retroviral particles could be used to target virus to cells for gene delivery, or to retain the virus in target tissues.
Images
PMCID: PMC309266  PMID: 8385311
20.  ERE Database: a database of genomic maps and biological properties of endogenous retroviral elements in the C57BL/6J mouse genome 
Genomics  2012;100(3):157-161.
Endogenous retroviral elements (EREs), a family of transposable elements, constitute a substantial fraction of mammalian genomes. It is expected that profiles of the ERE sequences and their genomic locations are unique for each individual. Comprehensive characterization of the EREs’ genomic locations and their biological properties is essential for understanding their roles in the pathophysiology of the host. In this study, we identified and mapped putative EREs (a total of 111 endogenous retroviruses [ERVs] and 488 solo long terminal repeats [sLTRs]) within the C57BL/6J mouse genome. The biological properties of individual ERE isolates (both ERVs and sLTRs) were then characterized in the following aspects: transcription potential, tropism trait, coding potential, recombination event, integration age, and primer binding site for replication. In addition, a suite of database management system programs was developed to organize and update the data acquired from current and future studies and to make the data accessible via internet.
doi:10.1016/j.ygeno.2012.06.002
PMCID: PMC3428438  PMID: 22691267
mouse genome; database; murine lukemia virus; endogenous retrovirus; retroelement; solo long terminal repeat
21.  Mobilization of Endogenous Retroviruses in Mice after Infection with an Exogenous Retrovirus▿  
Journal of Virology  2008;83(6):2429-2435.
Mammalian genomes harbor a large number of retroviral elements acquired as germ line insertions during evolution. Although many of the endogenous retroviruses are defective, several contain one or more intact viral genes that are expressed under certain physiological or pathological conditions. This is true of the endogenous polytropic retroviruses that generate recombinant polytropic murine leukemia viruses (MuLVs). In these recombinants the env gene sequences of exogenous ecotropic MuLVs are replaced with env gene sequences from an endogenous polytropic retrovirus. Although replication-competent endogenous polytropic retroviruses have not been observed, the recombinant polytropic viruses are capable of replicating in numerous species. Recombination occurs during reverse transcription of a virion RNA heterodimer comprised of an RNA transcript from an endogenous polytropic virus and an RNA transcript from an exogenous ecotropic MuLV RNA. It is possible that homodimers corresponding to two full-length endogenous RNA genomes are also packaged. Thus, infection by an exogenous virus may result not only in recombination with endogenous sequences, but also in the mobilization of complete endogenous retrovirus genomes via pseudotyping within exogenous retroviral virions. We report that the infection of mice with an ecotropic virus results in pseudotyping of intact endogenous viruses that have not undergone recombination. The endogenous retroviruses infect and are integrated into target cell genomes and subsequently replicate and spread as pseudotyped viruses. The mobilization of endogenous retroviruses upon infection with an exogenous retrovirus may represent a major interaction of exogenous retroviruses with endogenous retroviruses and may have profound effects on the pathogenicity of retroviral infections.
doi:10.1128/JVI.01926-08
PMCID: PMC2648265  PMID: 19116259
22.  Endogenous Gammaretrovirus Acquisition in Mus musculus Subspecies Carrying Functional Variants of the XPR1 Virus Receptor 
Journal of Virology  2013;87(17):9845-9855.
The xenotropic and polytropic mouse leukemia viruses (X-MLVs and P-MLVs, respectively) have different host ranges but use the same functionally polymorphic receptor, XPR1, for entry. Endogenous retroviruses (ERVs) of these 2 gammaretrovirus subtypes are largely segregated in different house mouse subspecies, but both MLV types are found in the classical strains of laboratory mice, which are genetic mosaics of 3 wild mouse subspecies. To describe the subspecies origins of laboratory mouse XP-MLV ERVs and their coevolutionary trajectory with their XPR1 receptor, we screened the house mouse subspecies for known and novel Xpr1 variants and for the individual full-length XP-MLV ERVs found in the sequenced C57BL mouse genome. The 12 X-MLV ERVs predate the origins of laboratory mice; they were all traced to Japanese wild mice and are embedded in the 5% of the laboratory mouse genome derived from the Asian Mus musculus musculus and, in one case, in the <1% derived from M. m. castaneus. While all 31 P-MLV ERVs map to the 95% of the laboratory mouse genome derived from P-MLV-infected M. m. domesticus, no C57BL P-MLV ERVs were found in wild M. m. domesticus. All M. m. domesticus mice carry the fully permissive XPR1 receptor allele, but all of the various restrictive XPR1 receptors, including the X-MLV-restricting laboratory mouse Xpr1n and a novel M. m. castaneus allele, originated in X-MLV-infected Asian mice. Thus, P-MLV ERVs show more insertional polymorphism than X-MLVs, and these differences in ERV acquisition and fixation are linked to subspecies-specific and functionally distinct XPR1 receptor variants.
doi:10.1128/JVI.01264-13
PMCID: PMC3754108  PMID: 23824809
23.  Identification of the Myelin Protein Plasmolipin as the Cell Entry Receptor for Mus caroli Endogenous Retrovirus▿  
Journal of Virology  2008;82(14):6862-6868.
The Asian wild mouse species Mus caroli harbors an endogenous retrovirus (McERV) that is closely related to but distinct from the endogenous retrovirus family defined by the Mus dunni endogenous virus and the Mus musculus endogenous retrovirus. McERV could infect some cell types from humans, dogs, and rats, but not all, and did not infect any mouse cell line tested. Because of its interesting host range and proposed ancestral relationship to primate retroviruses and because none of the entry receptors for this family of retroviruses had been identified, we began a search for the McERV receptor. We determined the chromosomal location of the receptor gene in the human genome by phenotypic screening of the G3 human-hamster radiation hybrid cell line panel and confirmed the localization by assaying for receptor activity conferred by bacterial artificial chromosome (BAC) clones spanning the region. We next localized the gene more precisely in one positive BAC by assaying for receptor activity following BAC digestion with several restriction enzymes that cleaved different sets of genes, and we confirmed that the final candidate gene, plasmolipin (PLLP; TM4SF11), is the novel receptor by showing that the expression of the human PLLP cDNA renders hamster and mouse cells susceptible to McERV infection. PLLP functions as a voltage-dependent potassium ion channel and is expressed primarily in kidney and brain, helping to explain the limited range of cell types that McERV can infect. Interestingly, mouse PLLP also functioned well as a receptor for McERV but was simply not expressed in the mouse cell types that we originally tested.
doi:10.1128/JVI.00397-08
PMCID: PMC2446966  PMID: 18463156
24.  Murine Leukemia Viruses: Objects and Organisms 
Advances in Virology  2011;2011:403419.
Murine leukemia viruses (MLVs) are among the simplest retroviruses. Prototypical gammaretroviruses encode only the three polyproteins that will be used in the assembly of progeny virus particles. These are the Gag polyprotein, which is the structural protein of a retrovirus particle, the Pol protein, comprising the three retroviral enzymes—protease, which catalyzes the maturation of the particle, reverse transcriptase, which copies the viral RNA into DNA upon infection of a new host cell, and integrase, which inserts the DNA into the chromosomal DNA of the host cell, and the Env polyprotein, which induces the fusion of the viral membrane with that of the new host cell, initiating infection. In general, a productive MLV infection has no obvious effect upon host cells. Although gammaretroviral structure and replication follow the same broad outlines as those of other retroviruses, we point out a number of significant differences between different retroviral genera.
doi:10.1155/2011/403419
PMCID: PMC3265304  PMID: 22312342
25.  ERV-L Elements: a Family of Endogenous Retrovirus-Like Elements Active throughout the Evolution of Mammals 
Journal of Virology  1999;73(4):3301-3308.
We have previously identified in the human genome a family of 200 endogenous retrovirus-like elements, the HERV-L elements, disclosing similarities with the foamy retroviruses and which might be the evolutionary intermediate between classical intracellular retrotransposons and infectious retroviruses. Southern blot analysis of a large series of mammalian genomic DNAs shows that HERV-L-related elements—so-called ERV-L—are present among all placental mammals, suggesting that ERV-L elements were already present at least 70 million years ago. Most species exhibit a low copy number of ERV-L elements (from 10 to 30), while simians (not prosimians) and mice (not rats) have been subjected to bursts resulting in increases in the number of copies up to 200. The burst of copy number in primates can be dated to shortly after the prosimian and simian branchpoint, 45 to 65 million years ago, whereas murine species have been subjected to two much more recent bursts (less than 10 million years ago), occurring after the Mus/Rattus split. We have amplified and sequenced 360-bp ERV-L internal fragments of the highly conserved pol gene from a series of 22 mammalian species. These sequences exhibit high percentages of identity (57 to 99%) with the murine fully coding MuERV-L element. Phylogenetic analyses allowed the establishment of a plausible evolutionary scheme for ERV-L elements, which accounts for the high level of sequence conservation and the widespread dispersion among mammals.
PMCID: PMC104094  PMID: 10074184

Results 1-25 (505822)