PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1463232)

Clipboard (0)
None

Related Articles

1.  Tumor cell migration and invasion are regulated by expression of variant integrin glycoforms 
Experimental cell research  2008;314(16):2941-2950.
The ST6Gal-I glycosyltransferase, which adds α2-6-linked sialic acids to glycoproteins, is overexpressed in colon adenocarcinoma, and enzyme activity is correlated with tumor cell invasiveness. Previously we reported that forced expression of oncogenic ras in HD3 colonocytes causes upregulation of ST6Gal-I, leading to increased α2-6 sialylation of β1 integrins. To determine whether ras-induced sialylation is involved in promoting the tumor cell phenotype, we used shRNA to downregulate ST6Gal-I in ras-expressors, and then monitored integrin-dependent responses. Here we show that forced ST6Gal-I downregulation, leading to diminished α2-6 sialylation of integrins, inhibits cell adhesion to collagen-I, a β1 ligand. Correspondingly, collagen binding is reduced by enzymatic removal of cell surface sialic acids from ras-expressors with high ST6Gal-I levels (i.e., no shRNA). Cells with forced ST6Gal-I downregulation also exhibit decreased migration on collagen-I and diminished invasion through Matrigel. Importantly, GD25 cells, which lack β1 integrins (and ST6Gal-I), do not demonstrate differential invasiveness when forced to express ST6Gal-I, suggesting that the effects of variant sialylation are mediated specifically by β1 integrins. The observation that cell migration and invasion can be blocked in oncogenic ras-expressing cells by forcing ST6Gal-I downregulation implicates differential sialylation as an important ras effector, and also suggests that ST6Gal-I is a promising therapeutic target.
doi:10.1016/j.yexcr.2008.07.021
PMCID: PMC2570357  PMID: 18703050
Ras; integrin; sialic acid; metastasis; collagen; colonocytes
2.  Polypeptide N-acetylgalactosaminyltransferase 2 regulates cellular metastasis-associated behavior in gastric cancer 
Aberrant glycosylation of cell surface glycoprotein due to specific alterations of glycosyltransferase activity is usually associated with invasion and metastasis of cancer, particularly of gastric carcinomas. Polypeptide N-acetylgalactosaminyltransferase 2 (ppGalNAc-T2), which catalyzes initiation of mucin-type O-glycosylation, is also involved in tumor migration and invasion. However, a comprehensive understanding of how ppGalNAc-T2 correlates with the metastasic potential of human gastric cancer is not currently available. In the present study, ppGalNAc-T2 was detected in a variety of human poorly differentiated tumor cells, and expression appeared to be higher in SGC7901 gastric cancer cells. In addition, we investigated the potential effects of ppGalNAc-T2 on growth and metastasis-associated behavior in SGC7901 cells after stable transfection with ppGalNAc-T2 sense and antisense vectors. We found that cell proliferation, adhesion and invasion were decreased in ppGalNAc-T2 overexpressed cells but increased in ppGalNAc-T2 downregulated cells. Therefore, we attempted to clarify the mechanisms underlying the anti-metastatic activities of ppGalNAc-T2. Further investigation indicated that overexpression of ppGalNAc-T2 is involved in the inhibition of matrix metalloproteinase (MMP)-2 expression at both the protein and mRNA levels, which may be associated with ppGalNAc-T2 suppressing the expression of transforming growth factor (TGF)-β1. However, it did not exhibit any apparent correlation with MMP-14 expression levels. Our data show the effect of ppGalNAc-T2 on proliferation, adhesion or invasion of SGC7901 gastric cancer cells, suggesting that ppGalNAc-T2 may exert anti-proliferative and anti-metastatic activity through the decrease of MMP-2 and TGF-β1. These results indicate that ppGalNAc-T2 may be used as a novel therapeutic target for human gastric cancer treatment.
doi:10.3892/ijmm.2012.1130
PMCID: PMC4042861  PMID: 22992780
polypeptide N-acetylgalactosaminyltransferase 2; gastric cancer; metastasis; matrix metalloproteinase-2; transforming growth factor-β1
3.  Cleavage of ST6Gal I by Radiation-Induced BACE1 Inhibits Golgi-Anchored ST6Gal I-Mediated Sialylation of Integrin β1 and Migration in Colon Cancer Cells 
Background
Previously, we found that β-galactoside α2,6-sialyltransferase (ST6Gal I), an enzyme that adds sialic acids to N-linked oligosaccharides of glycoproteins and is frequently overexpressed in cancer cells, is up-regulated by ionizing radiation (IR) and cleaved to a form possessing catalytic activity comparable to that of the Golgi-localized enzyme. Moreover, this soluble form is secreted into the culture media. Induction of ST6Gal I significantly increased the migration of colon cancer cells via sialylation of integrin β1. Here, we further investigated the mechanisms underlying ST6Gal I cleavage, solubilization and release from cells, and addressed its functions, focusing primarily on cancer cell migration.
Methods
We performed immunoblotting and lectin affinity assay to analyze the expression of ST6 Gal I and level of sialylated integrin β1. After ionizing radiation, migration of cells was measured by in vitro migration assay. α2, 6 sialylation level of cell surface was analyzed by flow cytometry. Cell culture media were concentrated and then analyzed for soluble ST6Gal I levels using an α2, 6 sialyltransferase sandwich ELISA.
Result
We found that ST6Gal I was cleaved by BACE1 (β-site amyloid precursor protein-cleaving enzyme), which was specifically overexpressed in response to IR. The soluble form of ST6Gal I, which also has sialyltransferase enzymatic activity, was cleaved from the Golgi membrane and then released into the culture media. Both non-cleaved and cleaved forms of ST6Gal I significantly increased colon cancer cell migration in a sialylation-dependent manner. The pro-migratory effect of the non-cleaved form of ST6Gal I was dependent on integrin β1 sialylation, whereas that of the cleaved form of ST6Gal I was not, suggesting that other intracellular sialylated molecules apart from cell surface molecules such as integrin β1 might be involved in mediating the pro-migratory effects of the soluble form of ST6Gal I. Moreover, production of soluble form ST6Gal I by BACE 1 inhibited integrin β1 sialylation and migration by Golgi-anchored form of ST6Gal I.
Conclusions
Our results suggest that soluble ST6Gal I, possibly in cooperation with the Golgi-bound form, may participate in cancer progression and metastasis prior to being secreted from cancer cells.
doi:10.1186/1748-717X-7-47
PMCID: PMC3351029  PMID: 22449099
BACE1; Migration; Radiation; ST6Gal I
4.  p70 S6 kinase drives ovarian cancer metastasis through multicellular spheroid-peritoneum interaction and P-cadherin/β1 integrin signaling activation 
Oncotarget  2014;5(19):9133-9149.
Peritoneal dissemination as a manifestation of ovarian cancer is an adverse prognostic factor associated with poor clinical outcome, and is thus a potentially promising target for improved treatment. Sphere forming cells (multicellular spheroids) present in malignant ascites of patients with ovarian cancer represent a major impediment to effective treatment. p70 S6 kinase (p70S6K), which is a downstream effector of mammalian target of rapamycin, is frequently hyperactivated in human ovarian cancer. Here, we identified p70S6K as an important regulator for the seeding and successful colonization of ovarian cancer spheroids on the peritoneum. Furthermore, we provided evidence for the existence of a novel crosstalk between P-cadherin and β1 integrin, which was crucial for the high degree of specificity in cell adhesion. In particular, we demonstrated that the upregulation of mature β1 integrin occurred as a consequence of P-cadherin expression through the induction of the Golgi glycosyltransferase, ST6Gal-I, which mediated β1 integrin hypersialylation. Loss of p70S6K or targeting the P-cadherin/β1-integrin interplay could significantly attenuate the metastatic spread onto the peritoneum in vivo. These findings establish a new role for p70S6K in tumor spheroid-mesothelium communication in ovarian cancer and provide a preclinical rationale for targeting p70S6K as a new avenue for microenvironment-based therapeutic strategy.
PMCID: PMC4253424  PMID: 25193855
p70S6K; P-cadherin; β1 integrin; adhesion; metastasis
5.  Galectin-1 overexpression promotes progression and chemoresistance to cisplatin in epithelial ovarian cancer 
Zhang, P | Zhang, P | Shi, B | Zhou, M | Jiang, H | Zhang, H | Pan, X | Gao, H | Sun, H | Li, Z
Cell Death & Disease  2014;5(1):e991-.
This study was performed to investigate the role of galectin-1 (Gal-1) in epithelial ovarian cancer (EOC) progression and chemoresistance. Tissue samples from patients with EOC were used to examine the correlation between Gal-1 expression and clinical stage of EOC. The role of Gal-1 in EOC progression and chemoresistance was evaluated in vitro by siRNA-mediated knockdown of Gal-1 or lentivirus-mediated overexpression of Gal-1 in EOC cell lines. To elucidate the molecular mechanisms underlying Gal-1-mediated tumor progression and chemoresistance, the expression and activities of some signaling molecules associated with Gal-1 were analyzed. We found overexpression of Gal-1 in advanced stages of EOC. Knockdown of endogenous Gal-1 in EOC cells resulted in the reduction in cell growth, migration, and invasion in vitro, which may be caused by Gal-1's interaction with H-Ras and activation of the Raf/extracellular signal-regulated kinase (ERK) pathway. Additionally, matrix metalloproteinase-9 (MMP-9) and c-Jun were downregulated in Gal-1-knockdown cells. Notably, Gal-1 overexpression could significantly decrease the sensitivities of EOC cells to cisplatin, which might be ascribed to Gal-1-induced activation of the H-Ras/Raf/ERK pathway and upregulation of p21 and Bcl-2. Taken together, the results suggest that Gal-1 contributes to both tumorigenesis and cisplatin resistance in EOC. Thus, Gal-1 is a potential therapeutic target for EOC.
doi:10.1038/cddis.2013.526
PMCID: PMC4040687  PMID: 24407244
galectin-1; epithelial ovarian cancer; progression; chemoresistance
6.  Pancreatic Cancer Cell Glycosylation Regulates Cell Adhesion and Invasion through the Modulation of α2β1 Integrin and E-Cadherin Function 
PLoS ONE  2014;9(5):e98595.
In our previous studies we have described that ST3Gal III transfected pancreatic adenocarcinoma Capan-1 and MDAPanc-28 cells show increased membrane expression levels of sialyl-Lewis x (SLex) along with a concomitant decrease in α2,6-sialic acid compared to control cells. Here we have addressed the role of this glycosylation pattern in the functional properties of two glycoproteins involved in the processes of cancer cell invasion and migration, α2β1 integrin, the main receptor for type 1 collagen, and E-cadherin, responsible for cell-cell contacts and whose deregulation determines cell invasive capabilities. Our results demonstrate that ST3Gal III transfectants showed reduced cell-cell aggregation and increased invasive capacities. ST3Gal III transfected Capan-1 cells exhibited higher SLex and lower α2,6-sialic acid content on the glycans of their α2β1 integrin molecules. As a consequence, higher phosphorylation of focal adhesion kinase tyrosine 397, which is recognized as one of the first steps of integrin-derived signaling pathways, was observed in these cells upon adhesion to type 1 collagen. This molecular mechanism underlies the increased migration through collagen of these cells. In addition, the pancreatic adenocarcinoma cell lines as well as human pancreatic tumor tissues showed colocalization of SLex and E-cadherin, which was higher in the ST3Gal III transfectants. In conclusion, changes in the sialylation pattern of α2β1 integrin and E-cadherin appear to influence the functional role of these two glycoproteins supporting the role of these glycans as an underlying mechanism regulating pancreatic cancer cell adhesion and invasion.
doi:10.1371/journal.pone.0098595
PMCID: PMC4039506  PMID: 24878505
7.  ST3Gal.I sialyltransferase relevance in bladder cancer tissues and cell lines 
BMC Cancer  2009;9:357.
Background
The T antigen is a tumor-associated structure whose sialylated form (the sialyl-T antigen) involves the altered expression of sialyltransferases and has been related with worse prognosis. Since little or no information is available on this subject, we investigated the regulation of the sialyltransferases, able to sialylate the T antigen, in bladder cancer progression.
Methods
Matched samples of urothelium and tumor tissue, and four bladder cancer cell lines were screened for: ST3Gal.I, ST3Gal.II and ST3Gal.IV mRNA level by real-time PCR. Sialyl-T antigen was detected by dot blot and flow cytometry using peanut lectin. Sialyltransferase activity was measured against the T antigen in the cell lines.
Results
In nonmuscle-invasive bladder cancers, ST3Gal.I mRNA levels were significantly higher than corresponding urothelium (p < 0.001) and this increase was twice more pronounced in cancers with tendency for recurrence. In muscle-invasive cancers and matching urothelium, ST3Gal.I mRNA levels were as elevated as nonmuscle-invasive cancers. Both non-malignant bladder tumors and corresponding urothelium showed ST3Gal.I mRNA levels lower than all the other specimen groups. A good correlation was observed in bladder cancer cell lines between the ST3Gal.I mRNA level, the ST activity (r = 0.99; p = 0.001) and sialyl-T antigen expression, demonstrating that sialylation of T antigen is attributable to ST3Gal.I. The expression of sialyl-T antigens was found in patients' bladder tumors and urothelium, although without a marked relationship with mRNA level. The two ST3Gal.I transcript variants were also equally expressed, independently of cell phenotype or malignancy.
Conclusion
ST3Gal.I plays the major role in the sialylation of the T antigen in bladder cancer. The overexpression of ST3Gal.I seems to be part of the initial oncogenic transformation of bladder and can be considered when predicting cancer progression and recurrence.
doi:10.1186/1471-2407-9-357
PMCID: PMC2763879  PMID: 19811634
8.  Galectin-4 functions as a tumor suppressor of human colorectal cancer 
Development of CRC involves a series of genetic alterations with altered expression of proteins and cell signaling pathways. Here, we identified that gal-4, a marker of differentiation, was down-regulated in CRC. The goal of this work was to determine the function of gal-4 in CRC. Toward this goal, the human colon biopsies and tissue microarrays containing a gradient of pathology were analyzed for gal-4 expression by immunohistochemistry. Cell proliferation, migration, motility, forced expression, knockdown, cell cycle and apoptosis assays were used to characterize gal-4 function. Immunohistochemistry identified that gal-4 expression was significantly down-regulated in adenomas and was essentially absent in invasive carcinomas. Forced expression of gal-4 in gal-4 -ve cells induced cell cycle arrest and retarded cell migration and motility. Further, gal-4 sensitized the cells to CPT-induced apoptosis. Gal-4 knockdown resulted in increased cell proliferation, migration and motility. Gal-4 was found to be associated with Wnt signaling proteins. Finally, gal-4 expression led to down-regulation of Wnt signaling target genes. This study demonstrates that loss of gal-4 is a common and specific event in CRC. This study also shows that gal-4 exhibits tumor suppressive effects in colorectal cancer cells in vitro. Through its ability to interact with, and down-regulate the functions of Wnt signaling pathway, gal-4 reveals a new dimension in the control of the Wnt signaling pathway. Thus, gal-4 may prove to be an important molecule in understanding the biology of CRC.
doi:10.1002/ijc.25750
PMCID: PMC3071872  PMID: 21064109
Colorectal cancer; galectins; Wnt signaling; tumor suppressor
9.  Expression and functions of galectin-7 in ovarian cancer 
Oncotarget  2014;5(17):7705-7721.
There is a critical need to develop effective new strategies for diagnosis and treatment of ovarian cancer. In the present work, we investigated the expression of galectin-7 (gal-7) in epithelial ovarian cancer (EOC) cells and studied its functional relevance. Immunohistochemical analysis of gal-7 expression in tissue microarrays showed that while gal-7 was not detected in normal ovarian tissues, positive cytoplasmic staining of gal-7 was detected in epithelial cells in all EOC histological subtypes but was more frequent in high grade tumors and metastatic samples. Gal-7 expression correlated with a significant difference in the overall survival of patients with ovarian serous cystadenocarcinoma. Furthermore, using human EOC cell lines, we found that gal-7 expression was induced by mutant p53. Mechanistically, Matrigel invasion assays and live cell imaging showed that gal-7 increased the invasive behavior of ovarian cancer cells by inducing MMP-9 and increasing cell motility. EOC cells can also secrete gal-7. Recombinant human gal-7 kills Jurkat T cells and human peripheral T cells, suggesting that gal-7 also has immunosuppressive properties. Taken together, our study validates the clinical significance of gal-7 overexpression in ovarian cancer and provides a rationale for targeting gal-7 to improve the outcome of patients with this disease.
PMCID: PMC4202155  PMID: 25277199
galectin-7; ovarian cancer; immunosupression; p53; MMP-9
10.  Correlation of CD44v6 expression with ovarian cancer progression and recurrence 
BMC Cancer  2013;13:182.
Background
Previously some groups demonstrated that CD44 variant 6 (CD44v6) is correlated with progression and metastasis of ovarian cancer. However, a number of other groups failed to find such an association. Moreover, epithelial ovarian cancer is known to easily metastasize to distinct sites such as the pelvic and abdominal cavities, but the potential association of CD44v6 expression with site-specific metastasis of ovarian cancer has not been explored. This study sought to evaluate the expression of CD44 standard (CD44s) and CD44v6 in primary, metastatic and recurrent epithelial ovarian cancer to explore the potential association of CD44s and CD44v6 with tumor progression and recurrence.
Methods
Tumor specimens were procured from patients with advanced (FIGO III, G3) and recurrent ovarian serous adenocarcinoma. CD44s and CD44v6 expression in the tumor tissues was evaluated by real-time RT-PCR and Western blot. Moreover, serum soluble CD44s or CD44v6 concentrations of early stage (FIGO I, G1), advanced (FIGO III, G3) and recurrent ovarian serous adenocarcinoma patients were determined by enzyme-linked immunosorbent assays (ELISA). CD44v6 expression in a different set of tumor samples on an ovarian cancer tissue chip was evaluated by immunohistochemistry (IHC) and the correlation of CD44v6 expression with clinicopathologic features was analyzed. Finally, the effects of knockdown of CD44v6 in SKOV3 cells on cell adhesion, invasion and migration were assessed.
Results
The expression of CD44v6, but not CD44s, is up-regulated in recurrent ovarian serous cancer compared to advanced primary tumor. CD44v6 expression is also preferentially increased in the tumor at the abdominal cavity metastasis site of advanced diseases. Consistently, serum soluble CD44v6 levels of recurrent ovarian cancer were higher than those of early stage and advanced primary diseases. The IHC data demonstrate that CD44v6 expression is correlated with clinicopathologic features and tumor progression. Lastly, knockdown of CD44v6 decreases the adhesion and migration but not invasion capacities of SKOV3 cells.
Conclusions
CD44v6 expression levels are associated with epithelial ovarian cancer progression, metastasis and relapse. Moreover, serum soluble CD44v6 may be used as a potential marker for identifying tumor relapse. Finally, CD44v6 may play a role in ovarian cancer metastasis by mediating tumor cell adhesion and migration.
doi:10.1186/1471-2407-13-182
PMCID: PMC3635997  PMID: 23565736
Ovarian cancer; CD44v6; Tumor progression; Abdominal cavity metastasis; Recurrence
11.  Hepatitis B virus X protein specially regulates the sialyl lewis a synthesis among glycosylation events for metastasis 
Molecular Cancer  2014;13(1):222.
Background
The metastasis of hematogenous cancer cells is associated with abnormal glycosylation such as sialyl lewis antigens. Although the hepatitis B virus X protein (HBx) plays important role in liver disease, the precise function of HBx on aberrant glycosylation for metastasis remains unclear.
Methods
The human hepatocellular carcinoma tissues, HBx transgenic mice and HBx-transfected cells were used to check the correlation of expressions between HBx and Sialyl lewis antigen for cancer metastasis. To investigate whether expression levels of glycosyltransferases induced in HBx-transfected cells are specifically associated with sialyl lewis A (SLA) synthesis, which enhances metastasis by interaction of liver cancer cells with endothelial cells, ShRNA and siRNAs targeting specific glycosyltransferases were used.
Results
HBx expression in liver cancer region of HCC is associated with the specific synthesis of SLA. Furthermore, the SLA was specifically induced both in liver tissues from HBx-transgenic mice and in in vitro HBx-transfected cells. HBx increased transcription levels and activities of α2-3 sialyltransferases (ST3Gal III), α1-3/4 fucosyltransferases III and VII (FUT III and VII) genes, which were specific for SLA synthesis, allowing dramatic cell-cell adhesion for metastatic potential. Interestingly, HBx specifically induced expression of N-acetylglucosamine-β1-3 galactosyltransferase V (β1-3GalT 5) gene associated with the initial synthesis of sialyl lewis A, but not β1-4GalT I. The β1-3GalT 5 shRNA suppressed SLA expression by HBx, blocking the adhesion of HBx-transfected cells to the endothelial cells. Moreover, β1-3GalT 5 silencing suppressed lung metastasis of HBx-transfected cells in in vivo lung metastasis system.
Conclusion
HBx targets the specific glycosyltransferases for the SLA synthesis and this process regulates hematogenous cancer cell adhesion to endothelial cells for cancer metastasis.
Electronic supplementary material
The online version of this article (doi:10.1186/1476-4598-13-222) contains supplementary material, which is available to authorized users.
doi:10.1186/1476-4598-13-222
PMCID: PMC4190352  PMID: 25255877
Hepatocellular carcinoma; Hepatitis B virus; Sialyl lewis antigen; E-selectin; Endothelial cells
12.  Decreased Galectin-9 and Increased Tim-3 Expression Are Related to Poor Prognosis in Gastric Cancer 
PLoS ONE  2013;8(12):e81799.
Introduction
Galectin-9 (Gal-9) induces adhesion and aggregation of certain cell types and inhibits the metastasis of tumor cells. T-cell immunoglobulin–and mucin domain-3–containing molecule 3 (TIM-3) plays a pivotal role in immune regulation. The aim of this study is to investigate Gal-9 and TIM-3 alterations in gastric cancer and their prognostic values.
Methods
Gal-9 and Tim-3 expression was evaluated using a tissue microarray immunohistochemistry method in 305 gastric cancers, of which 84 had paired adjacent normal samples. Cell lines SGC-7901, BGC-823, MGC-803, MKN45 and GES-1 were also stained. Correlations were analyzed between expression levels of Gal-9 and Tim-3 protein and tumor parameters or clinical outcomes.
Results
Gal-9 and Tim-3 stained positive on tumor cells in 86.2% (263/305), and 60.0% (183/305) patients with gastric cancer, respectively. Gal-9 expression was significantly higher in cancer than in normal mucosa (P<0.001). Reduced Gal-9 expression was associated with lymph-vascular invasion, lymph node metastasis, distant metastasis and worse TNM staging (P = 0.034, P = 0.009, P = 0.002 and P = 0.043, respectively). In contrast, Tim-3 expression was significantly lower in cancer than in control mucosa (P<0.001). Patients with lymph-vascular invasion had higher expression levels of Tim-3 (P<0.001). Moreover, multivariate analysis shows that both high Gal-9 expression and low Tim-3 expression were significantly associated with long overall survival (P = 0.002, P = 0.010, respectively); the combination of Gal-9 and Tim-3 expression was an independent prognostic predictor for patients with gastric cancer (RR: 0.43; 95%CI: 0.20–0.93). H.pylori infection status was not associated with Gal-9 and Tim-3 expression (P = 0.102, P = 0.565).
Conclusion
The results suggest that expression of Gal-9 and Tim-3 in tumor cells may be a potential, independent prognostic factor for patients with gastric cancer. Gal-9 and TIM-3 may play an important part in the gastric carcinogenesis.
doi:10.1371/journal.pone.0081799
PMCID: PMC3858245  PMID: 24339967
13.  Galectin-4 Reduces Migration and Metastasis Formation of Pancreatic Cancer Cells 
PLoS ONE  2013;8(6):e65957.
Galectin-4 (Gal-4) is a member of the galectin family of glycan binding proteins that shows a significantly higher expression in cystic tumors of the human pancreas and in pancreatic adenocarcinomas compared to normal pancreas. However, the putative function of Gal-4 in tumor progression of pancreatic cancer is still incompletely understood. In this study the role of Gal-4 in cancer progression was investigated, using a set of defined pancreatic cancer cell lines, Pa-Tu-8988S (PaTu-S) and Pa-Tu-8988T (PaTu-T), as a model. These two cell lines are derived from the same liver metastasis of a human primary pancreatic adenocarcinoma, but differ in their growth characteristics and metastatic capacity. We demonstrated that Gal-4 expression is high in PaTu-S, which shows poor migratory properties, whereas much lower Gal-4 levels are observed in the highly metastatic cell line PaTu-T. In PaTu-S, Gal-4 is found in the cytoplasm, but it is also secreted and accumulates at the membrane at sites of contact with neighboring cells. Moreover, we show that Gal-4 inhibits metastasis formation by delaying migration of pancreatic cancer cells in vitro using a scratch assay, and in vivo using zebrafish (Danio rerio) as an experimental model. Our data suggest that Gal-4 may act at the cell-surface of PaTu-S as an adhesion molecule to prevent release of the tumor cells, but has in addition a cytosolic function by inhibiting migration via a yet unknown mechanism.
doi:10.1371/journal.pone.0065957
PMCID: PMC3688853  PMID: 23824659
14.  The role of integrin glycosylation in galectin-8-mediated trabecular meshwork cell adhesion and spreading 
Glycobiology  2008;19(1):29-37.
Primary open angle glaucoma (POAG) is a major blindness-causing disease, characterized by elevated intraocular pressure due to an insufficient outflow of aqueous humor. The trabecular meshwork (TM) lining the aqueous outflow pathway modulates the aqueous outflow facility. TM cell adhesion, cell–matrix interactions, and factors that influence Rho signaling in TM cells are thought to play a pivotal role in the regulation of aqueous outflow. In a recent study, we demonstrated that galectin-8 (Gal8) modulates the adhesion and cytoskeletal arrangement of TM cells and that it does so through binding to β1 integrins and inducing Rho signaling. The current study is aimed at the characterization of the mechanism by which Gal8 mediates TM cell adhesion and spreading. We demonstrate here that TM cells adhere to and spread on Gal8-coated wells but not on galectin-1 (Gal1)- or galectin-3 (Gal3)-coated wells. The adhesion of TM cells to Gal8-coated wells was abolished by a competing sugar, β-lactose, but not by a noncompeting sugar, sucrose. Also, a trisaccharide, NeuAcα2-3Galβ1-4GlcNAc, which binds specifically to the N-CRD of Gal8, inhibited the spreading of TM cells to Gal8-coated wells. In contrast, NeuAcα2-6Galβ1-4GlcNAc which lacks affinity for Gal8 had no effect. Affinity chromatography of cell extracts on a Gal8-affinity column and binding experiments with plant lectins, Maakia Amurensis and Sambucus Nigra, revealed that α3β1, α5β1, and αvβ1 integrins are major counterreceptors of Gal8 in TM cells and that TM cell β1 integrins carry predominantly α2-3-sialylated glycans, which are high-affinity ligands for Gal8 but not for Gal1 or Gal3. These data lead us to propose that Gal8 modulates TM cell adhesion and spreading, at least in part, by interacting with α2-3-sialylated glycans on β1 integrins.
doi:10.1093/glycob/cwn100
PMCID: PMC2733777  PMID: 18849583
cell adhesion; galectin-8; glaucoma; integrins; trabecular meshwork
15.  Transient gene silencing of galectin-3 suppresses pancreatic cancer cell migration and invasion through degradation of β-catenin 
Pancreatic cancer is a leading cause of cancer-related mortality and often has a poor prognosis because of its late diagnosis, aggressive local invasion, early metastasis, and poor response to chemotherapy. The chemotherapeutic agent gemcitabine is effective for treating advanced pancreatic cancer, but its efficacy remains less than satisfactory. It is expected that further investigation of pancreatic cancer cell invasion and development of strategies to block this process should improve the disease prognosis. In this study, we tested our hypothesis that galectin-3 (gal-3), a multifunctional member of the β-galactoside-binding protein family, may regulate pancreatic cancer cell motility, and silencing of it inhibit cell motility. Previous studies demonstrated that this protein is associated with tumor cell adhesion, proliferation, differentiation, angiogenesis, apoptosis, and metastasis. Here, we used gal-3 small interfering RNA (siRNA) to silence its expression in various pancreatic cancer cell lines to determine whether gal-3 regulates cell proliferation, migration and invasion in vitro. We found that silencing gal-3 reduced cellular migration and invasion, but failed to affect proliferation. In gal-3 siRNA-transfected cells, we detected a decrease in β-catenin expression, an important signal for cancer cell invasion, which was caused by down-regulation of phosphorylated Akt and GSK-3β. We also found that matrix metalloproteinase (MMP)-2 expression was reduced by gal-3 silencing. These results indicate that gal-3-mediated invasion via MMP-2 regulated by β-catenin degradation is initiated by Akt phosphorylation in pancreatic cancer cells. Our results suggest that gal-3 can be a novel therapeutic target in pancreatic cancer.
doi:10.1002/ijc.25946
PMCID: PMC3833077  PMID: 21448903
β-catenin; Galectin-3; Invasion; MMP-2; Pancreatic cancer; Wnt
16.  Targeting the Urokinase Plasminogen Activator Receptor Inhibits Ovarian Cancer Metastasis 
Purpose
To understand the functional and preclinical efficacy of targeting urokinase plasminogen activator receptor (u-PAR) in ovarian cancer.
Experimental Design
Expression of u-PAR was studied in 162 epithelial ovarian cancers, including 77 pairs of corresponding primary and metastatic tumors. The effect of an antibody against u-PAR (ATN-658) on proliferation, adhesion, invasion, apoptosis, and migration was assessed in three (SKOV3ip1, HeyA8, and CaOV3) ovarian cancer cell lines. The impact of the u-PAR antibody on tumor weight, number, and survival was examined in corresponding ovarian cancer xenograft models and the mechanism by which ATN-658 blocks metastasis was explored.
Results
Only 8% of all ovarian tumors were negative for u-PAR expression. Treatment of SKOV3ip1, HeyA8, and CaOV3 ovarian cancer cells with the u-PAR antibody inhibited cell invasion, migration and adhesion. In vivo, anti-u-PAR treatment reduced the number of tumors and tumor weight in CaOV3 and SKOV3ip1 xenografts, and reduced tumor weight and increased survival in HeyA8 xenografts. Immunostaining of CaOV3 xenograft tumors and ovarian cancer cell lines showed an increase in active-caspase 3 and TUNEL staining. Treatment with u-PAR antibody inhibited α5-integrin and u-PAR colocalization on primary human omental ECM. Anti-u-PAR treatment also decreased the expression of urokinase, u-PAR, β3-integrin and fibroblast growth factor receptor-1 both in vitro and in vivo.
Conclusions
This study shows that an antibody against u-PAR reduces metastasis, induces apoptosis, and reduces the interaction between u-PAR and α5-integrin. This provides a rationale for targeting the u-PAR pathway in patients with ovarian cancer and for further testing of ATN-658 in this indication.
doi:10.1158/1078-0432.CCR-10-2258
PMCID: PMC3073583  PMID: 21149615
urokinase; urokinase receptor; ovarian cancer; metastasis
17.  Galectin-4 expression is associated with reduced lymph node metastasis and modulation of Wnt/β-catenin signalling in pancreatic adenocarcinoma 
Oncotarget  2014;5(14):5335-5349.
Galectin-4 (Gal-4) has been recently identified as a pivotal factor in the migratory capabilities of a set of defined pancreatic ductal adenocarcinoma (PDAC) cell lines using zebrafish as a model system. Here we evaluated the expression of Gal-4 in PDAC tissues selected according to their lymph node metastatic status (N0 vs. N1), and investigated the therapeutic potential of targeting the cross-link with the Wnt signaling pathway in primary PDAC cells.
Analysis of Gal-4 expression in PDACs showed high expression of Gal-4 in 80% of patients without lymph node metastasis, whereas 70% of patients with lymph node metastases had low Gal-4 expression. Accordingly, in primary PDAC cells high Gal-4 expression was negatively associated with migratory and invasive ability in vitro and in vivo. Knockdown of Gal-4 in primary PDAC cells with high Gal-4 expression resulted in significant increase of invasion (40%) and migration (50%, P<0.05), whereas enforced expression of Gal-4 in primary cells with low Gal-4 expression reduced the migratory and invasive behavior compared to the control cells. Gal-4 markedly reduces β-catenin levels in the cell, counteracting the function of Wnt signaling, as was assessed by down-regulation of survivin and cyclin D1. Furthermore, Gal-4 sensitizes PDAC cells to the Wnt inhibitor ICG-001, which interferes with the interaction between CREB binding protein (CBP) and β-catenin. Collectively, our data suggest that Gal-4 lowers the levels of cytoplasmic β-catenin, which may lead to lowered availability of nuclear β-catenin, and consequently diminished levels of nuclear CBP-β-catenin complex and reduced activation of the Wnt target genes. Our findings provide novel insights into the role of Gal-4 in PDAC migration and invasion, and support the analysis of Gal-4 for rational targeting of Wnt/β-catenin signaling in the treatment of PDAC.
PMCID: PMC4170638  PMID: 24977327
Pancreatic ductal adenocarcinoma; Galectin-4; migration; lymph node ratio; primary PDAC cells; Wnt/β-catenin pathway
18.  Tumor galectin-1 mediates tumor growth and metastasis through regulation of T-cell apoptosis 
Cancer research  2011;71(13):4423-4431.
Galectin-1 (Gal-1), a carbohydrate-binding protein whose secretion is enhanced by hypoxia, promotes tumor aggressiveness by promoting angiogenesis and T cell apoptosis. However, the importance of tumor versus host Gal-1 in tumor progression is undefined. Here we offer evidence that implicates tumor Gal-1 and its modulation of T cell immunity in progression. Comparing Gal-1 deficient mice as hosts for Lewis lung carcinoma cells where Gal-1 levels were preserved or knocked down, we found that tumor Gal-1 was more critical than host Gal-1 in promoting tumor growth and spontaneous metastasis. Enhanced growth and metastasis associated with Gal-1 related to its immunomodulatory function, insofar as the benefits of Gal-1 expression to Lewis lung carcinoma growth were abolished in immune-deficient mice. In contrast, angiogenesis, as assessed by microvessel density count, was similar between tumors with divergent Gal-1 levels when examined at a comparable size. Our findings establish that tumor rather than host Gal-1 is responsible for mediating tumor progression through intratumoral immune modulation, with broad implications in developing novel targeting strategies for Gal-1 in cancer.
doi:10.1158/0008-5472.CAN-10-4157
PMCID: PMC3129397  PMID: 21546572
Galectin-1; Lung cancer; immune-modulation; apoptosis; hypoxia
19.  Endothelial integrin α3β1 stabilizes carbohydrate-mediated tumor/endothelial cell adhesion and induces macromolecular signaling complex formation at the endothelial cell membrane 
Oncotarget  2014;5(5):1382-1389.
Blood borne metastatic tumor cell adhesion to endothelial cells constitutes a critical rate-limiting step in hematogenous cancer metastasis. Interactions between cancer associated carbohydrate Thomsen-Friedenreich antigen (TF-Ag) and endothelium-expressed galectin-3 (Gal-3) have been identified as the leading molecular mechanism initiating tumor/endothelial cell adhesion in several types of cancer. However, it is unknown how these rather weak and transient carbohydrate/lectin mediated interactions are stabilized. Here, using Western blot and LC tandem mass spectrometry analyses of pull-downs utilizing TF-Ag loaded gold nanoparticles, we identified Gal-3, endothelial integrin α3β1, Src kinase, as well as 5 additional molecules mapping onto focal adhesion pathway as parts of the macromolecular complexes formed at the endothelial cell membranes downstream of TF-Ag/Gal-3 interactions. In a modified parallel flow chamber assay, inhibiting α3β1 integrin greatly reduced the strength of tumor/endothelial cell interactions without affecting the initial cancer cell adhesion. Further, the macromolecular complex induced by TF-Ag/Gal-3/α3β1 interactions activates Src kinase, p38, and ERK1/2, pathways in endothelial cells in a time- and α3β1-dependent manner. We conclude that, following the initial metastatic cell attachment to endothelial cells mediated by TF-Ag/Gal-3 interactions, endothelial integrin α3β1 stabilizes tumor/endothelial cell adhesion and induces the formation of macromolecular signaling complex activating several major signaling pathways in endothelial cells.
PMCID: PMC4012737  PMID: 24675526
tumor metastasis; adhesion; Thomsen-Friedenreich antigen; galectin; integrin
20.  α2,3-Sialyltransferase ST3Gal III Modulates Pancreatic Cancer Cell Motility and Adhesion In Vitro and Enhances Its Metastatic Potential In Vivo 
PLoS ONE  2010;5(9):e12524.
Background
Cell surface sialylation is emerging as an important feature of cancer cell metastasis. Sialyltransferase expression has been reported to be altered in tumours and may account for the formation of sialylated tumour antigens. We have focused on the influence of alpha-2,3-sialyltransferase ST3Gal III in key steps of the pancreatic tumorigenic process.
Methodology/Principal Findings
ST3Gal III overexpressing pancreatic adenocarcinoma cell lines Capan-1 and MDAPanc-28 were generated. They showed an increase of the tumour associated antigen sialyl-Lewisx. The transfectants' E-selectin binding capacity was proportional to cell surface sialyl-Lewisx levels. Cellular migration positively correlated with ST3Gal III and sialyl-Lewisx levels. Moreover, intrasplenic injection of the ST3Gal III transfected cells into athymic nude mice showed a decrease in survival and higher metastasis formation when compared to the mock cells.
Conclusion
In summary, the overexpression of ST3Gal III in these pancreatic adenocarcinoma cell lines underlines the role of this enzyme and its product in key steps of tumour progression such as adhesion, migration and metastasis formation.
doi:10.1371/journal.pone.0012524
PMCID: PMC2931708  PMID: 20824144
21.  Epigenetic inactivation of ST6GAL1 in human bladder cancer 
BMC Cancer  2014;14(1):901.
Background
Posttranslational protein modifications are known to modulate key biological processes like proliferation and apoptosis. Accumulating evidence shows that ST6GAL1, an enzyme that catalyzes the transfer of sialic acid onto galactose-containing substrates, is aberrantly expressed in various cancers and may affect cell motility and invasion. This is the first study to describe ST6GAL1 expression and regulation in human bladder cancer.
Methods
ST6GAL1 mRNA expression levels in human cell lines (UROtsa, RT4, RT112 and J82) and tissue samples (n = 15 normal urothelium (NU), n = 13 papillary non-invasive tumors (pTa), n = 12 carcinoma in situ (CIS), n = 26 muscle invasive tumors (pT2-4)) were assessed using real-time PCR. In addition, ST6GAL1 protein expression was evaluated using immunohistochemistry. Promoter methylation analysis was performed using methylation-specific PCR (MSP) in cell lines (n = 4) and patient samples (n = 23 NU, n = 12 CIS, n = 29 pTa, n = 41 pT2-4). Epigenetic ST6GAL1 gene silencing was confirmed by in vitro demethylation of bladder cell lines. Data were validated by analysis of an independent bladder tumor data set (n = 184) based on The Cancer Genome Atlas (TCGA) portal.
Results
Semi-quantitative ST6GAL1 real-time PCR expression analysis showed two distinct trends: In muscle-invasive tumors ST6GAL1 expression was downregulation by 2.7-fold, while papillary non-invasive tumors showed an increased ST6GAL1 mRNA expression compared to normal urothelium. ST6GAL1 loss in muscle-invasive tumors was associated with increasing invasiveness. On the protein level, 69.2% (n = 45/65) of all tumors showed a weak ST6GAL1 protein staining (IRS ≤ 4) while 25.6% (16/65) exhibited a complete loss (IRS = 0) of ST6GAL1 protein. Tumor-specific DNA methylation of the ST6GAL1 promoter region was frequently found in pT2-4 tumors (53.6% (22/41)), whereas only 13.8% (4/29) of pTa tumors showed ST6GAL1 promoter methylation. Normal urothelium remained unmethylated. Importantly, we significantly revealed an inverse correlation between ST6GAL1 mRNA expression and ST6GAL1 promoter merthylation in primary bladder cancer. These findings were clearly verified by the TCGA public data set and in vitro demethylation assays functionally confirmed ST6GAL1 promoter methylation as a potential regulatory factor for ST6GAL1 gene silencing.
Conclusions
Our study characterizes for the first time ST6GAL1 expression loss caused by aberrant ST6GAL1 promoter methylation potentially indicating a tumor suppressive role in bladder carcinogenesis.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2407-14-901) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2407-14-901
PMCID: PMC4265431  PMID: 25465919
ST6GAL1; Bladder cancer; DNA methylation; Tumor suppressor
22.  Expression patterns of α2,3-Sialyltransferase I and α2,6-Sialyltransferase I in human cutaneous epithelial lesions 
Skin tumors have become one of the most common cancers in the world and their carcinogenesis is frequently associated with altered glycosylation patterns. The aberrant sialylation, a type of glycosylation, can mediate pathophysiological key events during various stages of tumor progression, including invasion and metastasis. Sialyltransferases play a key role in a variety of biological processes, including cell-cell communication, cell-matrix interaction, adhesion, and protein targeting. In this study, it was evaluated the expression of ST3Gal I and ST6Gal I in cutaneous epithelial lesions that include actinic keratosis (n=15), keratoacanthoma (n=9), squamous cell carcinoma (n=22) and basal cell carcinoma (n=28) in order to evaluate if sialyltransferases expression is different in premalignant and in malignant tumors. The expression of ST3Gal I was observed in actinic keratosis (53%), keratoacanthoma (78%), squamous cell carcinoma (73%) and basal cell carcinoma (32%) with statistic differences between basal cell carcinoma and keratoacanthoma (P=0.0239) and basal cell carcinoma and squamous cell carcinoma (P=0.0096); for ST6Gal I, cytoplasmic expression was noted in actinic keratosis (40%), heterogeneous and cytoplasmic expression was noted in keratoacanthoma (67%), squamous cell carcinoma (41%) and basal cell carcinoma (7%) with statistic differences between basal cell carcinoma and squamous cell carcinoma (P=0.0061) and basal cell carcinoma and keratoacanthoma (P=0.0008). In summary, our results showed that the high expression of ST3Gal I and ST6Gal I, in skin tumors, is associated with tumors with greater potential for invasion and metastasis, as in the case of squamous cell carcinoma, and this may be related to their behavior.
doi:10.4081/ejh.2013.e7
PMCID: PMC3683614  PMID: 23549466
sialic acid; α2,3-sialyltransferases; α2,6-sialyltransferases; basal cell carcinoma; squamous cell carcinoma; actinic keratosis; keratoacanthoma
23.  Eosinophil-expressed galectin-3 regulates cell trafficking and migration 
Galectin-3 (Gal-3), a β galactoside-binding lectin, is implicated in the pathogenesis of allergic airway inflammation and allergen-challenged mice deficient in Gal-3 (Gal-3-/-) exhibit decreased airway recruitment of eosinophils (Eos). Gal-3 is expressed and secreted by several cell types and can thus function extracellularly and intracellularly to regulate a variety of cellular responses. We sought to determine the role of Eos-expressed Gal-3 in promoting Eos trafficking and migration in the context of allergic airway inflammation using bone marrow (BM)-derived Eos from wild-type (WT) and Gal-3-/- mice. Airway recruitment of Eos in acute (4 weeks) and chronic (8–12 weeks) allergen-challenged WT mice correlated with Gal-3 expression in the lungs. BM-derived Eos were found to express Gal-3 on the cell surface and secrete soluble Gal-3 when exposed to eotaxin-1. Compared to WT Eos, Gal-3-/- Eos exhibited significantly reduced rolling on vascular cell adhesion molecule 1 (VCAM-1) and decreased stable adhesion on intercellular adhesion molecule 1 (ICAM-1) under conditions of flow in vitro. Evaluation of cytoskeletal rearrangement demonstrated that relatively fewer adherent Gal-3-/- Eos undergo cell spreading and formation of membrane protrusions. In addition, cell surface expression of integrin receptor αM (CD11b) was lower in Gal-3-/- Eos, which is likely to account for their altered adhesive interactions with VCAM-1 and ICAM-1. Gal-3-/- Eos also exhibited significantly decreased migration toward eotaxin-1 compared to WT Eos irrespective of similar levels of CCR3 expression. Further, eotaxin-induced migration of WT Eos remained unaffected in the presence of lactose, suggesting a role for intracellular Gal-3 in regulating Eos migration. Overall, our findings indicate that Gal-3 expression in the lungs correlates with Eos mobilization during allergic airway inflammation and signaling involving intracellular Gal-3 and/or secreted Gal-3 bound to the cell surface of Eos appears to be essential for Eos trafficking under flow as well as for migration.
doi:10.3389/fphar.2013.00037
PMCID: PMC3617360  PMID: 23576987
eosinophils; galectin-3; allergic airway inflammation; cell trafficking; migration
24.  Generation and functional characterization of the anti-transferrin receptor single-chain antibody-GAL4 (TfRscFv-GAL4) fusion protein 
BMC Biotechnology  2012;12:91.
Background
The development of vectors for cell-specific gene delivery is a major goal of gene therapeutic strategies. Transferrin receptor (TfR) is an endocytic receptor and identified as tumor relative specific due to its overexpression on most tumor cells or tissues, and TfR binds and intakes of transferrin-iron complex. We have previously generated an anti-TfR single-chain variable fragments of immunoglobulin (scFv) which were cloned from hybridoma cell line producing antibody against TfR linked with a 20 aa-long linker sequence (G4S)4. In the present study, the anti-TfR single-chain antibody (TfRscFv) was fused to DNA-binding domain of the yeast transcription factor GAL4. The recombinant fusion protein, designated as TfRscFv-GAL4, is expected to mediate the entry of DNA-protein complex into targeted tumor cells.
Results
Fusion protein TfRscFv-GAL4 was expressed in an E. coli bacterial expression system and was recovered from inclusion bodies with subsequent purification by metal-chelate chromatography. The resulting proteins were predominantly monomeric and, upon refolding, became a soluble biologically active bifunctional protein. In biological assays, the antigen-binding activity of the re-natured protein, TfRscFv-GAL4, was confirmed by specific binding to different cancer cells and tumor tissues. The cell binding rates, as indicated by flow cytometry (FCM) analysis, ranged from 54.11% to 8.23% in seven different human carcinoma cell lines. It showed similar affinity and binding potency as those of parent full-length mouse anti-TfR antibody. The positive binding rates to tumor tissues by tissue microarrays (TMA) assays were 75.32% and 63.25%, but it showed weakly binding with hepatic tissue in 5 cases, and normal tissues such as heart, spleen, adrenal cortex blood vessel and stomach. In addition, the re-natured fusion protein TfRscFv-GAL4 was used in an ELISA with rabbit anti-GAL4 antibody. The GAL4-DNA functional assay through the GAL4 complementary conjugation with the GAL4rec-GFP-pGes plasmid to verify the GLA4 activity and GAL4rec-recognized specificity functions. It also shows the complex, TfRscFv-GAL4-GAL4rec-GFP-pGes, could be taken into endochylema to express the green fluorescent protein (GFP) with 8 to 10-fold transfection efficiency.
Conclusions
Results of our study demonstrated that the biofunctianality of genetically engineered fusion protein, TfRscFv-GAL4, was retained, as the fusion protein could both carry the plasmid of GAL4rec-pGes and bind TfR on tumour cells. This product was able to transfect target cells effectively in an immuno-specific manner, resulting in transient gene expression. This protein that can be applied as an effective therapeutic and diagnostic delivery to the tumor using endogenous membrane transport system with potential widespread utility.
doi:10.1186/1472-6750-12-91
PMCID: PMC3560209  PMID: 23192001
25.  Intra-Peritoneal Hyperthermia Combining α-Galactosylceramide in the Treatment of Ovarian Cancer 
PLoS ONE  2013;8(7):e69336.
The purpose of this study was to investigate the anti-tumor effect and potential mechanisms of i.p. hyperthermia in combination with α-galactosylceramide (α-GalCer) for the treatment of ovarian cancer. In this study, immuno-competent tumor models were established using murine ovarian cancer cell lines and treated with i.p. hyperthermia combining α-GalCer. Th1/Th2 cytokine expression profiles in the serum, NK cell cytotoxicity and phagocytic activities of dendritic cells (DCs) were assayed. We also analyzed the number of CD8+/IFN-γ+ tumor specific cytotoxic T cells, as well as the tumor growth based on depletion of lymphocyte sub-population. Therapeutic effect on those ovarian tumors was monitored by a non-invasive luminescent imaging system. Intra-peritoneal hyperthermia induced significant pro-inflammatory cytokines expression, and sustained the response of NK and DCs induced by α-GalCer treatment. The combination treatment enhanced the cytotoxic T lymphocyte (CTL) immune response in two mouse ovarian cancer models. This novel treatment modality by combination of hyperthermia and glycolipid provides a pronounced anti-tumor immune response and better survival. In conclusion, intra-peritoneal hyperthermia enhanced the pro-inflammatory cytokine secretion and phagocytic activity of DCs stimulated by α-GalCer. The subsequent CTL immune response induced by α-GalCer was further strengthened by combining with i.p. hyperthermia. Both innate and adaptive immunities were involved and resulted in a superior therapeutic effect in treating the ovarian cancer.
doi:10.1371/journal.pone.0069336
PMCID: PMC3720534  PMID: 23935988

Results 1-25 (1463232)