Search tips
Search criteria

Results 1-25 (672033)

Clipboard (0)

Related Articles

1.  Highly Dynamic Genomic Loci Drive the Synthesis of Two Types of Capsular or Secreted Polysaccharides within the Mycoplasma mycoides Cluster 
Mycoplasmas of the Mycoplasma mycoides cluster are all ruminant pathogens. Mycoplasma mycoides subsp. mycoides is responsible for contagious bovine pleuropneumonia and is known to produce capsular polysaccharide (CPS) and exopolysaccharide (EPS). Previous studies have strongly suggested a role for Mycoplasma mycoides subsp. mycoides polysaccharides in pathogenicity. Mycoplasma mycoides subsp. mycoides-secreted EPS was recently characterized as a β(1→6)-galactofuranose homopolymer (galactan) identical to the capsular product. Here, we extended the characterization of secreted polysaccharides to all other members of the M. mycoides cluster: M. capricolum subsp. capripneumoniae, M. capricolum subsp. capricolum, M. leachii, and M. mycoides subsp. capri (including the LC and Capri serovars). Extracted EPS was characterized by nuclear magnetic resonance, resulting in the identification of a homopolymer of β(1→2)-glucopyranose (glucan) in M. capricolum subsp. capripneumoniae and M. leachii. Monoclonal antibodies specific for this glucan and for the Mycoplasma mycoides subsp. mycoides-secreted galactan were used to detect the two polysaccharides. While M. mycoides subsp. capri strains of serovar LC produced only capsular galactan, no polysaccharide could be detected in strains of serovar Capri. All strains of M. capricolum subsp. capripneumoniae and M. leachii produced glucan CPS and EPS, whereas glucan production and localization varied among M. capricolum subsp. capricolum strains. Genes associated with polysaccharide synthesis and forming a biosynthetic pathway were predicted in all cluster members. These genes were organized in clusters within two loci representing genetic variability hot spots. Phylogenetic analysis showed that some of these genes, notably galE and glf, were acquired via horizontal gene transfer. These findings call for a reassessment of the specificity of the serological tests based on mycoplasma polysaccharides.
PMCID: PMC4277593  PMID: 25398856
2.  Distinctive Repertoire of Contingency Genes Conferring Mutation- Based Phase Variation and Combinatorial Expression of Surface Lipoproteins in Mycoplasma capricolum subsp. capricolum of the Mycoplasma mycoides Phylogenetic Cluster†  
Journal of Bacteriology  2006;188(13):4926-4941.
The generation of surface variation among many divergent species of Mollicutes (mycoplasmas) occurs through stochastic expression patterns of diverse lipoprotein genes. The size and wide distribution of such variable gene sets in minimal (∼0.6- to 1.4-Mb) mycoplasmal genomes suggest their key role in the adaptation and survival of these wall-less monoderms. Diversity through variable genes is less clearly established among phylogenetically similar mycoplasmas, such as the Mycoplasma mycoides cluster of ruminant pathogens, which vary widely in host range and pathobiology. Using (i) genome sequences from two members of this clade, Mycoplasma capricolum subsp. capricolum and M. mycoides subsp. mycoides small colony biotype (SC), (ii) antibodies to specific peptide determinants of predicted M. capricolum subsp. capricolum gene products, and (iii) analysis of the membrane-associated proteome of M. capricolum subsp. capricolum, a novel set of six genes (vmcA to vmcF) expressing distinct Vmc (variable M. capricolum subsp. capricolum) lipoproteins is demonstrated. These occur at two separate loci in the M. capricolum subsp. capricolum genome, which shares striking overall similarity and gene synteny with the M. mycoides subsp. mycoides SC genome. Collectively, Vmc expression is noncoordinate and combinatorial, subject to a single-unit insertion/deletion in a 5′ flanking dinucleotide repeat that governs expression of each vmc gene. All vmc genes share modular regions affecting expression and membrane translocation. In contrast, vmcA to vmcD genes at one locus express surface proteins with highly structured size-variable repeating domains, whereas vmcE to vmcF genes express products with short repeats devoid of predicted structure. These genes confer a distinctive, dynamic surface architecture that may represent adaptive differences within this important group of pathogens as well as exploitable diagnostic targets.
PMCID: PMC1483001  PMID: 16788201
3.  Molecular Evolution of Mycoplasma capricolum subsp. capripneumoniae Strains, Based on Polymorphisms in the 16S rRNA Genes 
Journal of Bacteriology  1998;180(9):2350-2358.
Mycoplasma capricolum subsp. capripneumoniae belongs to the so-called Mycoplasma mycoides cluster and is the causal agent of contagious caprine pleuropneumonia (CCPP). All members of the M. mycoides cluster have two rRNA operons. The sequences of the 16S rRNA genes of both rRNA operons from 20 strains of M. capricolum subsp. capripneumoniae of different geographical origins in Africa and Asia were determined. Nucleotide differences which were present in only one of the two operons (polymorphisms) were detected in 24 positions. The polymorphisms were not randomly distributed in the 16S rRNA genes, and some of them were found in regions of low evolutionary variability. Interestingly, 11 polymorphisms were found in all the M. capricolum subsp. capripneumoniae strains, thus defining a putative ancestor. A sequence length difference between the 16S rRNA genes in a poly(A) region and 12 additional polymorphisms were found in only one or some of the strains. A phylogenetic tree was constructed by comparative analysis of the polymorphisms, and this tree revealed two distinct lines of descent. The nucleotide substitution rate of strains within line II was up to 50% higher than within line I. A tree was also constructed from individual operonal 16S rRNA sequences, and the sequences of the two operons were found to form two distinct clades. The topologies of both clades were strikingly similar, which supports the use of 16S rRNA sequence data from homologous operons for phylogenetic studies. The strain-specific polymorphism patterns of the 16S rRNA genes of M. capricolum subsp. capripneumoniae may be used as epidemiological markers for CCPP.
PMCID: PMC107175  PMID: 9573185
4.  Rapid Detection of Contagious Caprine Pleuropneumonia Using a Mycoplasma capricolum subsp. capripneumoniae Capsular Polysaccharide-Specific Antigen Detection Latex Agglutination Test 
Journal of Clinical Microbiology  2000;38(11):4152-4159.
Latex microspheres (diameter, 8 μm) were coated with anti-Mycoplasma capricolum subsp. capripneumoniae polyclonal immunoglobulin G (IgG) antiserum (anti-F38 biotype). The coated microspheres, when used in a latex agglutination test (LAT), detected M. capricolum subsp. capripneumoniae antigen in the serum of goats with contagious caprine pleuropneumoniae (CCPP). Beads also agglutinated strongly in the presence of purified M. capricolum subsp. capripneumoniae capsular polysaccharide (CPS). Preabsorption of CPS-specific antibodies prior to coating of the beads removed agglutinating activity in the presence of M. capricolum subsp. capripneumoniae, strongly suggesting that CPS is the likely soluble antigen recognized by the test. In addition, the specificity of the LAT exactly mirrored that of an M. capricolum subsp. capripneumoniae CPS-specific monoclonal antibody (WM25): of the 8 other mycoplasma species tested, agglutination was observed only with bovine serogroup 7. The LAT detected all 11 strains of M. capricolum subsp. capripneumoniae examined in this study, with a sensitivity level of 2 ng of CPS, or the equivalent of 1.7 × 104 CFU, in a reaction volume of 0.03 ml of serum. With field sera from goats with CCPP, the results of the LAT exhibited a 67% correlation with the results of the currently used complement fixation test (CFT), with the main discrepancy in diagnosis resulting from the increased sensitivity of the LAT compared to that of CFT. This antigen-detection LAT should prove particularly useful in identifying animals in the earliest stages of CCPP and combines sensitivity and low cost with ease of application in the field, without the need for any specialist training or equipment.
PMCID: PMC87556  PMID: 11060083
5.  Phylogeny of the Mycoplasma mycoides cluster as determined by sequence analysis of the 16S rRNA genes from the two rRNA operons. 
Journal of Bacteriology  1996;178(14):4131-4142.
The so-called Mycoplasma mycoides cluster consists of six species or subspecies of mycoplasmas (Mollicutes). These species are pathogenic for ruminants and some of them are of great concern in veterinary medicine. The members of the M. mycoides cluster have two rRNA operons (rrnA and rrnB). The nucleotide sequences of the 16S rRNA genes of 10 strains, representing all of the known species and subspecies of the M. mycoides cluster, were determined by direct automated solid-phase DNA sequencing. The sequences of both rRNA operons were determined by a novel strategy involving in vitro amplification by PCR with one operon-specific primer pair and one general primer pair. Interestingly, sequence differences (polymorphisms) between the two operons were observed for all strains. Two strains of M. capricolum subsp. capripneumoniae were sequenced, and 15 polymorphisms were found in the type strain (F38) and 17 polymorphisms were found in the other strain (4/2LC). Eight polymorphisms were found in the 16S rRNA genes of the M. mycoides subsp. mycoides small-colony type, and sequence length variations in a poly(A) region were observed in the 16S rRNA genes of the two operons of this species. Secondary-structure analysis showed that polymorphisms were present in both stem and loop regions. The nucleotide substitutions in the polymorphic sites of the stem regions often resulted in a change from a canonical to a noncanonical base pairing or vice versa. A compensatory mutation was never observed in the other nucleotide of the base pair. Phylogenetic analysis based on the 16S rRNA sequences indicated that Mycoplasma sp. strain PG50 should be included in the M. capricolum species group. Furthermore, the 16S rRNA sequences of M. mycoides subsp. capri and the M. mycoides subsp. mycoides large-colony type were 99.9% identical. We therefore suggest that these species be reclassified in a common species group (for instance, "Mycoplasma capri") distinct from the M. mycoides subsp. mycoides small-colony type, which formed an intermediate branch between the M. capricolum species group and the M. capri species group.
PMCID: PMC178170  PMID: 8763941
6.  The Origin of the ‘Mycoplasma mycoides Cluster’ Coincides with Domestication of Ruminants 
PLoS ONE  2012;7(4):e36150.
The ‘Mycoplasma mycoides cluster’ comprises the ruminant pathogens Mycoplasma mycoides subsp. mycoides the causative agent of contagious bovine pleuropneumonia (CBPP), Mycoplasma capricolum subsp. capripneumoniae the agent of contagious caprine pleuropneumonia (CCPP), Mycoplasma capricolum subsp. capricolum, Mycoplasma leachii and Mycoplasma mycoides subsp. capri. CBPP and CCPP are major livestock diseases and impact the agricultural sector especially in developing countries through reduced food-supply and international trade restrictions. In addition, these diseases are a threat to disease-free countries. We used a multilocus sequence typing (MLST) approach to gain insights into the demographic history of and phylogenetic relationships among the members of the ‘M. mycoides cluster’. We collected partial sequences from seven housekeeping genes representing a total of 3,816 base pairs from 118 strains within this cluster, and five strains isolated from wild Caprinae. Strikingly, the origin of the ‘M. mycoides cluster’ dates to about 10,000 years ago, suggesting that the establishment and spread of the cluster coincided with livestock domestication. In addition, we show that hybridization and recombination may be important factors in the evolutionary history of the cluster.
PMCID: PMC3338596  PMID: 22558362
7.  Versatile Use of oriC Plasmids for Functional Genomics of Mycoplasma capricolum subsp. capricolum†  
Replicative oriC plasmids were recently developed for several mollicutes, including three Mycoplasma species belonging to the mycoides cluster that are responsible for bovine and caprine diseases: Mycoplasma mycoides subsp. mycoides small-colony type, Mycoplasma mycoides subsp. mycoides large-colony type, and Mycoplasma capricolum subsp. capricolum. In this study, oriC plasmids were evaluated in M. capricolum subsp. capricolum as genetic tools for (i) expression of heterologous proteins and (ii) gene inactivation by homologous recombination. The reporter gene lacZ, encoding β-galactosidase, and the gene encoding spiralin, an abundant surface lipoprotein of the related mollicute Spiroplasma citri, were successfully expressed. Functional Escherichia coli β-galactosidase was detected in transformed Mycoplasma capricolum subsp. capricolum cells despite noticeable codon usage differences. The expression of spiralin in M. capricolum subsp. capricolum was assessed by colony and Western blotting. Accessibility of this protein at the cell surface and its partition into the Triton X-114 detergent phase suggest a correct maturation of the spiralin precursor. The expression of a heterologous lipoprotein in a mycoplasma raises potentially interesting applications, e.g., the use of these bacteria as live vaccines. Targeted inactivation of gene lppA encoding lipoprotein A was achieved in M. capricolum subsp. capricolum with plasmids harboring a replication origin derived from S. citri. Our results suggest that the selection of the infrequent events of homologous recombination could be enhanced by the use of oriC plasmids derived from related mollicute species. Mycoplasma gene inactivation opens the way to functional genomics in a group of bacteria for which a large wealth of genome data are already available and steadily growing.
PMCID: PMC1151838  PMID: 15932982
8.  Diagnosis of contagious caprine pleuropneumonia by detection and identification of Mycoplasma capricolum subsp. capripneumoniae by PCR and restriction enzyme analysis. 
Journal of Clinical Microbiology  1996;34(4):785-791.
Contagious caprine pleuropneumonia (CCPP), one of the most serious and dramatic diseases of goats, is caused by Mycoplasma capricolum subsp. capripneumoniae (M. capripneumoniae). This organism is very difficult to isolate and to correctly identify. In a previous report we described a method for the rapid detection and identification of M. capripneumoniae. This method is based on a PCR system by which a segment of the 16S rRNA gene from all mycoplasmas of the M. mycoides cluster can be amplified. The PCR product is then analyzed by restriction enzyme cleavage for the identification of M. capripneumoniae DNA. This system has now been further evaluated with respect to specificity and diagnostic efficacy for the identification and direct detection of the organism in clinical material. Identification by restriction enzyme analysis of amplified DNA from mycoplasmas of the M. mycoides cluster was verified for 55 strains, among which were 15 strains of M. capripneumoniae. The PCR was applied to clinical samples from the nose, ear, pharynx, pleural fluid, and lung tissue containing M. capripneumoniae or other mycoplasmas. As expected, mycoplasmas belonging to the M. mycoides cluster could be detected by the PCR. Restriction enzyme analysis of the PCR products could then be applied for the identification of M. capripneumoniae. Clinical samples and cultures containing M. capripneumoniae were dried on filter paper, to try an easier sample transport method, and were tested by PCR. M. capripneumoniae DNA could be detected in the dried specimens, but the sensitivity of the PCR test was reduced.
PMCID: PMC228893  PMID: 8815084
9.  Systemic Disease in Vaal Rhebok (Pelea capreolus) Caused by Mycoplasmas in the Mycoides Cluster 
Journal of Clinical Microbiology  2005;43(3):1330-1340.
In the winter of 2002, an outbreak of mycoplasma infection in Vaal rhebok (Pelea capreolus) originating from South Africa occurred 15 weeks after their arrival in San Diego, Calif. Three rhebok developed inappetence, weight loss, lethargy, signs related to pulmonary or arthral dysfunction, and sepsis. All three rhebok died or were euthanized. Primary postmortem findings were erosive tracheitis, pleuropneumonia, regional cellulitis, and necrotizing lymphadenitis. Mycoplasmas were detected in numerous tissues by electron microscopy, immunohistochemistry, and PCR. The three deceased rhebok were coinfected with ovine herpesvirus-2, and two animals additionally had a novel gammaherpesvirus. However, no lesions indicative of herpesvirus were seen microscopically in any animal. The rheboks' mycoplasmas were characterized at the level of the 16S rRNA gene, the 16S-23S intergenic spacer region, and the fructose biphosphate aldolase gene. Denaturing gradient gel electrophoresis was carried out to address the possibility of infection with multiple strains. Two of the deceased rhebok were infected with a single strain of Mycoplasma capricolum subsp. capricolum, and the third animal had a single, unique strain most closely related to Mycoplasma mycoides subsp. mycoides large-colony. A PCR survey of DNA samples from 46 other ruminant species demonstrated the presence of several species of mycoplasmas in the mycoides cluster, including a strain of M. capricolum subsp. capricolum identical to that found in two of the rhebok. These findings demonstrate the pervasiveness of mycoplasmas in the mycoides cluster in small ruminants and the potential for interspecies transmission and disease when different animal taxa come in contact.
PMCID: PMC1081266  PMID: 15750104
10.  Variable Surface Protein Vmm of Mycoplasma mycoides subsp. mycoides Small Colony Type 
Journal of Bacteriology  2002;184(13):3712-3722.
A variable surface protein, Vmm, of the bovine pathogen Mycoplasma mycoides subsp. mycoides small colony type (M. mycoides SC) has been identified and characterized. Vmm was specific for the SC biotype and was expressed by 68 of 69 analyzed M. mycoides SC strains. The protein was found to undergo reversible phase variation at a frequency of 9 × 10−4 to 5 × 10−5 per cell per generation. The vmm gene was present in all of the 69 tested M. mycoides SC strains and encodes a lipoprotein precursor of 59 amino acids (aa), where the mature protein was predicted to be 36 aa and was anchored to the membrane by only the lipid moiety, as no transmembrane region could be identified. DNA sequencing of the vmm gene region from ON and OFF clones showed that the expression of Vmm was regulated at the transcriptional level by dinucleotide insertions or deletions in a repetitive region of the promoter spacer. Vmm-like genes were also found in four closely related mycoplasmas, Mycoplasma capricolum subsp. capricolum, M. capricolum subsp . capripneumoniae, Mycoplasma sp. bovine serogroup 7, and Mycoplasma putrefaciens. However, Vmm could not be detected in whole-cell lysates of these species, suggesting that the proteins encoded by the vmm-like genes lack the binding epitope for the monoclonal antibody used in this study or, alternatively, that the Vmm-like proteins were not expressed.
PMCID: PMC135138  PMID: 12057968
11.  Complete Genome Sequences of Virulent Mycoplasma capricolum subsp. capripneumoniae Strains F38 and ILRI181 
Genome Announcements  2014;2(5):e01041-14.
Contagious caprine pleuropneumonia (CCPP) caused by Mycoplasma capricolum subsp. capripneumoniae is a severe epidemic affecting mainly domestic Caprinae species but also affects wild Caprinae species. M. capricolum subsp. capripneumoniae belongs to the “Mycoplasma mycoides cluster.” The disease features prominently in East Africa, in particular Kenya, Tanzania, and Ethiopia. CCPP also endangers wildlife and thus affects not only basic nutritional resources of large populations but also expensively built-up game resorts in affected countries. Here, we report the complete sequences of two M. capricolum subsp. capripneumoniae strains: the type strain F38 and strain ILRI181 isolated druing a recent outbreak in Kenya. Both genomes have a G+C content of 24% with sizes of 1,016,760 bp and 1,017,183 bp for strains F38 and ILRI181, respectively.
PMCID: PMC4200155  PMID: 25323717
12.  Characterization of Strains of Mycoplasma mycoides subsp. mycoides Small Colony Type Isolated from Recent Outbreaks of Contagious Bovine Pleuropneumonia in Botswana and Tanzania: Evidence for a New Biotype 
Journal of Clinical Microbiology  2000;38(4):1419-1425.
Four strains of Mycoplasma mycoides subsp. mycoides small colony type (MmmSC) isolated from recent outbreaks of contagious bovine pleuropneumonia (CBPP) in Africa have been investigated. One Botswanan strain, M375, displayed numerous and significant phenotypic differences from both contemporary field isolates and older field and vaccine strains (African, Australian, and European strains dating back to 1936). Differences include altered morphology, reduced capsular polysaccharide production, high sensitivity to MmmSC rabbit hyperimmune antisera in vitro, and unique polymorphisms following immunoblotting. While insertion sequence analysis using IS1634 clearly indicates a close evolutionary relationship to west African strains, hybridization with IS1296 shows the absence of a band present in all other strains of MmmSC examined. The data suggest that a deletion has occurred in strain M375, which may explain its altered phenotype, including poor growth in vitro and a relative inability to cause septicemia in mice. These characteristics are also exhibited by Mycoplasma capricolum subsp. capripneumoniae (causal agent of contagious caprine pleuropneumonia [CCPP]), against which M375 antiserum exhibited some activity in vitro (unique among the various MmmSC antisera tested). These findings may have evolutionary implications, since CCPP is believed to be lung specific and without a septicemic phase (unlike CBPP). Since M375 was isolated from a clinical case of CBPP, this novel biotype may be fairly widespread but not normally isolated due to difficulty of culture and/or a potentially altered disease syndrome. Bovine convalescent antisera (obtained from contemporary naturally infected cattle in Botswana) were active against strain M375 in an in vitro growth inhibition test but not against any other strains of MmmSC tested. There exists the possibility therefore, that strain M375 may possess a set of protective antigens different from those of other strains of MmmSC (including vaccine strains). These findings have implications for the control of the current CBPP epidemic in Africa.
PMCID: PMC86456  PMID: 10747118
13.  A survey of Mycoplasma agalactiae in dairy sheep farms in Spain 
Contagious Agalactia (CA) is one of the major animal health problems in small ruminants because of its economic significance. Currently, four Mycoplasma spp. have been associated with this syndrome: M. agalactiae, M. mycoides subsp. capri, M. capricolum subsp. capricolum and M. putrefaciens. Their presence has been evaluated in several studies conducted in CA-endemic countries. However, previous Spanish studies have been focused on caprine CA, and there is a knowledge gap regarding which Mycoplasma species are present in sheep flocks from Spain, which has the second highest number of sheep amongst the 27 European Union member states. Consequently, we investigated the presence and geographic distribution of the four CA-causing mycoplasmas in Spanish dairy sheep farms. This is the first time such an investigation has been performed.
Three hundred thirty nine out of 922 sheep flocks were positive for M. agalactiae by real time PCR (36.8%) and 85 by microbiological identification (9.2%). Interestingly, all 597 milk samples assessed for the presence of M. mycoides subsp. capri, M. capricolum subsp. capricolum and M. putrefaciens tested negative. To evaluate the intermittent excretion of the pathogen in milk, we sampled 391 additional farms from 2 to 5 times, resulting that in 26.3% of the cases a previously positive farm tested negative in a later sampling.
M. agalactiae was the only Mycoplasma species detected in the study area showing a high frequency of presence and wide distribution. Therefore, the establishment of a permanent surveillance network is advantageous, as well as the implementation of control and prevention measures to hinder the dissemination of M. agalactiae and to prevent the entrance of other Mycoplasma species.
PMCID: PMC3514350  PMID: 23006445
Mycoplasma agalactiae; Contagious agalactia; Real time PCR; Sheep; Dairy; Spain
14.  Host specificity of mollicutes oriC plasmids: functional analysis of replication origin 
Nucleic Acids Research  2003;31(22):6610-6618.
Recently, artificial oriC plasmids containing the chromosomal dnaA gene and surrounding DnaA box sequences were obtained for the mollicutes Spiroplasma citri and Mycoplasma pulmonis. In order to study the specificity of these plasmids among mollicutes, a set of similar oriC plasmids was developed for three mycoplasmas belonging to the mycoides cluster, Mycoplasma mycoides subsp. mycoides LC (MmmLC), M.mycoides subsp. mycoides SC (MmmSC) and Mycoplasma capricolum subsp. capricolum. Mycoplasmas from the mycoides cluster, S.citri and M.pulmonis were used as recipients for transformation experiments by homologous and heterologous oriC plasmids. All five mollicutes were successfully transformed by homologous plasmids, suggesting that the dnaA gene region represents the functional replication origin of the mollicute chromosomes. However, the ability of mollicutes to replicate heterologous oriC plasmids was found to vary noticeably with the species. For example, the oriC plasmid from M.capricolum did not replicate in the closely related species MmmSC and MmmLC. In contrast, plasmids harbouring the oriC from MmmSC, MmmLC and the more distant species S.citri were all found to replicate in M.capricolum. Our results suggest that the cis-elements present in oriC sequences are not the only determinants of this host specificity.
PMCID: PMC275544  PMID: 14602921
15.  An international collaborative study to determine the prevalence of contagious caprine pleuropneumonia by monoclonal antibody-based cELISA 
Few serological tests are available for detecting antibodies against Mycoplasma capricolum subsp. capripneumoniae, the causal agent of contagious caprine pleuropneumonia (CCPP). The complement fixation test, the test prescribed for international trade purposes, uses a crude antigen that cross-reacts with all the other mycoplasma species of the “mycoides cluster” frequently infecting goat herds. The lack of a more specific test has been a real obstacle to the evaluation of the prevalence and economic impact of CCPP worldwide. A new competitive ELISA kit for CCPP, based on a previous blocking ELISA, was formatted at CIRAD and used to evaluate the prevalence of CCPP in some regions of Kenya, Ethiopia, Mauritius, Tajikistan and Pakistan in an international collaborative study.
The strict specificity of the test was confirmed in CCPP-free goat herds exposed to other mycoplasma species of the “mycoides cluster”. Prevalence studies were performed across the enzootic range of the disease in Africa and Asia. Seroprevalence was estimated at 14.6% in the Afar region of Ethiopia, whereas all the herds presented for CCPP vaccination in Kenya tested positive (individual seroprevalence varied from 6 to 90% within each herd). In Mauritius, where CCPP emerged in 2009, nine of 62 herds tested positive. In Central Asia, where the disease was confirmed only recently, no positive animals were detected in the Wakhan District of Afghanistan or across the border in neighboring areas of Tajikistan, whereas seroprevalence varied between 2.7% and 44.2% in the other districts investigated and in northern Pakistan. The test was also used to monitor seroconversion in vaccinated animals.
This newly formatted CCPP cELISA kit has retained the high specificity of the original kit. It can therefore be used to evaluate the prevalence of CCPP in countries or regions without vaccination programs. It could also be used to monitor the efficacy of vaccination campaigns as high-quality vaccines induce high rates of seroconversion.
PMCID: PMC3938968  PMID: 24565080
Contagious caprine pleuropneumonia; Competitive ELISA; Seroprevalence; Kenya; Ethiopia; Mauritius; Tajikistan; Afghanistan; Pakistan; Vaccine quality control
16.  Demonstration of cross-reactive antigens in F38 and related mycoplasmas by enzyme-linked immunosorbent assay (ELISA) and immunoblotting. 
The Journal of Hygiene  1985;95(1):95-106.
The ELISA and an immunoblotting technique were used to study F38-type mycoplasmas - an important cause of contagious caprine pleuropneumonia - and a number of related mycoplasma species, subspecies, types or serogroups. Two-way ELISA cross-reactivity was demonstrated between five mycoplasmas, namely strain F38, Mycoplasma mycoides subsp. mycoides (LC strain), M. equigenitalium, M. primatum and bovine serogroup 7. In addition one-way cross-reactivity was demonstrated between F38 and each of the following mycoplasmas: M. mycoides subsp. mycoides (two SC strains), M. mycoides subsp. capri, and bovine serogroup L. F38 and M. capricolum did not cross-react. Immunoblot analysis, unlike ELISA, revealed that F38 and M. capricolum were closely related. At least four major protein antigens were shared between F38, M. mycoides subsp. mycoides (SC and LC strains), M. mycoides subsp. capri and bovine serogroup 7. The ELISA cross-reactions (above) shown by M. equigenitalium and M. primatum with each other, with F38 and with other mycoplasmas were not apparent by immunoblotting.
PMCID: PMC2129495  PMID: 2410491
17.  Characterization of the 16S rRNA genes from Mycoplasma sp. strain F38 and development of an identification system based on PCR. 
Journal of Bacteriology  1994;176(9):2577-2586.
Mycoplasma sp. (strain F38) is the causative agent of contagious caprine pleuropneumonia, which is a goat disease of great global concern. Strain F38 belongs to the so-called "Mycoplasma mycoides cluster," and the members of this cluster have many biochemical and serological properties in common, which makes it difficult to differentiate between them by conventional methods. Their phylogenetic interrelationship are thus uncertain. The 16S rRNA gene of the rrnB operon from strain F38 was cloned and sequenced. The sequence was compared with the 16S rRNA sequences of related mycoplasmas, and phylogenetic trees were constructed by parsimony analysis. A three-way ambiguity among strain F38, Mycoplasma capricolum, and Mycoplasma sp. strain PG50 was observed in the trees. This observation is in agreement with a recent proposal to reclassify strain F38 and M. capricolum. A primer set was designed for in vitro amplification by PCR of a fragment of the 16S rRNA genes from the M. mycoides cluster. The amplimers of strain F38 could be distinguished easily from the corresponding amplimers from other members of the M. mycoides cluster by restriction enzyme analysis with PstI. This observation was utilized to design an identification system for strain F38. Part of the 16S rRNA gene of the rrnA operon from strain F38 was also cloned, and several sequence differences between the two rRNA operons were discovered, revealing microheterogeneity between the two 16S rRNA genes of this organism.
PMCID: PMC205395  PMID: 8169205
18.  Mycoplasma mycoides subsp. capri associated with goat respiratory disease and high flock mortality 
The Canadian Veterinary Journal  2006;47(4):366-369.
A high mortality outbreak of respiratory mycoplasmosis occurred in goats in Mexico. The clinicopathologic presentation resembled contagious caprine pleuropneumonia caused by Mycoplasma capricolum subspecies capripneumoniae. By using a battery of polymerase chain reaction assays, the mycoplasma associated with this outbreak was identified as Mycoplasma mycoides subsp. capri.
PMCID: PMC1405827  PMID: 16642877
19.  Complete Genome Sequence of Mycoplasma capricolum subsp. capripneumoniae Strain 9231-Abomsa 
Genome Announcements  2014;2(5):e01067-14.
Mycoplasma capricolum subsp. capripneumoniae is the etiological agent of contagious caprine pleuropneumonia. We report here the complete and annotated genome sequence of M. capricolum subsp. capripneumoniae strain 9231-Abomsa.
PMCID: PMC4200165  PMID: 25323727
20.  Ribosomal RNA genes in Mycoplasma. 
Nucleic Acids Research  1982;10(14):4215-4222.
Using Southern blotting analysis with labelled mycoplasmal ribosomal RNA as probe, two fragments (1 Kb and 5 Kb) were detected in an EcoR I digest of Mycoplasma capricolum DNA. This analysis revealed that the 5 Kb fragment carries both 16S rRNA sequences and the entire 23S rRNA gene of this mycoplasma. The 1 Kb fragment contains 16S rRNA sequences only. The 5 Kb EcoR I fragment has been cloned and used to characterize the structure of rRNA cistrons in various Mycoplasma strains. These experiments clearly demonstrate a substantial homology of Mycoplasma capricolum rRNA sequences with the E. coli rRNA cistron on one hand, and with Mycoplasma mycoides subsp. capri and Acholeplasma laidlawii on the other hand. This analysis also reveals two rRNA cistrons in Mycoplasma mycoides subsp. capri and Acholeplasma laidlawii whereas one rRNA cistron is present in Mycoplasma capricolum.
PMCID: PMC320794  PMID: 6289267
21.  Experimental Contagious Caprine Pleuropneumonia: A Long Term Study on the Course of Infection and Pathology in a Flock of Goats Infected with Mycoplasma capricolum subsp. capripneumoniae 
Acta Veterinaria Scandinavica  2004;45(3):167-179.
Contagious caprine pleuropneumonia (CCPP) is a major threat to goat farming in parts of Africa and Asia. It classically causes acute high morbidity and mortality early in infection, but little is known of its long term epizootiology and course. In this study, 10 goats were inoculated with Mycoplasma capricolum subsp. capripneumoniae (M. capripneumoniae) and then mixed with 15 goats for contact transmission. The disease course was monitored in each goat for 56–105 days, whereafter the goats were killed and necropsied. Varying features signifying infection occurred in altogether 17 goats (7 inoculated, 10 in-contact). Clinical signs were severe in 8 goats but no fatalities occurred. Only 6 goats had serum antibody titres against M. capripneumoniae in ELISA. Fourteen goats (5 inoculated, 9 in-contact) had chronic pleuropulmonary lesions compatible with CCPP at necropsy and 7 of those showed M. capripneumoniae antigen in the lung by immunohistochemistry. Neither cultivation nor PCR tests were positive for the agent in any goat. The results indicate that the clinical course of CCPP in a flock may be comparatively mild, M. capripneumoniae-associated lung lesions may be present at a late stage of infection, and chronic infection may occur without a significant serological response.
PMCID: PMC1820987  PMID: 15663077
goat; Mycoplasma; contagious pleuropneumonia; ELISA; immunohistochemistry; serology; pathology.
22.  Genetic and Serological Analysis of Lipoprotein LppA in Mycoplasma mycoides subsp. mycoides LC and Mycoplasma mycoides subsp. capri 
The genes encoding the 62-kDa lipoproteins from the Mycoplasma mycoides subsp. mycoides large-colony type (LC) strain Y-goat and the M. mycoides subsp. capri strain PG3 were cloned and analyzed by sequencing. These two lipoproteins have been named LppA[MmymyLC] and LppA[Mmyca], and their corresponding genes have been named lppA[MmymyLC] and lppA[Mmyca], respectively. The nucleotide and deduced amino acid sequences of these two lipoproteins showed a very high degree of similarity between these two mycoplasmas. Given the sequence data, LppA seems to fulfill the same structural functions as the previously described major lipoproteins P72 of M. mycoides subsp. mycoides small-colony type and P67 of the Mycoplasma species bovine group 7. Based on lppA gene sequences of M. mycoides subsp. mycoides LC and M. mycoides subsp. capri type strains, a specific PCR assay was developed so that it amplified this gene in all field strains of the two species analyzed in this study but not in the other members of the M. mycoides cluster. Analysis of the PCR-amplified lppA genes with frequently cutting restriction enzymes showed a certain degree of genetic variability which, however, did not cluster the two subspecies. This PCR therefore allows a rapid identification of M. mycoides subsp. mycoides LC and M. mycoides subsp. capri but does not distinguish between these two closely related subspecies. LppA was expressed in Escherichia coli K-12 and used for the production of polyclonal mouse antiserum. Antibodies against recombinant LppA[MmymyLC] reacted with a 62-kDa protein in all M. mycoides subsp. mycoides LC and M. mycoides subsp. capri type strains and field strains tested but not with the other members of the M. mycoides cluster, thus showing the antigenic specificity of LppA and further supporting the concept that a close relationship exists between these two mycoplasmas.
PMCID: PMC95691  PMID: 10066658
23.  Multi-locus sequence analysis of mycoplasma capricolum subsp. capripneumoniae for the molecular epidemiology of contagious caprine pleuropneumonia 
Veterinary Research  2011;42(1):86.
Mycoplasma capricolum subsp. capripneumoniae (Mccp) is the causative agent of contagious caprine pleuropneumonia (CCPP), a devastating disease of domestic goats. The exact distribution of CCPP is not known but it is present in Africa and the Middle East and represents a significant threat to many disease-free areas including Europe. Furthermore, CCPP has been recently identified in Tajikistan and China. A typing method with an improved resolution based on Multi-Locus Sequence Analysis (MLSA) has been developed to trace new epidemics and to elucidate whether the recently identified cases in continental Asia were due to recent importation of Mccp. The H2 locus, a polymorphic region already in use as a molecular marker for Mccp evolution, was complemented with seven new loci selected according to the analysis of polymorphisms observed among the genome sequences of three Mccp strains. A total of 25 strains, including the two new strains from Asia, were analysed by MLSA resulting in the discrimination of 15 sequence types based on 53 polymorphic positions. A distance tree inferred from the concatenated sequences of the eight selected loci revealed two evolutionary lineages comprising five groups, which showed good correlation with geographic origins. The presence of a distinct Asian cluster strongly indicates that CCPP was not recently imported to continental Asia. It is more likely that the disease has been endemic in the area for a long time, as supported by historical clinical descriptions. In conclusion, this MLSA strategy constitutes a highly discriminative tool for the molecular epidemiology of CCPP.
PMCID: PMC3177781  PMID: 21756321
24.  A study of F38-type and related mycoplasmas by mycoplasmaemia and cross-immunization tests in mice. 
The Journal of Hygiene  1984;93(3):465-473.
In vivo methods were used to study the F38-type mycoplasma in parallel with related mycoplasmas. Three of five strains of 'bovine serogroup 7' with an unknown history of subculture produced mycoplasmaemia in mice inoculated intraperitoneally. A strain of 'bovine serogroup L' also produced mycoplasmaemia, but no evidence of similar ability could be found for single strains of Mycoplasma capricolum, M. equigenitalium and M. primatum, or for two strains of the F38-type mycoplasma. In cross-immunization tests a bovine serogroup 7 strain (NCTC 10133) and a strain ('Blenheim') of the SC (small colony) type of M. mycoides subsp. mycoides were used for the purpose of challenge. Cross-protection was described as 'complete' or 'partial', depending on whether it was as great as, or less than, that produced by homologous vaccine. Although strain NCTC 10133 protected strongly, possibly completely, against Blenheim, and Blenheim gave partial protection against NCTC 10133, challenge with NCTC 10133 and Blenheim gave strikingly different results. Thus (1) F38-type strains, M equigenitalium and M. primatum all gave partial cross-protection against NCTC 10133 but not against Blenheim, (2) NCTC 10133, unlike Blenheim, was seldom susceptible to partial cross-protection by LC (large colony) strains of M. mycoides subsp. mycoides, and (3) three SC strains - which would have protected completely against Blenheim - protected only partially against NCTC 10133. NCTC 10133 and Blenheim were similar, however, in that M. capricolum and M. mycoides subsp. capri failed to cross-protect against them both.
PMCID: PMC2129469  PMID: 6392418
25.  A large-scale genomic approach affords unprecedented resolution for the molecular epidemiology and evolutionary history of contagious caprine pleuropneumonia 
Veterinary Research  2015;46(1):74.
Contagious caprine pleuropneumonia (CCPP), caused by Mycoplasma capricolum subsp. capripneumoniae (Mccp), is a devastating disease of domestic goats and of some wild ungulate species. The disease is currently spreading in Africa and Asia and poses a serious threat to disease-free areas. A comprehensive view of the evolutionary history and dynamics of Mccp is essential to understand the epidemiology of CCPP. Yet, analysing the diversity of genetically monomorphic pathogens, such as Mccp, is complicated due to their low variability. In this study, the molecular epidemiology and evolution of CCPP was investigated using a large-scale genomic approach based on next-generation sequencing technologies, applied to a sample of strains representing the global distribution of this disease. A highly discriminatory multigene typing system was developed, allowing the differentiation of 24 haplotypes among 25 Mccp strains distributed in six genotyping groups, which showed some correlation with geographic origin. A Bayesian approach was used to infer the first robust phylogeny of the species and to date the principal events of its evolutionary history. The emergence of Mccp was estimated only at about 270 years ago, which explains the low genetic diversity of this species despite its high mutation rate, evaluated at 1.3 × 10−6 substitutions per site per year. Finally, plausible scenarios were proposed to elucidate the evolution and dynamics of CCPP in Asia and Africa, though limited by the paucity of Mccp strains, particularly in Asia. This study shows how combining large-scale genomic data with spatial and temporal data makes it possible to obtain a comprehensive view of the epidemiology of CCPP, a precondition for the development of improved disease surveillance and control measures.
Electronic supplementary material
The online version of this article (doi:10.1186/s13567-015-0208-x) contains supplementary material, which is available to authorized users.
PMCID: PMC4492101  PMID: 26149260

Results 1-25 (672033)