Search tips
Search criteria

Results 1-25 (931919)

Clipboard (0)

Related Articles

1.  Tuning graphitic oxide for initiator- and metal-free aerobic epoxidation of linear alkenes 
Nature Communications  2016;7:12855.
Graphitic oxide has potential as a carbocatalyst for a wide range of reactions. Interest in this material has risen enormously due to it being a precursor to graphene via the chemical oxidation of graphite. Despite some studies suggesting that the chosen method of graphite oxidation can influence the physical properties of the graphitic oxide, the preparation method and extent of oxidation remain unresolved for catalytic applications. Here we show that tuning the graphitic oxide surface can be achieved by varying the amount and type of oxidant. The resulting materials differ in level of oxidation, surface oxygen content and functionality. Most importantly, we show that these graphitic oxide materials are active as unique carbocatalysts for low-temperature aerobic epoxidation of linear alkenes in the absence of initiator or metal. An optimum level of oxidation is necessary and materials produced via conventional permanganate-based methods are far from optimal.
Graphitic oxide is readily produced by the oxidation of graphite. Here the authors show that the amount and nature of the oxidant can be used to tune the properties of graphitic oxide, and furthermore report a carbocatalyst for alkene epoxidation without the need for metal or initiators.
PMCID: PMC5056438  PMID: 27687877
2.  Stretchable and Flexible High-Strain Sensors Made Using Carbon Nanotubes and Graphite Films on Natural Rubber 
Sensors (Basel, Switzerland)  2014;14(1):868-876.
Conventional metallic strain sensors are flexible, but they can sustain maximum strains of only ∼5%, so there is a need for sensors that can bear high strains for multifunctional applications. In this study, we report stretchable and flexible high-strain sensors that consist of entangled and randomly distributed multiwall carbon nanotubes or graphite flakes on a natural rubber substrate. Carbon nanotubes/graphite flakes were sandwiched in natural rubber to produce these high-strain sensors. Using field emission scanning electron microscopy, the morphology of the films for both the carbon nanotube and graphite sensors were assessed under different strain conditions (0% and 400% strain). As the strain was increased, the films fractured, resulting in an increase in the electrical resistance of the sensor; this change was reversible. Strains of up to 246% (graphite sensor) and 620% (carbon nanotube sensor) were measured; these values are respectively ∼50 and ∼120 times greater than those of conventional metallic strain sensors.
PMCID: PMC3926590  PMID: 24399158
piezoresistive sensor; soft wearable sensors; electro-mechanical properties; film composite; stretchable device; carbon nanotubes; health monitoring
3.  Quantifying microstructural dynamics and electrochemical activity of graphite and silicon-graphite lithium ion battery anodes 
Nature Communications  2016;7:12909.
Despite numerous studies presenting advances in tomographic imaging and analysis of lithium ion batteries, graphite-based anodes have received little attention. Weak X-ray attenuation of graphite and, as a result, poor contrast between graphite and the other carbon-based components in an electrode pore space renders data analysis challenging. Here we demonstrate operando tomography of weakly attenuating electrodes during electrochemical (de)lithiation. We use propagation-based phase contrast tomography to facilitate the differentiation between weakly attenuating materials and apply digital volume correlation to capture the dynamics of the electrodes during operation. After validating that we can quantify the local electrochemical activity and microstructural changes throughout graphite electrodes, we apply our technique to graphite-silicon composite electrodes. We show that microstructural changes that occur during (de)lithiation of a pure graphite electrode are of the same order of magnitude as spatial inhomogeneities within it, while strain in composite electrodes is locally pronounced and introduces significant microstructural changes.
Tomographic imaging of graphite-based anodes is challenging due to weak X-ray attenuation contrast. Here, the authors use operando propagation-based phase contrast tomography and digital volume correlation to study the electrochemical activity and microstructural dynamics in (silicon−) graphite electrodes.
PMCID: PMC5052642  PMID: 27671269
4.  Nanosecond formation of diamond and lonsdaleite by shock compression of graphite 
Nature Communications  2016;7:10970.
The shock-induced transition from graphite to diamond has been of great scientific and technological interest since the discovery of microscopic diamonds in remnants of explosively driven graphite. Furthermore, shock synthesis of diamond and lonsdaleite, a speculative hexagonal carbon polymorph with unique hardness, is expected to happen during violent meteor impacts. Here, we show unprecedented in situ X-ray diffraction measurements of diamond formation on nanosecond timescales by shock compression of pyrolytic as well as polycrystalline graphite to pressures from 19 GPa up to 228 GPa. While we observe the transition to diamond starting at 50 GPa for both pyrolytic and polycrystalline graphite, we also record the direct formation of lonsdaleite above 170 GPa for pyrolytic samples only. Our experiment provides new insights into the processes of the shock-induced transition from graphite to diamond and uniquely resolves the dynamics that explain the main natural occurrence of the lonsdaleite crystal structure being close to meteor impact sites.
Shock synthesis of diamond and even harder carbon polymorphs from graphite is of great interest for science and technology. Here, the authors present unprecedented in situ measurements of the structural changes, showing ultrafast formation of diamond and, at higher pressures, evidence for a pure lonsdaleite structure.
PMCID: PMC4793081  PMID: 26972122
5.  A Versatile High-Permittivity Phantom for EIT 
Phantoms are frequently used in medical imaging systems to test hardware, reconstruction algorithms, and the interpretation of data. This report describes and characterizes the use of powdered graphite as a means of adding a significant reactive component or permittivity to useful phantom media for electrical impedance imaging. The phantom materials produced have usable complex admittivity at the electrical impedance tomography (EIT) frequencies from a few kilohertz to 1 MHz, as measured by our EIT system (ACT4) and by a commercial bioimpedance analyzer (BIS 4000, Xitron). We have also studied a commercial ultrasound coupling gel, which is highly electrically conductive and semisolid but that permits objects to move within it. The mixture of agar–graphite and gel–graphite, increases in permittivity and conductivity are proportional to the graphite concentration. We also report the use of a porous polymer membrane to simulate skin. A thin layer of this membrane increased resistance and the characteristic frequency of the phantoms, providing a promising candidate to simulate the effect of skin and the layered structure of a breast or other anatomical structure. The graphite also provides a realistic level of “speckle” in ultrasound images of the phantom, which may be useful in developing dual-mode imaging systems with ultrasound and the EIT.
PMCID: PMC2769077  PMID: 18990630
Electrical impedance tomography (EIT); graphite powder; high-permittivity phantom; porous polymer
6.  Comparative inhalation toxicity of multi-wall carbon nanotubes, graphene, graphite nanoplatelets and low surface carbon black 
Carbon nanotubes, graphene, graphite nanoplatelets and carbon black are seemingly chemically identical carbon-based nano-materials with broad technological applications. Carbon nanotubes and carbon black possess different inhalation toxicities, whereas little is known about graphene and graphite nanoplatelets.
In order to compare the inhalation toxicity of the mentioned carbon-based nanomaterials, male Wistar rats were exposed head-nose to atmospheres of the respective materials for 6 hours per day on 5 consecutive days. Target concentrations were 0.1, 0.5, or 2.5 mg/m3 for multi-wall carbon nanotubes and 0.5, 2.5, or 10 mg/m3 for graphene, graphite nanoplatelets and low-surface carbon black. Toxicity was determined after end of exposure and after three-week recovery using broncho-alveolar lavage fluid and microscopic examinations of the entire respiratory tract.
No adverse effects were observed after inhalation exposure to 10 mg/m3 graphite nanoplatelets or relatively low specific surface area carbon black. Increases of lavage markers indicative for inflammatory processes started at exposure concentration of 0.5 mg/m3 for multi-wall carbon nanotubes and 10 mg/m3 for graphene. Consistent with the changes in lavage fluid, microgranulomas were observed at 2.5 mg/m3 multi-wall carbon nanotubes and 10 mg/m3 graphene. In order to evaluate volumetric loading of the lung as the key parameter driving the toxicity, deposited particle volume was calculated, taking into account different methods to determine the agglomerate density. However, the calculated volumetric load did not correlate to the toxicity, nor did the particle surface burden of the lung.
The inhalation toxicity of the investigated carbon-based materials is likely to be a complex interaction of several parameters. Until the properties which govern the toxicity are identified, testing by short-term inhalation is the best option to identify hazardous properties in order to avoid unsafe applications or select safer alternatives for a given application.
PMCID: PMC3720229  PMID: 23773277
Inhalation toxicity; Graphene; Multi-wall carbon nanotubes; Graphite nanoplatelets; Carbon black
7.  Real-time monitoring of subsurface microbial metabolism with graphite electrodes 
Monitoring in situ microbial activity in anoxic submerged soils and aquatic sediments can be labor intensive and technically difficult, especially in dynamic environments in which a record of changes in microbial activity over time is desired. Microbial fuel cell concepts have previously been adapted to detect changes in the availability of relatively high concentrations of organic compounds in waste water but, in most soils and sediments, rates of microbial activity are not linked to the concentrations of labile substrates, but rather to the turnover rates of the substrate pools with steady state concentrations in the nM–μM range. In order to determine whether levels of current produced at a graphite anode would correspond to the rates of microbial metabolism in anoxic sediments, small graphite anodes were inserted in sediment cores and connected to graphite brush cathodes in the overlying water. Currents produced were compared with the rates of [2-14C]-acetate metabolism. There was a direct correlation between current production and the rate that [2-14C]-acetate was metabolized to 14CO2 and 14CH4 in sediments in which Fe(III) reduction, sulfate reduction, or methane production was the predominant terminal electron-accepting process. At comparable acetate turnover rates, currents were higher in the sediments in which sulfate-reduction or Fe(III) reduction predominated than in methanogenic sediments. This was attributed to reduced products (Fe(II), sulfide) produced at distance from the anode contributing to current production in addition to the current that was produced from microbial oxidation of organic substrates with electron transfer to the anode surface in all three sediment types. The results demonstrate that inexpensive graphite electrodes may provide a simple strategy for real-time monitoring of microbial activity in a diversity of anoxic soils and sediments.
PMCID: PMC4240160  PMID: 25484879
subsurface sediments; microbial activity; anaerobic metabolism; electromicrobiology; aquatic sediments; biogeochemistry
1. The effect of eight salts, NaCl, Na2SO4, Na4Fe(CN)6, CaCl2, LaCl3, ThCl4, and basic and acid fuchsin on the cataphoretic P.D. between solid particles and aqueous solutions was measured near the point of neutrality of water (pH 5.8). It was found that without the addition of electrolyte the cataphoretic P.D. between particles and water is very minute near the point of neutrality (pH 5.8), often less than 10 millivolts, if care is taken that the solutions are free from impurities. Particles which in the absence of salts have a positive charge in water near the point of neutrality (pH 5.8) are termed positive colloids and particles which have a negative charge under these conditions are termed negative colloids. 2. If care is taken that the addition of the salt does not change the hydrogen ion concentration of the solution (which in these experiments was generally pH 5.8) it can be said in general, that as long as the concentration of salts is not too high, the anions of the salt have the tendency to make the particles more negative (or less positive) and that cations have the opposite effect; and that both effects increase with the increasing valency of the ions. As soon as a maximal P.D. is reached, which varies for each salt and for each type of particles, a further addition of salt depresses the P.D. again. Aside from this general tendency the effects of salts on the P.D. are typically different for positive and negative colloids. 3. Negative colloids (collodion, mastic, Acheson's graphite, gold, and metal proteinates) are rendered more negative by low concentrations of salts with monovalent cation (e.g. Na) the higher the valency of the anion, though the difference in the maximal P.D. is slight for the monovalent Cl and the tetravalent Fe(CN)6 ions. Low concentrations of CaCl2 also make negative colloids more negative but the maximal P.D. is less than for NaCl; even LaCl3 increases the P.D. of negative particles slightly in low concentrations. ThCl4 and basic fuchsin, however, seem to make the negative particles positive even in very low concentrations. 4. Positive colloids (ferric hydroxide, calcium oxalate, casein chloride—the latter at pH 4.0) are practically not affected by NaCl, are rendered slightly negative by high concentrations of Na2SO4, and are rendered more negative by Na4Fe(CN)6 and acid dyes. Low concentrations of CaCl2 and LaCl3 increase the positive charge of the particles until a maximum is reached after which the addition of more salt depresses the P.D. again. 5. It is shown that alkalies (NaOH) act on the cataphoretic P.D. of both negative and positive particles as Na4Fe(CN)6 does at the point of neutrality. 6. Low concentrations of HCl raise the cataphoretic P.D. of particles of collodion, mastic, graphite, and gold until a maximum is reached, after which the P.D. is depressed by a further increase in the concentration of the acid. No reversal in the sign of charge of the particle occurs in the case of collodion, while if a reversal occurs in the case of mastic, gold, and graphite, the P.D. is never more than a few millivolts. When HCl changes the chemical nature of the colloid, e.g. when HCl is added to particles of amphoteric electrolytes like sodium gelatinate, a marked reversal will occur, on account of the transformation of the metal proteinate into a protein-acid salt. 7. A real reversal in the sign of charge of positive particles occurs, however, at neutrality if Na4Fe(CN)6 or an acid dye is added; and in the case of negative colloids when low concentrations of basic dyes or minute traces of ThCl4 are added. 8. Flocculation of the suspensions by salts occurs when the cataphoretic P.D. reaches a critical value which is about 14 millivolts for particles of graphite, gold, or mastic or denatured egg albumin; while for collodion particles it was about 16 millivolts. A critical P.D. of about 15 millivolts was also observed by Northrop and De Kruif for the flocculation of certain bacteria.
PMCID: PMC2140622  PMID: 19872064
9.  Natural occurrence of pure nano-polycrystalline diamond from impact crater 
Scientific Reports  2015;5:14702.
Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5–50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material.
PMCID: PMC4589680  PMID: 26424384
10.  Evaluation of pulmonary and systemic toxicity following lung exposure to graphite nanoplates: a member of the graphene-based nanomaterial family 
Graphene, a monolayer of carbon, is an engineered nanomaterial (ENM) with physical and chemical properties that may offer application advantages over other carbonaceous ENMs, such as carbon nanotubes (CNT). The goal of this study was to comparatively assess pulmonary and systemic toxicity of graphite nanoplates, a member of the graphene-based nanomaterial family, with respect to nanoplate size.
Three sizes of graphite nanoplates [20 μm lateral (Gr20), 5 μm lateral (Gr5), and <2 μm lateral (Gr1)] ranging from 8–25 nm in thickness were characterized for difference in surface area, structure,, zeta potential, and agglomeration in dispersion medium, the vehicle for in vivo studies. Mice were exposed by pharyngeal aspiration to these 3 sizes of graphite nanoplates at doses of 4 or 40 μg/mouse, or to carbon black (CB) as a carbonaceous control material. At 4 h, 1 day, 7 days, 1 month, and 2 months post-exposure, bronchoalveolar lavage was performed to collect fluid and cells for analysis of lung injury and inflammation. Particle clearance, histopathology and gene expression in lung tissue were evaluated. In addition, protein levels and gene expression were measured in blood, heart, aorta and liver to assess systemic responses.
All Gr samples were found to be similarly composed of two graphite structures and agglomerated to varying degrees in DM in proportion to the lateral dimension. Surface area for Gr1 was approximately 7-fold greater than Gr5 and Gr20, but was less reactive reactive per m2. At the low dose, none of the Gr materials induced toxicity. At the high dose, Gr20 and Gr5 exposure increased indices of lung inflammation and injury in lavage fluid and tissue gene expression to a greater degree and duration than Gr1 and CB. Gr5 and Gr20 showed no or minimal lung epithelial hypertrophy and hyperplasia, and no development of fibrosis by 2 months post-exposure. In addition, the aorta and liver inflammatory and acute phase genes were transiently elevated in Gr5 and Gr20, relative to Gr1.
Pulmonary and systemic toxicity of graphite nanoplates may be dependent on lateral size and/or surface reactivity, with the graphite nanoplates > 5 μm laterally inducing greater toxicity which peaked at the early time points post-exposure relative to the 1–2 μm graphite nanoplate.
Electronic supplementary material
The online version of this article (doi:10.1186/s12989-016-0145-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4915050  PMID: 27328692
Graphene-based nanomaterials; Pulmonary exposure; Cardiovascular toxicity; Lung toxicity; Particle size
11.  Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries 
Nanoscale Research Letters  2014;9(1):360.
The specific energy of the existing lithium ion battery cells is limited because intercalation electrodes made of activated carbon (AC) materials have limited lithium ion storage capacities. Carbon nanotubes, graphene, and carbon nanofibers are the most sought alternatives to replace AC materials but their synthesis cost makes them highly prohibitive. Silicon has recently emerged as a strong candidate to replace existing graphite anodes due to its inherently large specific capacity and low working potential. However, pure silicon electrodes have shown poor mechanical integrity due to the dramatic expansion of the material during battery operation. This results in high irreversible capacity and short cycle life. We report on the synthesis and use of carbon and hybrid carbon-silicon nanostructures made by a simplified thermo-mechanical milling process to produce low-cost high-energy lithium ion battery anodes. Our work is based on an abundant, cost-effective, and easy-to-launch source of carbon soot having amorphous nature in combination with scrap silicon with crystalline nature. The carbon soot is transformed in situ into graphene and graphitic carbon during mechanical milling leading to superior elastic properties. Micro-Raman mapping shows a well-dispersed microstructure for both carbon and silicon. The fabricated composites are used for battery anodes, and the results are compared with commercial anodes from MTI Corporation. The anodes are integrated in batteries and tested; the results are compared to those seen in commercial batteries. For quick laboratory assessment, all electrochemical cells were fabricated under available environment conditions and they were tested at room temperature. Initial electrochemical analysis results on specific capacity, efficiency, and cyclability in comparison to currently available AC counterpart are promising to advance cost-effective commercial lithium ion battery technology. The electrochemical performance observed for carbon soot material is very interesting given the fact that its production cost is away cheaper than activated carbon. The cost of activated carbon is about $15/kg whereas the cost to manufacture carbon soot as a by-product from large-scale milling of abundant graphite is about $1/kg. Additionally, here, we propose a method that is environmentally friendly with strong potential for industrialization.
PMCID: PMC4112838  PMID: 25114651
Nanostructured carbon; Carbon-silicon nanocomposite; Anode materials; Lithium ion batteries; Electrochemical energy storage; Ball milling technique
12.  Examination of Surface Deposits on Oldbury Reactor Core Graphite to Determine the Concentration and Distribution of 14C 
PLoS ONE  2016;11(10):e0164159.
Pile Grade A graphite was used as a moderator and reflector material in the first generation of UK Magnox nuclear power reactors. As all of these reactors are now shut down there is a need to examine the concentration and distribution of long lived radioisotopes, such as 14C, to aid in understanding their behaviour in a geological disposal facility. A selection of irradiated graphite samples from Oldbury reactor one were examined where it was observed that Raman spectroscopy can distinguish between underlying graphite and a surface deposit found on exposed channel wall surfaces. The concentration of 14C in this deposit was examined by sequentially oxidising the graphite samples in air at low temperatures (450°C and 600°C) to remove the deposit and then the underlying graphite. The gases produced were captured in a series of bubbler solutions that were analysed using liquid scintillation counting. It was observed that the surface deposit was relatively enriched with 14C, with samples originating lower in the reactor exhibiting a higher concentration of 14C. Oxidation at 600°C showed that the remaining graphite material consisted of two fractions of 14C, a surface associated fraction and a graphite lattice associated fraction. The results presented correlate well with previous studies on irradiated graphite that suggest there are up to three fractions of 14C; a readily releasable fraction (corresponding to that removed by oxidation at 450°C in this study), a slowly releasable fraction (removed early at 600°C in this study), and an unreleasable fraction (removed later at 600°C in this study).
PMCID: PMC5051679  PMID: 27706228
13.  Low-cost formation of bulk and localized polymer-derived carbon nanodomains from polydimethylsiloxane 
We present two simple alternative methods to form polymer-derived carbon nanodomains in a controlled fashion and at low cost, using custom-made chemical vapour deposition and selective laser ablation with a commercial CD-DVD platform. Both processes presented shiny and dark residual materials after the polymer combustion and according to micro-Raman spectroscopy of the domains, graphitic nanocrystals and carbon nanotubes have successfully been produced by the combustion of polydimethylsiloxane layers. The fabrication processes and characterization of the byproduct materials are reported. We demonstrate that CVD led to bulk production of graphitic nanocrystals and single-walled carbon nanotubes while direct laser ablation may be employed for the formation of localized fluorescent nanodots. In the latter case, graphitic nanodomains and multi-wall carbon nanotubes are left inside microchannels and preliminary results seem to indicate that laser ablation could offer a tuning control of the nature and optical properties of the nanodomains that are left inside micropatterns with on-demand geometries. These low-cost methods look particularly promising for the formation of carbon nanoresidues with controlled properties and in applications where high integration is desired.
PMCID: PMC4419683  PMID: 25977844
carbon nanodomains; nanodots; polydimethylsiloxane; polymer-derived ceramics; Raman spectroscopy
14.  Understanding the nature of “superhard graphite” 
Scientific Reports  2012;2:471.
Numerous experiments showed that on cold compression graphite transforms into a new superhard and transparent allotrope. Several structures with different topologies have been proposed for this phase. While experimental data are compatible with most of these models, the only way to solve this puzzle is to find which structure is kinetically easiest to form. Using state-of-the-art molecular-dynamics transition path sampling simulations, we investigate kinetic pathways of the pressure-induced transformation of graphite to various superhard candidate structures. Unlike hitherto applied methods for elucidating nature of superhard graphite, transition path sampling realistically models nucleation events necessary for physically meaningful transformation kinetics. We demonstrate that nucleation mechanism and kinetics lead to M-carbon as the final product. W-carbon, initially competitor to M-carbon, is ruled out by phase growth. Bct-C4 structure is not expected to be produced by cold compression due to less probable nucleation and higher barrier of formation.
PMCID: PMC3384968  PMID: 22745897
15.  Synthesis and characterization of multiwalled CNT–PAN based composite carbon nanofibers via electrospinning 
SpringerPlus  2016;5:483.
Electrospun fibrous membranes find place in diverse applications like sensors, filters, fuel cell membranes, scaffolds for tissue engineering, organic electronics etc. The objectives of present work are to electrospun polyacrylonitrile (PAN) nanofibers and PAN–CNT nanocomposite nanofibers and convert into carbon nanofiber and carbon-CNT composite nanofiber. The work was divided into two parts, development of nanofibers and composite nanofiber. The PAN nanofibers were produced from 9 wt% PAN solution by electrospinning technique. In another case PAN–CNT composite nanofibers were developed from different concentrations of MWCNTs (1–3 wt%) in 9 wt% PAN solution by electrospinning. Both types of nanofibers were undergone through oxidation, stabilization, carbonization and graphitization. At each stage of processing of carbon and carbon-CNT composite nanofibers were characterized by SEM, AFM, TGA and XRD. It was observed that diameter of nanofiber varies with processing parameters such as applied voltage tip to collector distance, flow rate of solution and polymer concentrations etc. while in case of PAN–CNT composite nanofiber diameter decreases with increasing concentration of CNT in PAN solution. Also with stabilization, carbonization and graphitization diameter of nanofiber decreases. SEM images shows that the minimum fiber diameter in case of 3 wt% of CNT solution because as viscosity increases it reduces the phase separation of PAN and solvent and as a consequence increases in the fiber diameter. AFM images shows that surface of film is irregular which give idea about mat type orientation of fibers. XRD results show that degree of graphitization increases on increasing CNT concentration because of additional stresses exerting on the nanofiber surface in the immediate vicinity of CNTs. TGA results shows wt loss decreases as CNT concentration increases in fibers.
PMCID: PMC4837748  PMID: 27217998
Polyacrylonitrile; Nanocyl multiwalled carbon nanotubes
16.  Fabrication of SnO2-Reduced Graphite Oxide Monolayer-Ordered Porous Film Gas Sensor with Tunable Sensitivity through Ultra-Violet Light Irradiation 
Scientific Reports  2015;5:8939.
A new graphene-based composite structure, monolayer-ordered macroporous film composed of a layer of orderly arranged macropores, was reported. As an example, SnO2-reduced graphite oxide monolayer-ordered macroporous film was fabricated on a ceramic tube substrate under the irradiation of ultra-violet light (UV), by taking the latex microsphere two-dimensional colloid crystal as a template. Graphite oxide sheets dispersed in SnSO4 aqueous solution exhibited excellent affinity with template microspheres and were in situ incorporated into the pore walls during UV-induced growth of SnO2. The growing and the as-formed SnO2, just like other photocatalytic semiconductor, could be excited to produce electrons and holes under UV irradiation. Electrons reduced GO and holes adsorbed corresponding negative ions, which changed the properties of the composite film. This film was directly used as gas-sensor and was able to display high sensitivity in detecting ethanol gas. More interestingly, on the basis of SnO2-induced photochemical behaviours, this sensor demonstrated tunable sensitivity when UV irradiation time was controlled during the fabrication process and post in water, respectively. This study provides efficient ways of conducting the in situ fabrication of a semiconductor-reduced graphite oxide film device with uniform surface structure and controllable properties.
PMCID: PMC4355683  PMID: 25758292
17.  Quality of Graphite Target for Biological/Biomedical/Environmental Applications of 14C-Accelerator Mass Spectrometry 
Analytical Chemistry  2010;82(6):2243-2252.
Catalytic graphitization for 14C-accelerator mass spectrometry (14C-AMS) produced various forms of elemental carbon. Our high-throughput Zn reduction method (C/Fe = 1:5, 500 °C, 3 h) produced the AMS target of graphite-coated iron powder (GCIP), a mix of nongraphitic carbon and Fe3C. Crystallinity of the AMS targets of GCIP (nongraphitic carbon) was increased to turbostratic carbon by raising the C/Fe ratio from 1:5 to 1:1 and the graphitization temperature from 500 to 585 °C. The AMS target of GCIP containing turbostratic carbon had a large isotopic fractionation and a low AMS ion current. The AMS target of GCIP containing turbostratic carbon also yielded less accurate/precise 14C-AMS measurements because of the lower graphitization yield and lower thermal conductivity that were caused by the higher C/Fe ratio of 1:1. On the other hand, the AMS target of GCIP containing nongraphitic carbon had higher graphitization yield and better thermal conductivity over the AMS target of GCIP containing turbostratic carbon due to optimal surface area provided by the iron powder. Finally, graphitization yield and thermal conductivity were stronger determinants (over graphite crystallinity) for accurate/precise/high-throughput biological, biomedical, and environmental14C-AMS applications such as absorption, distribution, metabolism, elimination (ADME), and physiologically based pharmacokinetics (PBPK) of nutrients, drugs, phytochemicals, and environmental chemicals.
PMCID: PMC2837469  PMID: 20163100
18.  Biological Interactions of Graphene-Family Nanomaterials – An Interdisciplinary Review 
Graphene is a single-atom thick, two-dimensional sheet of hexagonally arranged carbon atoms isolated from its three-dimensional parent material, graphite. Related materials include few-layer-graphene (FLG), ultrathin graphite, graphene oxide (GO), reduced graphene oxide (rGO), and graphene nanosheets (GNS). This review proposes a systematic nomenclature for this set of “Graphene-Family Nanomaterials” (GFNs) and discusses specific materials properties relevant for biomolecular and cellular interactions. The article discusses several unique modes of interaction between GFNs and nucleic acids, lipid bilayers, and conjugated small molecule drugs and dyes. Some GFNs are produced as dry powders using thermal exfoliation, and in these cases inhalation is a likely route of human exposure. Some GFNs have aerodynamic sizes that can lead to inhalation and substantial deposition in the human respiratory tract, which may impair lung defense and clearance leading to formation of granulomas and lung fibrosis. The limited literature on in vitro toxicity suggests that GFNs can be either benign or toxic to cells, and it is hypothesized that the biological response will vary across the material family depending on layer number, lateral size, stiffness, hydrophobicity, surface functionalization, and dose. Generation of reactive oxygen species (ROS) in target cells is a potential mechanism for toxicity, although the extremely high hydrophobic surface area of some GFNs may also lead to significant interactions with membrane lipids leading to direct physical toxicity or adsorption of biological molecules leading to indirect toxicity. Limited in vivo studies demonstrate systemic biodistribution and biopersistence of GFNs following intravenous delivery. Similar to other smooth, continuous, biopersistent implants or foreign bodies, GFNs have the potential to induce foreign body tumors. Long-term adverse health impacts must be considered in design of GFNs for drug delivery, tissue engineering, and fluorescence-based biomolecular sensing. Future research is needed to explore fundamental biological responses to GFNs including systematic assessment of the physical and chemical materials properties related to toxicity. Complete materials characterization and mechanistic toxicity studies are essential for safer design and manufacturing of GFNs in order to optimize biological applications with minimal risks for environmental health and safety.
PMCID: PMC3259226  PMID: 21954945
19.  Effect of Graphite Concentration on Shear-Wave Speed in Gelatin-Based Tissue-Mimicking Phantoms 
Ultrasonic imaging  2011;33(2):134-142.
Elasticity-based imaging modalities are becoming popular diagnostic tools in clinical practice. Gelatin-based, tissue mimicking phantoms that contain graphite as the acoustic scattering material are commonly used in testing and validating elasticity-imaging methods to quantify tissue stiffness. The gelatin bloom strength and concentration are used to control phantom stiffness. While it is known that graphite concentration can be modulated to control acoustic attenuation, the impact of graphite concentrationon phantom elasticity has not been characterized in these gelatin phantoms. This work investigates the impact of graphite concentration on phantom shear stiffness as characterized by shear-wave speed measurements using impulsive acoustic-radiation-force excitations. Phantom shear-wave speed increased by 0.83 (m/s)/(dB/(cm MHz)) when increasing the attenuation coefficient slope of the phantom material through increasing graphite concentration. Therefore, gelatin-phantom stiffness can be affected by the conventional ways that attenuation is modulated through graphite concentration in these phantoms.
PMCID: PMC3128385  PMID: 21710828
Acoustic radiation force; ARFI; attenuation coefficient slope; elasticity; graphite; phantom; shear wave; stiffness
20.  Biological/Biomedical Accelerator Mass Spectrometry Targets. 2. Physical, Morphological, and Structural Characteristics 
Analytical Chemistry  2008;80(20):7661-7669.
The number of biological/biomedical applications that require AMS to achieve their goals is increasing, and so is the need for a better understanding of the physical, morphological, and structural traits of high quality of AMS targets. The metrics of quality included color, hardness/texture, and appearance (photo and SEM), along with FT-IR, Raman, and powder X-ray diffraction spectra that correlate positively with reliable and intense ion currents and accuracy, precision, and sensitivity of fraction modern (Fm). Our previous method produced AMS targets of gray-colored iron−carbon materials (ICM) 20% of the time and of graphite-coated iron (GCI) 80% of the time. The ICM was hard, its FT-IR spectra lacked the sp2 bond, its Raman spectra had no detectable G′ band at 2700 cm−1, and it had more iron carbide (Fe3C) crystal than nanocrystalline graphite or graphitizable carbon (g-C). ICM produced low and variable ion current whereas the opposite was true for the graphitic GCI. Our optimized method produced AMS targets of graphite-coated iron powder (GCIP) 100% of the time. The GCIP shared some of the same properties as GCI in that both were black in color, both produced robust ion current consistently, their FT-IR spectra had the sp2 bond, their Raman spectra had matching D, G, G′, D+G, and D′′ bands, and their XRD spectra showed matching crystal size. GCIP was a powder that was easy to tamp into AMS target holders that also facilitated high throughput. We concluded that AMS targets of GCIP were a mix of graphitizable carbon and Fe3C crystal, because none of their spectra, FT-IR, Raman, or XRD, matched exactly those of the graphite standard. Nevertheless, AMS targets of GCIP consistently produced the strong, reliable, and reproducible ion currents for high-throughput AMS analysis (270 targets per skilled analyst/day) along with accurate and precise Fm values.
PMCID: PMC2651734  PMID: 18785762
21.  Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells 
BioMed Research International  2015;2015:351014.
Microbial Fuel cells (MFCs) have been proposed for nutrient removal and energy recovery from different wastes. In this study the anaerobic digestate was used to feed H-type MFC reactors, one with a graphite anode preconditioned with Geobacter sulfurreducens and the other with an unconditioned graphite anode. The data demonstrate that the digestate acts as a carbon source, and even in the absence of anode preconditioning, electroactive bacteria colonise the anodic chamber, producing a maximum power density of 172.2 mW/m2. The carbon content was also reduced by up to 60%, while anaerobic ammonium oxidation (anammox) bacteria, which were found in the anodic compartment of the reactors, contributed to nitrogen removal from the digestate. Overall, these results demonstrate that MFCs can be used to recover anammox bacteria from natural sources, and it may represent a promising bioremediation unit in anaerobic digestor plants for the simultaneous nitrogen removal and electricity generation using digestate as substrate.
PMCID: PMC4530212  PMID: 26273609
22.  Ionic liquid-assisted electrochemical exfoliation of carbon dots of different size for fluorescent imaging of bacteria by tuning the water fraction in electrolyte 
Mikrochimica Acta  2016;183:2525-2532.
An electrochemical approach is introduced for synthesis of carbon dots (CDs) by exfoliating graphite rods at a voltage of 15 V in an electrolyte consisting of a mixture of water and two ionic liquids. It is found that the size of the CDs can be tuned by varying the fraction of water in the mixed electrolyte; CDs in sizes of 4.9, 4.1 and 3.1 nm are obtained if the electrolyte contains water in fractions of 24, 38 and 56 %, respectively. The CDs have a quantum yield of almost 10 % and display the typical excitation wavelength-dependent maxima of photoluminescence, strongest at excitation/emission wavelengths of 360/440 nm. Fourier transform infrared and X-ray photoelectron spectroscopy show the CDs to have oxygen functional groups on their surface which strongly improve solubility. The CDs were applied to image cells of the electricity-producing bacteria Shewanellaoneidensis MR-1.
Graphical AbstractAn electrochemical approach is introduced to synthesize carbon dots by exfoliating graphite rods in mixed electrolyte of water and ionic liquids. The increasing size of carbon dots was realized by reducing the volume of water in the mixed electrolyte. The carbon dots were used to fluorescently image the electricity-producing bacterium Shewanellaoneidensis MR-1.
Electronic supplementary material
The online version of this article (doi:10.1007/s00604-016-1877-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4977338  PMID: 27546906
Graphite rods; 1-butyl-3-methylimidazolium; Shewanellaoneidensis MR-1; Fluorescence; Decay times; Quantum yield; FTIR; X-ray photoelectron spectroscopy; HRTEM
23.  Capacity fade in Sn–C nanopowder anodes due to fracture 
Journal of Power Sources  2012;197(2):246-252.
► Detailed microscopy was performed on Sn/C anodes before and after cycling. ► Significant fracture of the Sn was observed during cycling. ► The Sn volume average and surface area must be low to prevent fracture.
Sn based anodes allow for high initial capacities, which however cannot be retained due to the severe mechanical damage that occurs during Li-insertion and de-insertion. To better understand the fracture process during electrochemical cycling three different nanopowders comprised of Sn particles attached on artificial graphite, natural graphite or micro-carbon microbeads were examined. Although an initial capacity of 700 mAh g−1 was obtained for all Sn–C nanopowders, a significant capacity fade took place with continuous electrochemical cycling. The microstructural changes in the electrodes corresponding to the changes in electrochemical behavior were studied by transmission and scanning electron microscopy. The fragmentation of Sn observed by microscopy correlates with the capacity fade, but this fragmentation and capacity fade can be controlled by controlling the initial microstructure. It was found that there is a dependence of the capacity fade on the Sn particle volume and surface area fraction of Sn on carbon.
PMCID: PMC3208070  PMID: 22241941
Sn–C; Anodes; Nanostructured; Fracture
24.  In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites 
Nanocomposite thin films comprised of metastable metal carbides in a carbon matrix have a wide variety of applications ranging from hard coatings to magnetics and energy storage and conversion. While their deposition using nonequilibrium techniques is established, the understanding of the dynamic evolution of such metastable nanocomposites under thermal equilibrium conditions at elevated temperatures during processing and during device operation remains limited. Here, we investigate sputter-deposited nanocomposites of metastable nickel carbide (Ni3C) nanocrystals in an amorphous carbon (a-C) matrix during thermal postdeposition processing via complementary in situ X-ray diffractometry, in situ Raman spectroscopy, and in situ X-ray photoelectron spectroscopy. At low annealing temperatures (300 °C) we observe isothermal Ni3C decomposition into face-centered-cubic Ni and amorphous carbon, however, without changes to the initial finely structured nanocomposite morphology. Only for higher temperatures (400–800 °C) Ni-catalyzed isothermal graphitization of the amorphous carbon matrix sets in, which we link to bulk-diffusion-mediated phase separation of the nanocomposite into coarser Ni and graphite grains. Upon natural cooling, only minimal precipitation of additional carbon from the Ni is observed, showing that even for highly carbon saturated systems precipitation upon cooling can be kinetically quenched. Our findings demonstrate that phase transformations of the filler and morphology modifications of the nanocomposite can be decoupled, which is advantageous from a manufacturing perspective. Our in situ study also identifies the high carbon content of the Ni filler crystallites at all stages of processing as the key hallmark feature of such metal–carbon nanocomposites that governs their entire thermal evolution. In a wider context, we also discuss our findings with regard to the much debated potential role of metastable Ni3C as a catalyst phase in graphene and carbon nanotube growth.
PMCID: PMC5056405  PMID: 27746852
25.  Camphor-mediated synthesis of carbon nanoparticles, graphitic shell encapsulated carbon nanocubes and carbon dots for bioimaging 
Scientific Reports  2016;6:21286.
A green method for an efficient synthesis of water-soluble carbon nanoparticles (CNPs), graphitic shell encapsulated carbon nanocubes (CNCs), Carbon dots (CDs) using Camphor (Cinnamomum camphora) is demonstrated. Here, we describe a competent molecular fusion and fission route for step-wise synthesis of CDs. Camphor on acidification and carbonization forms CNPs, which on alkaline hydrolysis form CNCs that are encapsulated by thick graphitic layers and on further reduction by sodium borohydride yielded CDs. Though excitation wavelength dependent photoluminescence is observed in all the three carbon nanostructures, CDs possess enhanced photoluminescent properties due to more defective carbonaceous structures. The surface hydroxyl and carboxyl functional groups make them water soluble in nature. They possess excellent photostability, higher quantum yield, increased absorption, decreased cytotoxicity and hence can be utilized as a proficient bio imaging agent.
PMCID: PMC4764906  PMID: 26905737

Results 1-25 (931919)