Search tips
Search criteria

Results 1-25 (825565)

Clipboard (0)

Related Articles

1.  Loss of the SRF co-factor, cysteine-rich protein 1, attenuates neointima formation in the mouse 
Cysteine-Rich Protein (CRP) 1 and 2 are cytoskeletal LIM-domain proteins thought to be critical for smooth muscle differentiation. Loss of murine CRP2 does not overtly affect smooth muscle differentiation or vascular function, but exacerbates neointima formation in response to vascular injury. Since CRP1 and CRP2 are co-expressed in the vasculature, we hypothesize that CRP1 and CRP2 act redundantly in smooth muscle differentiation.
Methods and Results
We generated Csrp1 (gene name for CRP1)-null mice by genetic ablation of the Csrp1 gene and found that mice lacking CRP1 are viable and fertile. Smooth muscle containing tissues from Csrp1-null mice are morphologically indistinguishable from wildtype and have normal contractile properties. Mice lacking both CRP1 and CRP2 are viable and fertile ruling out functional redundancy between these two highly related proteins as a cause for the lack of an overt phenotype in the Csrp1-null mice. Csrp1-null mice challenged by wire-induced arterial injury display reduced neointima formation, opposite to that seen in Csrp2-null mice, while Csrp1/Csrp2 double null mice produce a wildtype response.
Smooth muscle CRPs are not essential for normal smooth muscle differentiation during development, but may act antagonistically to modulate the smooth muscle response to pathophysiological stress.
PMCID: PMC2998921  PMID: 20056913
2.  Cysteine-rich protein 2 alters p130Cas localization and inhibits vascular smooth muscle cell migration 
Cardiovascular Research  2013;100(3):461-471.
Cysteine-rich protein (CRP) 2, a member of the LIM-only CRP family that contains two LIM domains, is expressed in vascular smooth muscle cells (VSMCs) of blood vessels and functions to repress VSMC migration and vascular remodelling. The goal of this study was to define the molecular mechanisms by which CRP2 regulates VSMC migration.
Methods and results
Transfection of VSMCs with CRP2-EGFP constructs revealed that CRP2 associated with the actin cytoskeleton. In response to chemoattractant stimulation, Csrp2 (mouse CRP2 gene symbol)-deficient (Csrp2−/−) VSMCs exhibited increased lamellipodia formation. Re-introduction of CRP2 abrogated the enhanced lamellipodia formation and migration of Csrp2−/− VSMCs following chemoattractant stimulation. Mammalian 2-hybrid and co-immunoprecipitation assays demonstrated that CRP2 interacts with p130Cas, a scaffold protein important for lamellipodia formation and cell motility. Immunofluorescence staining showed that CRP2 colocalized with phospho-p130Cas at focal adhesions (FAs)/terminal ends of stress fibres in non-migrating cells. Interestingly, in migrating cells phospho-p130Cas localized to the leading edge of lamellipodia and FAs, whereas CRP2 was restricted to FAs and stress fibres. Furthermore, we demonstrated that p130Cas expression and phosphorylation promote neointima formation following arterial injury.
These studies demonstrate that CRP2 sequesters p130Cas at FAs, thereby reducing lamellipodia formation and blunting VSMC migration.
PMCID: PMC3826702  PMID: 23975851
Vascular smooth muscle cells; Migration; Cysteine-rich protein 2; P130Cas
3.  The PPCD1 Mouse: Characterization of a Mouse Model for Posterior Polymorphous Corneal Dystrophy and Identification of a Candidate Gene 
PLoS ONE  2010;5(8):e12213.
The PPCD1 mouse, a spontaneous mutant that arose in our mouse colony, is characterized by an enlarged anterior chamber resulting from metaplasia of the corneal endothelium and blockage of the iridocorneal angle by epithelialized corneal endothelial cells. The presence of stratified multilayered corneal endothelial cells with abnormal patterns of cytokeratin expression are remarkably similar to those observed in human posterior polymorphous corneal dystrophy (PPCD) and the sporadic condition, iridocorneal endothelial syndrome. Affected eyes exhibit epithelialized corneal endothelial cells, with inappropriate cytokeratin expression and proliferation over the iridocorneal angle and posterior cornea. We have termed this the “mouse PPCD1” phenotype and mapped the mouse locus for this phenotype, designated “Ppcd1”, to a 6.1 Mbp interval on Chromosome 2, which is syntenic to the human Chromosome 20 PPCD1 interval. Inheritance of the mouse PPCD1 phenotype is autosomal dominant, with complete penetrance on the sensitive DBA/2J background and decreased penetrance on the C57BL/6J background. Comparative genome hybridization has identified a hemizygous 78 Kbp duplication in the mapped interval. The endpoints of the duplication are located in positions that disrupt the genes Csrp2bp and 6330439K17Rik and lead to duplication of the pseudogene LOC100043552. Quantitative reverse transcriptase-PCR indicates that expression levels of Csrp2bp and 6330439K17Rik are decreased in eyes of PPCD1 mice. Based on the observations of decreased gene expression levels, association with ZEB1-related pathways, and the report of corneal opacities in Csrp2bptm1a(KOMP)Wtsi heterozygotes and embryonic lethality in nulls, we postulate that duplication of the 78 Kbp segment leading to haploinsufficiency of Csrp2bp is responsible for the mouse PPCD1 phenotype. Similarly, CSRP2BP haploinsufficiency may lead to human PPCD.
PMCID: PMC2922377  PMID: 20808945
4.  Divergent signaling pathways cooperatively regulate TGFβ induction of cysteine-rich protein 2 in vascular smooth muscle cells 
Vascular smooth muscle cells (VSMCs) of the arterial wall play a critical role in the development of occlusive vascular diseases. Cysteine-rich protein 2 (CRP2) is a VSMC-expressed LIM-only protein, which functionally limits VSMC migration and protects against pathological vascular remodeling. The multifunctional cytokine TGFβ has been implicated to play a role in the pathogenesis of atherosclerosis through numerous downstream signaling pathways. We showed previously that TGFβ upregulates CRP2 expression; however, the detailed signaling mechanisms remain unclear.
TGFβ treatment of VSMCs activated both Smad2/3 and ATF2 phosphorylation. Individually knocking down Smad2/3 or ATF2 pathways with siRNA impaired the TGFβ induction of CRP2, indicating that both contribute to CRP2 expression. Inhibiting TβRI kinase activity by SB431542 or TβRI knockdown abolished Smad2/3 phosphorylation but did not alter ATF2 phosphorylation, indicating while Smad2/3 phosphorylation was TβRI-dependent ATF2 phosphorylation was independent of TβRI. Inhibiting Src kinase activity by SU6656 suppressed TGFβ-induced RhoA and ATF2 activation but not Smad2 phosphorylation. Blocking ROCK activity, the major downstream target of RhoA, abolished ATF2 phosphorylation and CRP2 induction but not Smad2 phosphorylation. Furthermore, JNK inhibition with SP600125 reduced TGFβ-induced ATF2 (but not Smad2) phosphorylation and CRP2 protein expression while ROCK inhibition blocked JNK activation. These results indicate that downstream of TβRII, Src family kinase-RhoA-ROCK-JNK signaling pathway mediates TβRI-independent ATF2 activation. Promoter analysis revealed that the TGFβ induction of CRP2 was mediated through the CRE and SBE promoter elements that were located in close proximity.
Our results demonstrate that two signaling pathways downstream of TGFβ converge on the CRE and SBE sites of the Csrp2 promoter to cooperatively control CRP2 induction in VSMCs, which represents a previously unrecognized mechanism of VSMC gene induction by TGFβ.
PMCID: PMC3973006  PMID: 24674138
Cysteine-rich protein 2; Vascular smooth muscle cells; TGFβ; ATF2; Smad2/3
5.  MLP (muscle LIM protein) as a stress sensor in the heart 
Pflugers Archiv  2011;462(1):135-142.
Muscle LIM protein (MLP, also known as cysteine rich protein 3 (CSRP3, CRP3)) is a muscle-specific-expressed LIM-only protein. It consists of 194 amino-acids and has been described initially as a factor involved in myogenesis (Arber et al. Cell 79:221–231, 1994). MLP soon became an important model for experimental cardiology when it was first demonstrated that MLP deficiency leads to myocardial hypertrophy followed by a dilated cardiomyopathy and heart failure phenotype (Arber et al. Cell 88:393–403, 1997). At this time, this was the first genetically altered animal model to develop this devastating disease. Interestingly, MLP was also found to be down-regulated in humans with heart failure (Zolk et al. Circulation 101:2674–2677, 2000) and MLP mutations are able to cause hypertrophic and dilated forms of cardiomyopathy in humans (Bos et al. Mol Genet Metab 88:78–85, 2006; Geier et al. Circulation 107:1390–1395, 2003; Hershberger et al. Clin Transl Sci 1:21–26, 2008; Knöll et al. Cell 111:943–955, 2002; Knöll et al. Circ Res 106:695–704, 2010; Mohapatra et al. Mol Genet Metab 80:207–215, 2003). Although considerable efforts have been undertaken to unravel the underlying molecular mechanisms—how MLP mutations, either in model organisms or in the human setting cause these diseases are still unclear. In contrast, only precise knowledge of the underlying molecular mechanisms will allow the development of novel and innovative therapeutic strategies to combat this otherwise lethal condition. The focus of this review will be on the function of MLP in cardiac mechanosensation and we shall point to possible future directions in MLP research.
PMCID: PMC3114083  PMID: 21484537
Muscle stretch; Mechanoreceptor; Mechanosensitivity; Gene expression; Cardiac function; Cardiac muscle; Cardiac myocytes; Cardiac sarcomere; Cardiomyocyte; Cardiovascular control
6.  Genotype—phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin ☆ 
TTN-encoded titin, CSRP3-encoded muscle LIM protein, and TCAP-encoded telethonin are Z-disc proteins essential for the structural organization of the cardiac sarcomere and the cardiomyocyte’s stretch sensor. All three genes have been established as cardiomyopathy-associated genes for both dilated cardiomyopathy (DCM) and hypertrophic cardiomyopathy (HCM). Here, we sought to characterize the frequency, spectrum, and phenotype associated with HCM-associated mutations in these three genes in a large cohort of unrelated patients evaluated at a single tertiary outpatient center.
DNA was obtained from 389 patients with HCM (215 male, left ventricular wall thickness of 21.6 ± 6 mm) and analyzed for mutations involving all translated exons of CSRP3 and TCAP and targeted HCM-associated exons (2, 3, 4, and 14) of TTN using polymerase chain reaction (PCR), denaturing high performance liquid chromatography (DHPLC), and direct DNA sequencing. Clinical data were extracted from patient records and maintained independent of the genotype.
Overall, 16 patients (4.1%) harbored a Z-disc mutation: 12 had a MLP mutation and 4 patients a TCAP mutation. No TTN mutations were detected. Seven patients were also found to have a concomitant myofilament mutation. Seven patients with a MLP-mutation were found to harbor the DCM-associated, functionally characterized W4R mutation. W4R-MLP was also noted in a single white control subject. Patients with MLP/TCAP-associated HCM clinically mimicked myofilament-HCM.
Approximately 4.1% of unrelated patients had HCM-associated MLP or TCAP mutations. MLP/TCAP-HCM phenotypically mirrors myofilament-HCM and is more severe than the subset of patients who still remain without a disease-causing mutation. The precise role of W4R-MLP in the pathogenesis of either DCM or HCM warrants further investigation.
PMCID: PMC2756511  PMID: 16352453
Genetics; Genes; Hypertrophy; Cardiomyopathy; Z-disc; Muscle LIM protein; Telethonin; TCAP; Titin
7.  Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy 
More than 20 genes have been reported to cause idiopathic and familial dilated cardiomyopathy (IDC/FDC), but the frequency of genetic causation remains poorly understood.
Methods and Results
Blood samples were collected and DNA prepared from 313 patients, 183 with FDC and 130 with IDC. Genomic DNA underwent bidirectional sequencing of six genes, and mutation carriers were followed up by evaluation of additional family members. We identified in 36 probands, 31 unique protein-altering variants (11.5% overall) that were not identified in 253 control subjects (506 chromosomes). These included 13 probands (4.2%) with 12 β-myosin heavy chain (MYH7) mutations, nine probands (2.9%) with six different cardiac troponin T (TNNT2) mutations, eight probands (2.6%) carrying seven different cardiac sodium channel (SCN5A) mutations, three probands (1.0%) with three titin-cap or telethonin (TCAP) mutations, three probands (1.0%) with two LIM domain binding 3 (LDB3) mutations, and one proband (0.3%) with a muscle LIM protein (CSRP3) mutation. Four nucleotide changes did not segregate with phentoype and/or did not alter a conserved amino acid and were therefore considered unlikely to be disease-causing. Mutations in 11 probands were assessed as likely disease-causing, and in 21 probands were considered possibly disease-causing. These 32 probands included 14 of the 130 with IDC (10.8%) and 18 of 183 with FDC (9.8%)
Mutations of these six genes each account for a small fraction of the genetic cause of FDC/IDC. The frequency of possible or likely disease-causing mutations in these genes is similar for IDC and FDC.
PMCID: PMC2633921  PMID: 19412328
dilated cardiomyopathy; genetics
8.  An Intronic CArG Box Regulates Cysteine-rich Protein 2 Expression in the Adult but not Developing Vasculature 
An absence of cysteine-rich protein 2 (CRP2) enhances vascular smooth muscle cell (VSMC) migration and increases neointima formation following arterial injury; therefore CRP2 plays an important role in the response to vascular injury. The goal of the present study was to elucidate the molecular mechanisms that preserve CRP2 expression in the adult vasculature and thus might serve to inhibit the response to injury.
Methods and Results
We generated a series of transgenic mice harboring potential Csrp2 regulatory regions with a lacZ reporter. We determined that the 12-kb first intron was necessary for transgene activity in adult but not developing vasculature. Within the intron we identified a 6.3-kb region that contains two CArG boxes. SRF preferentially bound to CArG2 box in gel mobility shift and chromatin immunoprecipitation assays; additionally, SRF coactivator myocardin factors activated CRP2 expression via the CArG2 box. Mutational analysis revealed that CArG2 box was important in directing lacZ expression in VSMCs of adult vessels.
Although CRP2 expression during development is independent of CArG box regulatory sites, CRP2 expression in adult VSMCs requires CArG2 element within the first intron. Our results suggest that distinct mechanisms regulate CRP2 expression in VSMCs that are controlled by separate embryonic and adult regulatory modules.
PMCID: PMC2841712  PMID: 20075421
CRP2; VSMC; adult element; CArG box; intron
9.  Genomic analysis of expressed sequence tags in American black bear Ursus americanus 
BMC Genomics  2010;11:201.
Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus).
Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes.
We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes.
PMCID: PMC2996962  PMID: 20338065
10.  CRP1, a LIM Domain Protein Implicated in Muscle Differentiation, Interacts with α-Actinin  
The Journal of Cell Biology  1997;139(1):157-168.
Members of the cysteine-rich protein (CRP) family are LIM domain proteins that have been implicated in muscle differentiation. One strategy for defining the mechanism by which CRPs potentiate myogenesis is to characterize the repertoire of CRP binding partners. In order to identify proteins that interact with CRP1, a prominent protein in fibroblasts and smooth muscle cells, we subjected an avian smooth muscle extract to affinity chromatography on a CRP1 column. A 100-kD protein bound to the CRP1 column and could be eluted with a high salt buffer; Western immunoblot analysis confirmed that the 100-kD protein is α-actinin. We have shown that the CRP1–α-actinin interaction is direct, specific, and saturable in both solution and solid-phase binding assays. The Kd for the CRP1–α-actinin interaction is 1.8 ± 0.3 μM. The results of the in vitro protein binding studies are supported by double-label indirect immunofluorescence experiments that demonstrate a colocalization of CRP1 and α-actinin along the actin stress fibers of CEF and smooth muscle cells. Moreover, we have shown that α-actinin coimmunoprecipitates with CRP1 from a detergent extract of smooth muscle cells. By in vitro domain mapping studies, we have determined that CRP1 associates with the 27-kD actin–binding domain of α-actinin. In reciprocal mapping studies, we showed that α-actinin interacts with CRP1-LIM1, a deletion fragment that contains the NH2-terminal 107 amino acids (aa) of CRP1. To determine whether the α-actinin binding domain of CRP1 would localize to the actin cytoskeleton in living cells, expression constructs encoding epitope-tagged full-length CRP1, CRP1-LIM1(aa 1-107), or CRP1-LIM2 (aa 108-192) were microinjected into cells. By indirect immunofluorescence, we have determined that full-length CRP1 and CRP1-LIM1 localize along the actin stress fibers whereas CRP1-LIM2 fails to associate with the cytoskeleton. Collectively these data demonstrate that the NH2-terminal part of CRP1 that contains the α-actinin–binding site is sufficient to localize CRP1 to the actin cytoskeleton. The association of CRP1 with α-actinin may be critical for its role in muscle differentiation.
PMCID: PMC2139825  PMID: 9314536
11.  Two major branches of anti-cadmium defense in the mouse: MTF-1/metallothioneins and glutathione 
Nucleic Acids Research  2005;33(18):5715-5727.
Metal-responsive transcription factor 1 (MTF-1) regulates expression of its target genes in response to various stress conditions, notably heavy metal load, via binding to metal response elements (MREs) in the respective enhancer/promoter regions. Furthermore, it serves a vital function in embryonic liver development. However, targeted deletion of Mtf1 in the liver after birth is no longer lethal. For this study, Mtf1 conditional knockout mice and control littermates were both mock- or cadmium-treated and liver-specific transcription was analyzed. Besides the well-characterized metallothionein genes, several new MTF-1 target genes with MRE motifs in the promoter region emerged. MTF-1 is required for the basal expression of selenoprotein W, muscle 1 gene (Sepw1) that encodes a glutathione-binding and putative antioxidant protein, supporting a role of MTF-1 in the oxidative stress response. Furthermore, MTF-1 mediates the cadmium-induced expression of N-myc downstream regulated gene 1 (Ndrg1), which is induced by several stress conditions and is overexpressed in many cancers. MTF-1 is also involved in the cadmium response of cysteine- and glycine-rich protein 1 gene (Csrp1), which is implicated in cytoskeletal organization. In contrast, MTF-1 represses the basal expression of Slc39a10, a putative zinc transporter. In a pathway independent of MTF-1, cadmium also induced the transcription of genes involved in the synthesis and regeneration of glutathione, a cadmium-binding antioxidant. These data provide strong evidence for two major branches of cellular anti-cadmium defense, one via MTF-1 and its target genes, notably metallothioneins, the other via glutathione, with an apparent overlap in selenoprotein W.
PMCID: PMC1253828  PMID: 16221973
12.  Microarray profiling of progesterone-regulated endometrial genes during the rhesus monkey secretory phase 
In the endometrium the steroid hormone progesterone (P), acting through its nuclear receptors, regulates the expression of specific target genes and gene networks required for endometrial maturation. Proper endometrial maturation is considered a requirement for embryo implantation. Endometrial receptivity is a complex process that is spatially and temporally restricted and the identity of genes that regulate receptivity has been pursued by a number of investigators.
In this study we have used high density oligonucleotide microarrays to screen for changes in mRNA transcript levels between normal proliferative and adequate secretory phases in Rhesus monkey artificial menstrual cycles. Biotinylated cRNA was prepared from day 13 and days 21–23 of the reproductive cycle and transcript levels were compared by hybridization to Affymetrix HG-U95A arrays.
Of ~12,000 genes profiled, we identified 108 genes that were significantly regulated during the shift from a proliferative to an adequate secretory endometrium. Of these genes, 39 were up-regulated at days 21–23 versus day 13, and 69 were down-regulated. Genes up-regulated in P-dominant tissue included: secretoglobin (uteroglobin), histone 2A, polo-like kinase (PLK), spermidine/spermine acetyltransferase 2 (SAT2), secretory leukocyte protease inhibitor (SLPI) and metallothionein 1G (MT1G), all of which have been previously documented as elevated in the Rhesus monkey or human endometrium during the secretory phase. Genes down-regulated included: transforming growth factor beta-induced (TGFBI or BIGH3), matrix metalloproteinase 11 (stromelysin 3), proenkephalin (PENK), cysteine/glycine-rich protein 2 (CSRP2), collagen type VII alpha 1 (COL7A1), secreted frizzled-related protein 4 (SFRP4), progesterone receptor membrane component 1 (PGRMC1), chemokine (C-X-C) ligand 12 (CXCL12) and biglycan (BGN). In addition, many novel/unknown genes were also identified. Validation of array data was performed by semi-quantitative RT-PCR of two selected up-regulated genes using temporal (cycle day specific) endometrial cDNA populations. This approach confirmed up-regulation of WAP four-disulfide core domain 2 (WFDC2) and SLPI during the expected window of receptivity.
The identification of P-regulated genes and gene pathways in the primate endometrium is expected to be an important first step in elucidating the cellular processes necessary for the development of a receptive environment for implantation.
PMCID: PMC471571  PMID: 15239838
13.  Molecular cloning and characterization of an antigenic protein with a repeating region from Clonorchis sinensis 
In the course of immunoscreening of Clonorchis sinensis cDNA library, a cDNA CsRP12 containing a tandem repeat was isolated. The cDNA CsRP12 encodes two putative peptides of open reading frames (ORFs) 1 and 2 (CsRP12-1 and -2). The repetitive region is composed of 15 repeats of 10 amino acids. Of the two putative peptides, CsRP12-1 was proline-rich and found to have homologues in several organisms. Recombinant proteins of the putative peptides were bacterially produced and purified by an affinity chromatography. Recombinant CsRP12-1 protein was recognized by sera of clonorchiasis patients and experimental rabbits, but recombinant CsRP12-2 was not. One of the putative peptide, CsRP12-1, is designated CsPRA, proline-rich antigen of C. sinensis. Both the C-termini of CsRP12-1 and -2 were bacterially produced and analysed to show no antigenicity. Recombinant CsPRA protein showed high sensitivity and specificity. In experimental rabbits, IgG antibodies to CsPRA was produced between 4 and 8 weeks after the infection and decreased thereafter over one year. These results indicate that CsPRA is equivalent to a natural protein and a useful antigenic protein for serodiagnosis of human clonorchiasis.
PMCID: PMC2721066  PMID: 11301591
Clonorchis sinensis; repetitive peptide; antigenic; proline-rich; CsPRA
14.  Two muscle-specific LIM proteins in Drosophila 
The Journal of Cell Biology  1996;134(5):1179-1195.
The LIM domain defines a zinc-binding motif found in a growing number of eukaryotic proteins that regulate cell growth and differentiation during development. Members of the cysteine-rich protein (CRP) family of LIM proteins have been implicated in muscle differentiation in vertebrates. Here we report the identification and characterization of cDNA clones encoding two members of the CRP family in Drosophila, referred to as muscle LIM proteins (Mlp). Mlp60A encodes a protein with a single LIM domain linked to a glycine-rich region. Mlp84B encodes a protein with five tandem LIM-glycine modules. In the embryo, Mlp gene expression is spatially restricted to somatic, visceral, and pharyngeal muscles. Within the somatic musculature, Mlp84B transcripts are enriched at the terminal ends of muscle fibers, whereas Mlp60A transcripts are found throughout the muscle fibers. The distributions of the Mlp60A and Mlp84B proteins mirror their respective mRNA localizations, with Mlp84B enrichment occurring at sites of muscle attachment. Northern blot analysis revealed that Mlp gene expression is developmentally regulated, showing a biphasic pattern over the course of the Drosophila life cycle. Peaks of expression occur late in embryogenesis and during metamorphosis, when the musculature is differentiating. Drosophila Mlp60A and Mlp84B, like vertebrate members of the CRP family, have the ability to associate with the actin cytoskeleton when expressed in rat fibroblast cells. The temporal expression and spatial distribution of muscle LIM proteins in Drosophila are consistent with a role for Mlps in myogenesis, late in the differentiation pathway.
PMCID: PMC2120973  PMID: 8794860
15.  Microphakia and congenital cataract formation in a novel Lim2C51R mutant mouse 
Molecular Vision  2011;17:1164-1171.
Within a mutagenesis screen, we identified the new mouse mutant Aca47 with small lenses and reduced axial eye lengths. The aim of the actual study was the molecular and morphological characterization of the mouse mutant Aca47.
We analyzed the offspring of paternally N-ethyl-N-nitrosourea (ENU) treated C57BL/6J mice for eye-size parameters by non-invasive in vivo laser interference biometry. Linkage analysis of the eye size mutant Aca47 was performed using single nucleotide polymorphisms and microsatellite markers. The Aca47 mutation was identified by sequence analysis of positional candidate genes. A general polymorphism at the mutated site was excluded by restriction analysis. Eyes of the Aca47 mouse mutant were characterized by histology. Visual properties were examined in the virtual drum.
We identified a new mutant characterized by a significantly smaller lens and reduced axial eye length without any changes for cornea thickness, anterior chamber depth or aqueous humor size. The smaller size of lens was more pronounced in the homozygous mutants, which further developed congenital cataracts in the lens nucleus. The mutation was mapped to chromosome 7 between the markers D7Mit247 and D7Mit81. Using a positional candidate approach, the lens intrinsic integral membrane protein MP19 encoding gene Lim2 was sequenced; a T→C exchange at cDNA position 151 leads to a cysteine-to-arginine substitution at position 51 of the Lim2 protein. Eye histology of adult heterozygous mutants did not show alterations on the cellular level. However, homozygous lenses revealed irregularly arranged lens fiber layers in the cortex. Virtual vision tests indicated that visual properties are not affected by reduced eye size of heterozygous individuals.
These findings demonstrate a novel missense mutation in the Lim2 gene that affects lens development in a semidominant manner. Since homozygous mutants develop congenital lens opacities, this line can be used as a model for inherited cataract formation in humans.
PMCID: PMC3102026  PMID: 21617753
16.  Myocyte remodelling in response to hypertrophic stimuli requires nucleocytoplasmic shuttling of muscle LIM protein 
CSRP3 or Muscle LIM protein (MLP) is a nucleocytoplasmic shuttling protein and a mechanosensor in cardiac myocytes. MLP regulation and function was studied in cultured neonatal rat myocytes treated with pharmacological or mechanical stimuli. Either verapamil or BDM decreased nuclear MLP while phenylephrine and cyclic strain increased it. These results suggest that myocyte contractility regulates MLP subcellular localization. When RNA polymerase II was inhibited with α-amanitin, nuclear MLP was reduced by 30%. However, when both RNA polymerase I & II were inhibited with actinomycin D, there was a 90% decrease in nuclear MLP suggesting that its nuclear translocation is regulated by both nuclear and nucleolar transcriptional activity. Using cell permeable synthetic peptides containing the putative nuclear localization signal (NLS) of MLP, nuclear import of the protein in cultured rat neonatal myocytes was inhibited. The NLS of MLP also localizes to the nucleolus. Inhibition of nuclear translocation prevented the increased protein accumulation in response to phenylephrine. Furthermore, cyclic strain of myocytes after prior NLS treatment to remove nuclear MLP resulted in disarrayed sarcomeres. Increased protein synthesis and brain natriuretic peptide expression were also prevented suggesting that MLP is required for remodeling of the myofilaments and gene expression. These findings suggest that nucleocytoplasmic shuttling MLP plays an important role in the regulation of the myocyte remodeling and hypertrophy and is required for adaptation to hypertrophic stimuli.
PMCID: PMC2739242  PMID: 19376126
hypertrophy; sarcomere remodeling; nucleocytoplasmic shuttling; mechanosensing; mechanotransduction
17.  Zyxin and cCRP: two interactive LIM domain proteins associated with the cytoskeleton 
The Journal of Cell Biology  1992;119(6):1573-1587.
Interaction with extracellular matrix can trigger a variety of responses by cells including changes in specific gene expression and cell differentiation. The mechanism by which cell surface events are coupled to the transcriptional machinery is not understood, however, proteins localized at sites of cell-substratum contact are likely to function as signal transducers. We have recently purified and characterized a low abundance adhesion plaque protein called zyxin (Crawford, A. W., and M. C. Beckerle. 1991. J. Biol. Chem. 266:5847- 5853; Crawford, A. W., J. W. Michelsen, and M. C. Beckerle. 1992. J. Cell Biol. 116:1381-1393). We have now isolated and sequenced zyxin cDNA and we report here that zyxin exhibits an unusual proline-rich NH2- terminus followed by three tandemly arrayed LIM domains. LIM domains have previously been identified in proteins that play important roles in transcriptional regulation and cellular differentiation. LIM domains have been proposed to coordinate metal ions and we have demonstrated by atomic absorption spectroscopy that purified zyxin binds zinc, a result consistent with the idea that zyxin has zinc fingers. In addition, we have discovered that zyxin interacts in vitro with a 23-kD protein that also exhibits LIM domains. Microsequence analysis has revealed that the 23-kD protein (or cCRP) is the chicken homologue of the human cysteine- rich protein (hCRP). By double-label indirect immunofluorescence, we found that zyxin and cCRP are extensively colocalized in chicken embryo fibroblasts, consistent with the idea that they interact in vivo. We conclude that LIM domains are zinc-binding sequences that may be involved in protein-protein interactions. The demonstration that two cytoskeletal proteins, zyxin and cCRP, share a sequence motif with proteins important for transcriptional regulation raises the possibility that zyxin and cCRP are components of a signal transduction pathway that mediates adhesion-stimulated changes in gene expression.
PMCID: PMC2289750  PMID: 1469049
18.  Transcription Activation Mediated by a Cyclic AMP Receptor Protein from Thermus thermophilus HB8▿ § 
Journal of Bacteriology  2007;189(10):3891-3901.
The extremely thermophilic bacterium Thermus thermophilus HB8, which belongs to the phylum Deinococcus-Thermus, has an open reading frame encoding a protein belonging to the cyclic AMP (cAMP) receptor protein (CRP) family present in many bacteria. The protein named T. thermophilus CRP is highly homologous to the CRP family proteins from the phyla Firmicutes, Actinobacteria, and Cyanobacteria, and it forms a homodimer and interacts with cAMP. CRP mRNA and intracellular cAMP were detected in this strain, which did not drastically fluctuate during cultivation in a rich medium. The expression of several genes was altered upon disruption of the T. thermophilus CRP gene. We found six CRP-cAMP-dependent promoters in in vitro transcription assays involving DNA fragments containing the upstream regions of the genes exhibiting decreased expression in the CRP disruptant, indicating that the CRP is a transcriptional activator. The consensus T. thermophilus CRP-binding site predicted upon nucleotide sequence alignment is 5′-(C/T)NNG(G/T)(G/T)C(A/C)N(A/T)NNTCACAN(G/C)(G/C)-3′. This sequence is unique compared with the known consensus binding sequences of CRP family proteins. A putative −10 hexamer sequence resides at 18 to 19 bp downstream of the predicted T. thermophilus CRP-binding site. The CRP-regulated genes found in this study comprise clustered regularly interspaced short palindromic repeat (CRISPR)-associated (cas) ones, and the genes of a putative transcriptional regulator, a protein containing the exonuclease III-like domain of DNA polymerase, a GCN5-related acetyltransferase homolog, and T. thermophilus-specific proteins of unknown function. These results suggest a role for cAMP signal transduction in T. thermophilus and imply the T. thermophilus CRP is a cAMP-responsive regulator.
PMCID: PMC1913326  PMID: 17369302
19.  Hypertrophic cardiomyopathy family with double-heterozygous mutations; does disease severity suggest doubleheterozygosity? 
Netherlands Heart Journal  2009;17(12):458-463.
Background. With the improvement in genetic testing over time, double-heterozygous mutations are more often found by coincidence in families with hypertrophic cardiomyopathy (HCM). Double heterozygosity can be a cause of the wellknown clinical diversity within HCM families.
Methods and results. We describe a family in which members carry either a single mutation or are double heterozygous for mutations in myosin heavy chain gene (MYH7) and cysteine and glycine-rich protein 3 (CSRP3). The described family emphasises the idea of a more severe clinical phenotype with double-heterozygous mutations. It also highlights the importance of cardiological screening where NT-proBNP may serve as an added diagnostic tool.
Conclusion. With a more severe inexplicable phenotype of HCM within a family, one should consider the possibility of double-heterozygous mutations. This implies that in such families, even when one disease-causing mutation is found, all the family members still have an implication for cardiological screening parallel to extended genetic screening. (Neth Heart J 2009;17:458-63.)
PMCID: PMC2804077  PMID: 20087448
cardiomyopathy; hypertrophic; proBNP; genetics; double-heterozygous mutations
20.  Atypical DNA methylation of genes encoding cysteine-rich peptides in Arabidopsis thaliana 
BMC Plant Biology  2012;12:51.
In plants, transposons and non-protein-coding repeats are epigenetically silenced by CG and non-CG methylation. This pattern of methylation is mediated in part by small RNAs and two specialized RNA polymerases, termed Pol IV and Pol V, in a process called RNA-directed DNA methylation. By contrast, many protein-coding genes transcribed by Pol II contain in their gene bodies exclusively CG methylation that is independent of small RNAs and Pol IV/Pol V activities. It is unclear how the different methylation machineries distinguish between transposons and genes. Here we report on a group of atypical genes that display in their coding region a transposon-like methylation pattern, which is associated with gene silencing in sporophytic tissues.
We performed a methylation-sensitive amplification polymorphism analysis to search for targets of RNA-directed DNA methylation in Arabidopsis thaliana and identified several members of a gene family encoding cysteine-rich peptides (CRPs). In leaves, the CRP genes are silent and their coding regions contain dense, transposon-like methylation in CG, CHG and CHH contexts, which depends partly on the Pol IV/Pol V pathway and small RNAs. Methylation in the coding region is reduced, however, in the synergid cells of the female gametophyte, where the CRP genes are specifically expressed. Further demonstrating that expressed CRP genes lack gene body methylation, a CRP4-GFP fusion gene under the control of the constitutive 35 S promoter remains unmethylated in leaves and is transcribed to produce a translatable mRNA. By contrast, a CRP4-GFP fusion gene under the control of a CRP4 promoter fragment acquires CG and non-CG methylation in the CRP coding region in leaves similar to the silent endogenous CRP4 gene.
Unlike CG methylation in gene bodies, which does not dramatically affect Pol II transcription, combined CG and non-CG methylation in CRP coding regions is likely to contribute to gene silencing in leaves because loss of this methylation in synergid cells is associated with CRP gene expression. We discuss this unusual methylation pattern and its alteration in synergid cells as well as the possible retrogene origin and evolutionary significance of CRP genes that are methylated like transposons.
PMCID: PMC3422182  PMID: 22512782
21.  Sequence analysis and lipid modification of the cysteine-rich envelope proteins of Chlamydia psittaci 6BC. 
Journal of Bacteriology  1991;173(12):3821-3830.
The envelopes of elementary bodies of Chlamydia spp. consist largely of disulfide-cross-linked major outer membrane protein (MOMP) and two cysteine-rich proteins (CRPs). The MOMP gene of Chlamydia psittaci 6BC has been sequenced previously, and the genes encoding the small and large CRPs from this strain were cloned and sequenced in this study. The CRP genes were found to be tandemly arranged on the chlamydial chromosome but could be independently expressed in Escherichia coli. The deduced 87-amino-acid sequence of the small-CRP gene (envA) contains 15 cysteine residues, a potential signal peptide, and a potential signal peptidase II-lipid modification site. Hydropathy plot and conformation analysis of the small-CRP amino acid sequence indicated that the protein was unlikely to be associated with a membrane. However, the small CRP was specifically labeled in host cells incubated with [3H]palmitic acid and may therefore be associated with a membrane through a covalently attached lipid portion of the molecule. The deduced 557-amino-acid sequence of the large-CRP gene (envB) contains 37 cysteine residues and a single putative signal peptidase I cleavage site. In one recombinant clone the large CRP appeared to be posttranslationally cleaved at two sites, forming a doublet in a manner similar to the large-CRP doublet made in native C. psittaci 6BC. Comparison of the deduced amino acid sequences of the CRPs from chlamydial strains indicated that the small CRP is moderately conserved, with 54% identity between C. psittaci 6BC and Chlamydia trachomatis, and the large CRP is highly conserved, with 71% identity between C. psittaci and C. trachomatis and 85% identity between C. psittaci 6BC and Chlamydia pneumoniae. The positions of the cysteine residues in both CRPs are highly conserved in Chlamydia spp. From the number of cysteine residues in the MOMP and the CRPs and the relative incorporation of [35S]cysteine into these proteins, it was calculated that the molar ratio of C. psittaci 6BC elementary body envelope proteins is about one large-CRP molecule to two small-CRP molecules to five MOMP molecules.
PMCID: PMC208014  PMID: 2050637
22.  Muscle LIM Proteins Are Associated with Muscle Sarcomeres and Require dMEF2 for Their Expression during Drosophila Myogenesis 
Molecular Biology of the Cell  1999;10(7):2329-2342.
A genetic hierarchy of interactions, involving myogenic regulatory factors of the MyoD and myocyte enhancer-binding 2 (MEF2) families, serves to elaborate and maintain the differentiated muscle phenotype through transcriptional regulation of muscle-specific target genes. Much work suggests that members of the cysteine-rich protein (CRP) family of LIM domain proteins also play a role in muscle differentiation; however, the specific functions of CRPs in this process remain undefined. Previously, we characterized two members of the Drosophila CRP family, the muscle LIM proteins Mlp60A and Mlp84B, which show restricted expression in differentiating muscle lineages. To extend our analysis of Drosophila Mlps, we characterized the expression of Mlps in mutant backgrounds that disrupt specific aspects of muscle development. We show a genetic requirement for the transcription factor dMEF2 in regulating Mlp expression and an ability of dMEF2 to bind, in vitro, to consensus MEF2 sites derived from those present in Mlp genomic sequences. These data suggest that the Mlp genes may be direct targets of dMEF2 within the genetic hierarchy controlling muscle differentiation. Mutations that disrupt myoblast fusion fail to affect Mlp expression. In later stages of myogenic differentiation, which are dedicated primarily to assembly of the contractile apparatus, we analyzed the subcellular distribution of Mlp84B in detail. Immunofluorescent studies revealed the localization of Mlp84B to muscle attachment sites and the periphery of Z-bands of striated muscle. Analysis of mutations that affect expression of integrins and α-actinin, key components of these structures, also failed to perturb Mlp84B distribution. In conclusion, we have used molecular epistasis analysis to position Mlp function downstream of events involving mesoderm specification and patterning and concomitant with terminal muscle differentiation. Furthermore, our results are consistent with a structural role for Mlps as components of muscle cytoarchitecture.
PMCID: PMC25449  PMID: 10397768
23.  Biochemical and molecular characterization of the chicken cysteine-rich protein, a developmentally regulated LIM-domain protein that is associated with the actin cytoskeleton 
The Journal of Cell Biology  1994;124(1):117-127.
LIM domains are present in a number of proteins including transcription factors, a proto-oncogene product, and the adhesion plaque protein zyxin. The LIM domain exhibits a characteristic arrangement of cysteine and histidine residues and represents a novel zinc binding sequence (Michelsen et al., 1993). Previously, we reported the identification of a 23-kD protein that interacts with zyxin in vitro (Sadler et al., 1992). In this report, we describe the purification and characterization of this 23-kD zyxin-binding protein from avian smooth muscle. Isolation of a cDNA encoding the 23-kD protein has revealed that it consists of 192 amino acids and exhibits two copies of the LIM motif. The 23-kD protein is 91% identical to the human cysteine-rich protein (hCRP); therefore we refer to it as the chicken cysteine-rich protein (cCRP). Examination of a number of chick embryonic tissues by Western immunoblot analysis reveals that cCRP exhibits tissue-specific expression. cCRP is most prominent in tissues that are enriched in smooth muscle cells, such as gizzard, stomach, and intestine. In primary cell cultures derived from embryonic gizzard, differentiated smooth muscle cells exhibit the most striking staining with anti-cCRP antibodies. We have performed quantitative Western immunoblot analysis of cCRP, zyxin, and alpha-actinin levels during embryogenesis. By this approach, we have demonstrated that the expression of cCRP is developmentally regulated.
PMCID: PMC2119904  PMID: 8294495
24.  Cardiac fibroblast–derived microRNA passenger strand-enriched exosomes mediate cardiomyocyte hypertrophy 
The Journal of Clinical Investigation  2014;124(5):2136-2146.
In response to stress, the heart undergoes extensive cardiac remodeling that results in cardiac fibrosis and pathological growth of cardiomyocytes (hypertrophy), which contribute to heart failure. Alterations in microRNA (miRNA) levels are associated with dysfunctional gene expression profiles associated with many cardiovascular disease conditions; however, miRNAs have emerged recently as paracrine signaling mediators. Thus, we investigated a potential paracrine miRNA crosstalk between cardiac fibroblasts and cardiomyocytes and found that cardiac fibroblasts secrete miRNA-enriched exosomes. Surprisingly, evaluation of the miRNA content of cardiac fibroblast–derived exosomes revealed a relatively high abundance of many miRNA passenger strands (“star” miRNAs), which normally undergo intracellular degradation. Using confocal imaging and coculture assays, we identified fibroblast exosomal–derived miR-21_3p (miR-21*) as a potent paracrine-acting RNA molecule that induces cardiomyocyte hypertrophy. Proteome profiling identified sorbin and SH3 domain-containing protein 2 (SORBS2) and PDZ and LIM domain 5 (PDLIM5) as miR-21* targets, and silencing SORBS2 or PDLIM5 in cardiomyocytes induced hypertrophy. Pharmacological inhibition of miR-21* in a mouse model of Ang II–induced cardiac hypertrophy attenuated pathology. These findings demonstrate that cardiac fibroblasts secrete star miRNA–enriched exosomes and identify fibroblast-derived miR-21* as a paracrine signaling mediator of cardiomyocyte hypertrophy that has potential as a therapeutic target.
PMCID: PMC4001534  PMID: 24743145
25.  CIB1 is a Regulator of Pathological Cardiac Hypertrophy 
Nature medicine  2010;16(8):872-879.
Hypertrophic heart disease is a leading health problem facing the Western world. Here we identified the small EF-hand domain-containing protein CIB1 (Ca2+ and integrin binding protein 1) in a screen for novel regulators of cardiomyocyte hypertrophy. Yeast two-hybrid screening for CIB1 interacting partners identified a related EF-hand domain-containing protein calcineurin B, the regulatory subunit of the pro-hypertrophic protein phosphatase calcineurin. CIB1 largely localizes to the sarcolemma in mouse and human myocardium, where it anchors calcineurin to control its activation in coordination with the L-type Ca2+ channel. CIB1 protein levels and membrane association were enhanced in cardiac pathological hypertrophy, but not in physiological hypertrophy. Consistent with these observations, mice lacking Cib1 show a dramatic reduction in myocardial hypertrophy, fibrosis, cardiac dysfunction, and calcineurin-NFAT activity following pressure overload, while the degree of physiologic hypertrophy after swimming was not altered. Transgenic mice with inducible and cardiac-specific overexpression of CIB1 showed enhanced cardiac hypertrophy in response to pressure overload or calcineurin signaling. Moreover, mice lacking the Ppp3cb gene showed no enhancement in cardiac hypertrophy associated with CIB1 overexpression. Thus, CIB1 functions as a novel regulator of cardiac hypertrophy through its ability to regulate calcineurin sarcolemmal association and activation.
PMCID: PMC2917617  PMID: 20639889

Results 1-25 (825565)