PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (686509)

Clipboard (0)
None

Related Articles

1.  The Neisseria gonorrhoeae S.NgoVIII restriction/modification system: a type IIs system homologous to the Haemophilus parahaemolyticus HphI restriction/modification system. 
Nucleic Acids Research  1997;25(20):4147-4152.
Strains of Neisseria gonorrhoeae possess numerous restriction-modification (R-M) systems. One of these systems, which has been found in all strains tested, encodes the S. NgoVIII specificity (5'TCACC 3') R-M system. We cloned two adjacent methyltransferase genes (dcmH and damH), each encoding proteins whose actions protect DNA from digestion by R.HphI or R.Ngo BI (5'TCACC 3'). The damH gene product is a N 6-methyladenine methyltransferase that recognizes this sequence. We constructed a plasmid containing multiple copies of the S.NgoVIII sequence, grew it in the presence of damH and used the HPLC to demonstrate the presence of N 6-methyladenine in the DNA. A second plasmid, containing overlapping damH and Escherichia coli dam recognition sequences in combination with various restriction digests, was used to identify which adenine in the recognition sequence was modified by damH. The predicted dcmH gene product is homologous to 5-methylcytosine methyltransferases. The products of both the dcmH and damH genes, as well as an open reading frame downstream of the damH gene are highly similar to the Haemophilus parahaemolyticus hphIMC , hphIMA and hphIR gene products, encoding the Hph I Type IIs R-M system. The S.NgoVIII R-M genes are flanked by a 97 bp direct repeat that may be involved in the mobility of this R-M system.
PMCID: PMC147021  PMID: 9321671
2.  Restriction Fragment Length Polymorphism Analysis of Some Flagellin Genes of Salmonella enterica 
Journal of Clinical Microbiology  1998;36(10):2835-2843.
Salmonellae often have the ability to express two different flagellar antigen specificities (phase 1 and phase 2). At the cell level, only one flagellar phase is expressed at a time. Two genes, fliC, encoding phase-1 flagellin, and fljB, encoding phase-2 flagellin, are alternatively expressed. Flagellin genes from 264 serovars of Salmonella enterica were amplified by two phase-specific PCR systems. Amplification products were subjected to restriction fragment length polymorphism (RFLP) analysis by using endonucleases HhaI and HphI. RFLP with HhaI and HphI yielded 64 and 42 different restriction profiles, respectively, among 329 flagellin genes coding for 26 antigens. The phase-1 gene showed 46 patterns with HhaI and 30 patterns with HphI. The phase-2 gene showed 23 patterns with HhaI and 17 patterns with HphI. When the data from both enzymes were combined, 116 patterns were obtained: 74 for fliC, 47 for fljB, and 5 shared by both genes. Of these combined patterns, 80% were specifically associated with one flagellar antigen and 20% were associated with more than one antigen. Each flagellar antigen was divided into 2 to 18 different combined patterns. In the sample of strains used, determination of the phase-1 and phase-2 flagellin gene RFLP, added to the knowledge of the O antigen, allowed identification of all diphasic serovars. Overall, the diversity uncovered by flagellin gene RFLP did not precisely match that evidenced by flagellar agglutination.
PMCID: PMC105073  PMID: 9738029
3.  Methyltransferases acquired by lactococcal 936-type phage provide protection against restriction endonuclease activity 
BMC Genomics  2014;15(1):831.
Background
So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return.
Results
Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi145I/M.Phi93I and M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction enzymes HphI and DpnII, respectively, representing the first functional MTases identified in members of 936-type phages.
Conclusions
SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing the fitness of the phages in a dynamic dairy environment.
Electronic supplementary material
The online version of this article (doi:10.1186/1471-2164-15-831) contains supplementary material, which is available to authorized users.
doi:10.1186/1471-2164-15-831
PMCID: PMC4190342  PMID: 25269955
Lactococcus lactis; Bacteriophage; Methylome; Restriction-modification; SMRT sequencing
4.  Method for Rapid Identification and Differentiation of the Species of the Mycobacterium chelonae Complex Based on 16S-23S rRNA Gene Internal Transcribed Spacer PCR-Restriction Analysis 
Journal of Clinical Microbiology  2005;43(9):4466-4472.
Members of the Mycobacterium chelonae complex (MCC), including M. immunogenum, M. chelonae, and M. abscessus, have been associated with nosocomial infections and occupational hypersensitivity pneumonitis due to metalworking fluid (MWF) exposures. In order to minimize these health hazards, an effective and rapid assay for detection of MCC species and differentiation of MCC species from other species of rapidly growing mycobacteria (RGM) and from one another is warranted. Here we report such a method, based on the variable 16S-23S rRNA gene internal transcribed spacer (ITS) region. Mycobacterium genus-specific primers derived from highly conserved sequences in the ITS region and the flanking 16S rRNA gene were used. Specificity of the primers was verified using the MCC member species, 11 non-MCC RGM species, 3 slow-growing mycobacterial (SGM) species (two strains each), and 19 field isolates, including 18 MCC isolates (from in-use MWF) and one non-MCC isolate (from reverse osmosis water). The ITS amplicon size of M. immunogenum varied from those of M. chelonae and M. abscessus. Sequencing of the ∼250-bp-long ITS amplicons of the three MCC member species showed differences in 24 to 34 bases, thereby yielding variable deduced restriction maps. ITS PCR-restriction analysis using the in silico-selected restriction enzyme MaeII or HphI differentiated the three MCC members from one another and from other RGM and SGM species without sequencing. The enzyme MaeII discriminated all three member species; however, HphI could only differentiate M. immunogenum from M. chelonae and M. abscessus. Use of an optimized rapid DNA template preparation step based on direct cell lysis in the PCR tube added to the simplicity and adaptability of the developed assay.
doi:10.1128/JCM.43.9.4466-4472.2005
PMCID: PMC1234067  PMID: 16145093
5.  Identification and characterization of interactions between the vertebrate polycomb-group protein BMI1 and human homologs of polyhomeotic. 
Molecular and Cellular Biology  1997;17(4):2326-2335.
In Drosophila melanogaster, the Polycomb-group (PcG) genes have been identified as repressors of gene expression. They are part of a cellular memory system that is responsible for the stable transmission of gene activity to progeny cells. PcG proteins form a large multimeric, chromatin-associated protein complex, but the identity of its components is largely unknown. Here, we identify two human proteins, HPH1 and HPH2, that are associated with the vertebrate PcG protein BMI1. HPH1 and HPH2 coimmunoprecipitate and cofractionate with each other and with BMI1. They also colocalize with BMI1 in interphase nuclei of U-2 OS human osteosarcoma and SW480 human colorectal adenocarcinoma cells. HPH1 and HPH2 have little sequence homology with each other, except in two highly conserved domains, designated homology domains I and II. They share these homology domains I and II with the Drosophila PcG protein Polyhomeotic (Ph), and we, therefore, have named the novel proteins HPH1 and HPH2. HPH1, HPH2, and BMI1 show distinct, although overlapping expression patterns in different tissues and cell lines. Two-hybrid analysis shows that homology domain II of HPH1 interacts with both homology domains I and II of HPH2. In contrast, homology domain I of HPH1 interacts only with homology domain II of HPH2, but not with homology domain I of HPH2. Furthermore, BMI1 does not interact with the individual homology domains. Instead, both intact homology domains I and II need to be present for interactions with BMI1. These data demonstrate the involvement of homology domains I and II in protein-protein interactions and indicate that HPH1 and HPH2 are able to heterodimerize.
PMCID: PMC232081  PMID: 9121482
6.  Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. 
Journal of Bacteriology  1988;170(12):5607-5612.
Streptomyces avermitilis contains a unique restriction system that restricts plasmid DNA containing N6-methyladenine or 5-methylcytosine. Shuttle vectors isolated from Escherichia coli RR1 or plasmids isolated from modification-proficient Streptomyces spp. cannot be directly introduced into S. avermitilis. This restriction barrier can be overcome by first transferring plasmids into Streptomyces lividans or a modification-deficient E. coli strain and then into S. avermitilis. The transformation frequency was reduced greater than 1,000-fold when plasmid DNA was modified by dam or TaqI methylases to contain N6-methyladenine or by AluI, HhaI, HphI methylases to contain 5-methylcytosine. Methyl-specific restriction appears to be common in Streptomyces spp., since either N6-methyladenine-specific or 5-methylcytosine-specific restriction was observed in seven of nine strains tested.
PMCID: PMC211658  PMID: 3056907
7.  Identification of Homophenylalanine Biosynthetic Genes from the Cyanobacterium Nostoc punctiforme PCC73102 and Application to Its Microbial Production by Escherichia coli 
l-Homophenylalanine (l-Hph) is a useful chiral building block for synthesis of several drugs, including angiotensin-converting enzyme inhibitors and the novel proteasome inhibitor carfilzomib. While the chemoenzymatic route of synthesis is fully developed, we investigated microbial production of l-Hph to explore the possibility of a more efficient and sustainable approach to l-Hph production. We hypothesized that l-Hph is synthesized from l-Phe via a mechanism homologous to 3-methyl-2-oxobutanoic acid conversion to 4-methyl-2-oxopentanoic acid during leucine biosynthesis. Based on bioinformatics analysis, we found three putative homophenylalanine biosynthesis genes, hphA (Npun_F2464), hphB (Npun_F2457), and hphCD (Npun_F2458), in the cyanobacterium Nostoc punctiforme PCC73102, located around the gene cluster responsible for anabaenopeptin biosynthesis. We constructed Escherichia coli strains harboring hphABCD-expressing plasmids and achieved the fermentative production of l-Hph from l-Phe. To our knowledge, this is the first identification of the genes responsible for homophenylalanine synthesis in any organism. Furthermore, to improve the low conversion efficiency of the initial strain, we optimized the expression of hphA, hphB, and hphCD, which increased the yield to ∼630 mg/liter. The l-Hph biosynthesis and l-Leu biosynthesis genes from E. coli were also compared. This analysis revealed that HphB has comparatively relaxed substrate specificity and can perform the function of LeuB, but HphA and HphCD show tight substrate specificity and cannot complement the LeuA and LeuC/LeuD functions, and vice versa. Finally, the range of substrate tolerance of the l-Hph-producing strain was examined, which showed that m-fluorophenylalanine, o-fluorophenylalanine, and l-tyrosine were accepted as substrates and that the corresponding homoamino acids were generated.
doi:10.1128/AEM.03596-12
PMCID: PMC3623235  PMID: 23354699
8.  Hph1p and Hph2p, Novel Components of Calcineurin-Mediated Stress Responses in Saccharomyces cerevisiae 
Eukaryotic Cell  2004;3(3):695-704.
Calcineurin is a Ca2+- and calmodulin-dependent protein phosphatase that plays a key role in animal and yeast physiology. In the yeast Saccharomyces cerevisiae, calcineurin is required for survival during several environmental stresses, including high concentrations of Na+, Li+, and Mn2+ ions and alkaline pH. One role of calcineurin under these conditions is to activate gene expression through its regulation of the Crz1p transcription factor. We have identified Hph1p as a novel substrate of calcineurin. HPH1 (YOR324C) and its homolog HPH2 (YAL028W) encode tail-anchored integral membrane proteins that interact with each other in the yeast two-hybrid assay and colocalize to the endoplasmic reticulum. Hph1p and Hph2p serve redundant roles in promoting growth under conditions of high salinity, alkaline pH, and cell wall stress. Calcineurin modifies the distribution of Hph1p within the endoplasmic reticulum and is required for full Hph1p activity in vivo. Furthermore, calcineurin directly dephosphorylates Hph1p and interacts with it through a sequence motif in Hph1p, PVIAVN. This motif is related to calcineurin docking sites in other substrates, such as NFAT and Crz1p, and is required for regulation of Hph1p by calcineurin. In contrast, Hph2p neither interacts with nor is dephosphorylated by calcineurin. Ca2+-induced Crz1p-mediated transcription is unaffected in hph1Δ hph2Δ mutants, and genetic analyses indicate that HPH1/HPH2 and CRZ1 act in distinct pathways downstream of calcineurin. Thus, Hph1p and Hph2p are components of a novel Ca2+- and calcineurin-regulated response required to promote growth under conditions of high Na+, alkaline pH, and cell wall stress.
doi:10.1128/EC.3.3.695-704.2004
PMCID: PMC420127  PMID: 15189990
9.  Genetic Diversity of Heat-Labile Toxin Expressed by Enterotoxigenic Escherichia coli Strains Isolated from Humans▿  
Journal of Bacteriology  2008;190(7):2400-2410.
The natural diversity of the elt operons, encoding the heat-labile toxin LT-I (LT), carried by enterotoxigenic Escherichia coli (ETEC) strains isolated from humans was investigated. For many years, LT was supposed to be represented by a rather conserved toxin, and one derivative, produced by the reference H10407 strain, was intensively studied either as a virulence factor or as a vaccine adjuvant. Amplicons encompassing the two LT-encoding genes (eltA and eltB) of 51 human-derived ETEC strains, either LT+ (25 strains) only or LT+/ST+ (26 strains), isolated from asymptomatic (24 strains) or diarrheic (27 strains) subjects, were subjected to restriction fragment length polymorphism (RFLP) analysis and DNA sequencing. Seven polymorphic RFLP types of the H10407 strain were detected with six (BsaI, DdeI, HhaI, HincII, HphI, and MspI) restriction enzymes. Additionally, the single-nucleotide polymorphic analysis revealed 50 base changes in the elt operon, including 21 polymorphic sites at eltA and 9 at eltB. Based on the deduced amino acid sequences, 16 LT types were identified, including LT1, expressed by the H10407 strain and 23 other strains belonging to seven different serotypes, and LT2, expressed by 11 strains of six different serotypes. In vitro experiments carried out with purified toxins indicated that no significant differences in GM1-binding affinity could be detected among LT1, LT2, and LT4. However, LT4, but not other toxin types, showed reduced toxic activities measured either in vitro with cultured cells (Y-1 cells) or in vivo in rabbit ligated ileal loops. Collectively, these results indicate that the natural diversity of LTs produced by wild-type ETEC strains isolated from human hosts is considerably larger than previously assumed and may impact the pathogeneses of the strains and the epidemiology of the disease.
doi:10.1128/JB.00988-07
PMCID: PMC2293181  PMID: 18223074
10.  Comparative analysis of common CFTR polymorphisms poly-T, TG-repeats and M470V in a healthy Chinese population 
AIM: To investigate the three important cystic fibrosis transmembrane conductance regulator (CFTR) haplotypes poly-T, TG-repeats and the M470V polymorphisms in the Chinese population, and to compare their distribution with that in Caucasians and other Asian populations.
METHODS: Genomic DNA was extracted from blood leukocytes. Exons 9 and 10 of the CFTR gene were obtained through polymerase chain reaction (PCR). Exon 9 DNA sequences were directly detected by an automated sequencer and poly-T and TG-repeats were identified by direct sequence analysis. Pure exon 10 PCR-amplified products were digested by HphI restriction enzyme and the M470V mutation was detected by the AGE photos of digestion products.
RESULTS: T7 was the most common (93.6%) haplotype and the (TG)11 frequency of 57.2% and (TG)12 frequency of 40.9% were dominant haplotypes in the junction of intron 8 (IVS-8) and exon 9. The frequency of T5 was 3.8% and all T5 allele tracts (10 alleles) were joined with (TG)12. Four new alleles of T6 (1.5%) were found in three healthy individuals. In exon 10, the V allele (56.1%) was slightly more frequent than the M allele (43.9%), and the M/V (45.5%) was the dominant genotype in these individuals. The three major haplotypes T7-(TG)11-V470, T7-(TG)12-M470 and T7-TG11-M470 were related to nearly 86.0% of the population.
CONCLUSION: The polymorphisms of poly-T, TG-repeats, and M470V distribution were similar to those in other East Asians, but they had marked differences in frequency from those single haplotype polymorphisms or linkage haplotypes in Caucasians. Thus, they may be able to explain the low incidence of CF and CF-like diseases in Asians.
doi:10.3748/wjg.14.1925
PMCID: PMC2699602  PMID: 18350634
Cystic fibrosis transmembrane conductance regulator gene; Gene polymorphism; Poly-T; TG-repeats; M470V
11.  Loop-mediated isothermal amplification as an emerging technology for detection of Yersinia ruckeri the causative agent of enteric red mouth disease in fish 
Background
Enteric Redmouth (ERM) disease also known as Yersiniosis is a contagious disease affecting salmonids, mainly rainbow trout. The causative agent is the gram-negative bacterium Yersinia ruckeri. The disease can be diagnosed by isolation and identification of the causative agent, or detection of the Pathogen using fluorescent antibody tests, ELISA and PCR assays. These diagnostic methods are laborious, time consuming and need well trained personnel.
Results
A loop-mediated isothermal amplification (LAMP) assay was developed and evaluated for detection of Y. ruckeri the etiological agent of enteric red mouth (ERM) disease in salmonids. The assay was optimised to amplify the yruI/yruR gene, which encodes Y. ruckeri quorum sensing system, in the presence of a specific primer set and Bst DNA polymerase at an isothermal temperature of 63°C for one hour. Amplification products were detected by visual inspection, agarose gel electrophoresis and by real-time monitoring of turbidity resulted by formation of LAMP amplicons. Digestion with HphI restriction enzyme demonstrated that the amplified product was unique. The specificity of the assay was verified by the absence of amplification products when tested against related bacteria. The assay had 10-fold higher sensitivity compared with conventional PCR and successfully detected Y. ruckeri not only in pure bacterial culture but also in tissue homogenates of infected fish.
Conclusion
The ERM-LAMP assay represents a practical alternative to the microbiological approach for rapid, sensitive and specific detection of Y. ruckeri in fish farms. The assay is carried out in one hour and needs only a heating block or water bath as laboratory furniture. The advantages of the ERM-LAMP assay make it a promising tool for molecular detection of enteric red mouth disease in fish farms.
doi:10.1186/1746-6148-4-31
PMCID: PMC2531098  PMID: 18700011
12.  Inhibition of HCV 5′-NTR and Core Expression by a Small Hairpin RNA Delivered by a Histone Gene Carrier, HPhA 
siRNA (small interfering RNA) interference represents an exciting new technology that could have therapeutic applications for the treatment of viral infections. However, a major challenge in the use of siRNA as a therapeutic agent is the development of a suitable delivery system. We demonstrated that a new non-viral transgene carrier, recombinant archaeal histone from the hyperthermophile Pyrococcus horikoshii OT3 (HPhA), can transfect short hairpin RNA (shRNA) expressing plasmids into HL-7702 cells to inhibit the expression of HCV 5'NTR and Core protein and mRNA. Plasmids Psilencirle transfected by HPhA inhibited the expression of HCV 5'-NTR and Core protein and mRNA in HL-7702 cells. The transfection efficiency of HPhA in HL-7702 cells was not affected by 10% fetal calf serum (FCS). HPhA exhibited effects of transfection without apparent toxicity, and with high affinity for DNA. This suggests that HPhA may be useful for RNAi-based gene therapy in vivo.
doi:10.7150/ijms.5632
PMCID: PMC3691793  PMID: 23801881
RNA interference; hepatitis C virus; small hairpin RNA; gene therapy; HPhA
13.  Two Insulin Gene Single Nucleotide Polymorphisms Associated with Type 1 Diabetes Risk in the Finnish and Swedish Populations 
Disease Markers  2007;23(3):139-145.
We have developed high-throughput tests for the detection of the insulin gene region SNPs −23HphI and −2221MspI. The potential of these markers to enhance the efficiency of type 1 diabetes risk screening was then evaluated by analyzing them in Finnish and Swedish populations. Blood spots on filter paper were analyzed using PCR followed by sequence-specific hybridization and time-resolved fluorometry reading. Distribution of the genotypes at both positions differed significantly among the affected children compared to the controls. The risk genotypes (CC, AA) were significantly more common in Finland than in Sweden, both among patients and controls. The VNTR genotype homozygous for the protective class III alleles showed a significantly stronger protective effect than the heterozygote (p = 0.02). Analyzing both SNPs enabled the detection of VNTR class III subclasses IIIA and IIIB. The observed significance between effects of the protective genotypes was due to the strong protective effect of the IIIA/IIIA genotype. IIIA/IIIA was the only genotype with significant discrepancy between protective effects compared to the other class III genotypes. These observations suggest that heterogeneity between the protective IDDM2 lineages could exist, and analyzing both −23HphI and −2221MspI would thus potentially enhance the sensitivity and specificity of type 1 diabetes risk estimation.
doi:10.1155/2007/574363
PMCID: PMC3850817  PMID: 17473382
Type 1 diabetes; insulin gene region; Finnish population; screening for genetic risk
14.  Genetic transformation of Knufia petricola A95 - a model organism for biofilm-material interactions 
AMB Express  2014;4:80.
We established a protoplast-based system to transfer DNA to Knufia petricola strain A95, a melanised rock-inhabiting microcolonial fungus that is also a component of a model sub-aerial biofilm (SAB) system. To test whether the desiccation resistant, highly melanised cell walls would hinder protoplast formation, we treated a melanin-minus mutant of A95 as well as the type-strain with a variety of cell-degrading enzymes. Of the different enzymes tested, lysing enzymes from Trichoderma harzianum were most effective in producing protoplasts. This mixture was equally effective on the melanin-minus mutant and the type-strain. Protoplasts produced using lysing enzymes were mixed with polyethyleneglycol (PEG) and plasmid pCB1004 which contains the hygromycin B (HmB) phosphotransferase (hph) gene under the control of the Aspergillus nidulans trpC. Integration and expression of hph into the A95 genome conferred hygromycin resistance upon the transformants. Two weeks after plating out on selective agar containing HmB, the protoplasts developed cell-walls and formed colonies. Transformation frequencies were in the range 36 to 87 transformants per 10 μg of vector DNA and 106 protoplasts. Stability of transformation was confirmed by sub-culturing the putative transformants on selective agar containing HmB as well as by PCR-detection of the hph gene in the colonies. The hph gene was stably integrated as shown by five subsequent passages with and without selection pressure.
doi:10.1186/s13568-014-0080-5
PMCID: PMC4230810  PMID: 25401079
DNA transfer; Fungal cell-walls; Protoplasts; Hygromycin resistance; Black yeast; Sub-aerial biofilms; Stress-protective morphology; Ancestor of opportunistic pathogens & lichens
15.  A novel HSF4 gene mutation (p.R405X) causing autosomal recessive congenital cataracts in a large consanguineous family from Pakistan 
BMC Medical Genetics  2008;9:99.
Background
Hereditary cataracts are most frequently inherited as autosomal dominant traits, but can also be inherited in an autosomal recessive or X-linked fashion. To date, 12 loci for autosomal recessive cataracts have been mapped including a locus on chromosome 16q22 containing the disease-causing gene HSF4 (Genbank accession number NM_001040667). Here, we describe a family from Pakistan with the first nonsense mutation in HSF4 thus expanding the mutational spectrum of this heat shock transcription factor gene.
Methods
A large consanguineous Pakistani family with autosomal recessive cataracts was collected from Quetta. Genetic linkage analysis was performed for the common known autosomal recessive cataracts loci and linkage to a locus containing HSF4 (OMIM 602438) was found. All exons and adjacent splice sites of the heat shock transcription factor 4 gene (HSF4) were sequenced. A mutation-specific restriction enzyme digest (HphI) was performed for all family members and unrelated controls.
Results
The disease phenotype perfectly co-segregated with markers flanking the known cataract gene HSF4, whereas other autosomal recessive loci were excluded. A maximum two-point LOD score with a Zmax = 5.6 at θ = 0 was obtained for D16S421. Direct sequencing of HSF4 revealed the nucleotide exchange c.1213C > T in this family predicting an arginine to stop codon exchange (p.R405X).
Conclusion
We identified the first nonsense mutation (p.R405X) in exon 11 of HSF4 in a large consanguineous Pakistani family with autosomal recessive cataract.
doi:10.1186/1471-2350-9-99
PMCID: PMC2592245  PMID: 19014451
16.  90-Kilodalton Heat Shock Protein, Hsp90, as a Target for Genotyping Cryptosporidium spp. Known To Infect Humans ▿ †  
Eukaryotic Cell  2009;8(4):478-482.
Small-subunit (SSU) rRNA-based methods have been commonly used in the differentiation of Cryptosporidium species or genotypes. In order to develop a new tool for confirming the genotypes of Cryptosporidium species, parts of the 90-kDa heat shock protein (Hsp90) genes of seven Cryptosporidium species and genotypes known to infect humans (C. hominis, C. parvum, C. meleagridis, C. canis, C. muris, C. suis, and the cervine genotype), together with one from cattle (C. andersoni), were sequenced and analyzed. With the exception of C. felis from cats and C. baileyi from birds, the Hsp90 genes of all tested Cryptosporidium species were amplified. Phylogenetic analysis of the hsp90 sequences from all these species is congruent with previous studies in which the SSU rRNA, 70-kDa heat shock protein, oocyst wall protein, and actin genes were analyzed and showed that gastric and intestinal parasites segregate into two distinct clades. In this study, the secondary products of hsp90 produced after PCR-restriction fragment length digestion with StyI and HphI or with BbsI showed that parasites within the intestinal or gastric clade could be differentiated from each other. These data confirm the utility of the Hsp90 gene as a sensitive, specific, and robust molecular tool for differentiating species and/or genotypes of Cryptosporidium in clinical specimens.
doi:10.1128/EC.00294-08
PMCID: PMC2669192  PMID: 19168758
17.  Insulin gene polymorphisms in type 1 diabetes, Addison's disease and the polyglandular autoimmune syndrome type II 
BMC Medical Genetics  2008;9:65.
Background
Polymorphisms within the insulin gene can influence insulin expression in the pancreas and especially in the thymus, where self-antigens are processed, shaping the T cell repertoire into selftolerance, a process that protects from β-cell autoimmunity.
Methods
We investigated the role of the -2221Msp(C/T) and -23HphI(A/T) polymorphisms within the insulin gene in patients with a monoglandular autoimmune endocrine disease [patients with isolated type 1 diabetes (T1D, n = 317), Addison's disease (AD, n = 107) or Hashimoto's thyroiditis (HT, n = 61)], those with a polyglandular autoimmune syndrome type II (combination of T1D and/or AD with HT or GD, n = 62) as well as in healthy controls (HC, n = 275).
Results
T1D patients carried significantly more often the homozygous genotype "CC" -2221Msp(C/T) and "AA" -23HphI(A/T) polymorphisms than the HC (78.5% vs. 66.2%, p = 0.0027 and 75.4% vs. 52.4%, p = 3.7 × 10-8, respectively).
The distribution of insulin gene polymorphisms did not show significant differences between patients with AD, HT, or APS-II and HC.
Conclusion
We demonstrate that the allele "C" of the -2221Msp(C/T) and "A" -23HphI(A/T) insulin gene polymorphisms confer susceptibility to T1D but not to isolated AD, HT or as a part of the APS-II.
doi:10.1186/1471-2350-9-65
PMCID: PMC2474835  PMID: 18620562
18.  Association between gene polymorphisms in TIM1, TSLP, IL18R1 and childhood asthma in Turkish population 
Many immunologic and inflammatory mechanisms play a role in asthma etiology. The aim of this study was to investigate the susceptibility of asthma patients in the Turkish population with demonstrating genes for polymorphisms in TIM1, TSLP and IL18R1. All of the genomic DNA samples were isolated from blood samples according to a standard salting-out protocol. DNA samples were stored at -20°C until the genotype analysis was performed. rs3806933 (TSLP -847 C > T) and TIM1 -416G > C were analyzed by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). The rs3806933 (TSLP -847 C > T) was genotyped by PCR using our new primers and HphI restriction enzyme digestion. rs2287033 (IL18R1 c. 1270+150 A > G), rs3213733 (IL18R1 c. 626-196 G > T), and rs3771166 (IL18R1- c. 302+1694 C > T) were genotyped using SYBR green dye based real time PCR assay. Results: The allele frequencies of 5 SNPs in TSLP, TIM-1, and IL18R1 genes were determined in 139 asthmatic patients and 126 healthy controls of in Turkish population. The investigated SNPs are as follows; rs3806933 (TSLP -847 C > T), TIM1 -416G > C, rs2287033 (IL18R1 c. 1270+150 A > G), rs3213733 (IL18R1 c. 626-196 G > T), and rs3771166 (IL18R1- c. 302+1694 C > T). Results suggest that IL18R1 c. 626-196 G > T (rs3213733) and TIM1 -416G > C are significantly associated with asthma in patients in Turkish population. Patients with AA genotypes of rs2287033 (IL18R1 c. 1270+150 A > G), have significantly less total serum IgE levels when compared with patients having GG or GA genotypes (p < 0.012; 381.77±239.46 vs 557.52±549.96, respectively). Conclusion: This study showed that IL18R1 c. 626 -196 G > T (rs3213733) and TIM1 -416G > C are significantly associated with asthma patients in Turkish population.
PMCID: PMC4057863  PMID: 24955184
Asthma; genetics; SNP polymorphism
19.  Novel pattern of DNA methylation in Neurospora crassa transgenic for the foreign gene hph. 
Nucleic Acids Research  1997;25(12):2409-2416.
It has previously been reported that multiple copies of the hph gene integrated into the genome of Neurospora crassa are methylated at Hpa II sites (CCGG) during the vegetative life cycle of the fungus, while hph genes integrated as single copies are not methylated. Furthermore, methylation is correlated with silencing of the gene. We report here the methylation state of cytosine residues of the major part of the promoter region of the hph gene integrated into the genome of the multiple copy strain HTA5.7 during the vegetative stage of the life cycle. Cytosine methylation is sequence dependent, but the sequence specificity is complex and is different from the sequence specificity known for mammals and plants (CpG and CpNpG). The pattern of DNA methylation reported here is very different from that measured after meiosis in Neurospora or in Ascobulus . After the sexual cycle in those two fungi all the cytosines of multiple stretches of DNA are heavily methylated. This indicates that the still unknown methyltransferase in Neurospora has a different specificity in the sexual and the vegetative stages of the life cycle or that there are different methyltransferases. The pattern of methylation reported here is also different from the pattern of cytosine methylation of transgenes of Petunia , the only pattern published until now in plants that has DNA methylation at cytosines which are not in the canonical sequences CpG and CpNpG.
PMCID: PMC146773  PMID: 9171093
20.  Electrotransformation and Expression of Bacterial Genes Encoding Hygromycin Phosphotransferase and β-Galactosidase in the Pathogenic Fungus Histoplasma capsulatum 
Infection and Immunity  1998;66(4):1697-1707.
We developed an efficient electrotransformation system for the pathogenic fungus Histoplasma capsulatum and used it to examine the effects of features of the transforming DNA on transformation efficiency and fate of the transforming DNA and to demonstrate fungal expression of two recombinant Escherichia coli genes, hph and lacZ. Linearized DNA and plasmids containing Histoplasma telomeric sequences showed the greatest transformation efficiencies, while the plasmid vector had no significant effect, nor did the derivation of the selectable URA5 marker (native Histoplasma gene or a heterologous Podospora anserina gene). Electrotransformation resulted in more frequent multimerization, other modification, or possibly chromosomal integration of transforming telomeric plasmids when saturating amounts of DNA were used, but this effect was not observed with smaller amounts of transforming DNA. We developed another selection system using a hygromycin B resistance marker from plasmid pAN7-1, consisting of the E. coli hph gene flanked by Aspergillus nidulans promoter and terminator sequences. Much of the heterologous fungal sequences could be removed without compromising function in H. capsulatum, allowing construction of a substantially smaller effective marker fragment. Transformation efficiency increased when nonselective conditions were maintained for a time after electrotransformation before selection with the protein synthesis inhibitor hygromycin B was imposed. Finally, we constructed a readily detectable and quantifiable reporter gene by fusing Histoplasma URA5 with E. coli lacZ, resulting in expression of functional β-galactosidase in H. capsulatum. Demonstration of expression of bacterial genes as effective selectable markers and reporters, together with a highly efficient electrotransformation system, provide valuable approaches for molecular genetic analysis and manipulation of H. capsulatum, which have proven useful for examination of targeted gene disruption, regulated gene expression, and potential virulence determinants in this fungus.
PMCID: PMC108107  PMID: 9529100
21.  Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus 
BMC Microbiology  2005;5:1.
Background
Although Aspergillus fumigatus is an important human fungal pathogen there are few expression systems available to study the contribution of specific genes to the growth and virulence of this opportunistic mould. Regulatable promoter systems based upon prokaryotic regulatory elements in the E. coli tetracycline-resistance operon have been successfully used to manipulate gene expression in several organisms, including mice, flies, plants, and yeast. However, the system has not yet been adapted for Aspergillus spp.
Results
Here we describe the construction of plasmid vectors that can be used to regulate gene expression in A. fumigatus using a simple co-transfection approach. Vectors were generated in which the tetracycline transactivator (tTA) or the reverse tetracycline transactivator (rtTA2s-M2) are controlled by the A. nidulans gpdA promoter. Dominant selectable cassettes were introduced into each plasmid, allowing for selection following gene transfer into A. fumigatus by incorporating phleomycin or hygromycin into the medium. To model an essential gene under tetracycline regulation, the E. coli hygromycin resistance gene, hph, was placed under the control of seven copies of the TetR binding site (tetO7) in a plasmid vector and co-transfected into A. fumigatus protoplasts together with one of the two transactivator plasmids. Since the hph gene is essential to A. fumigatus in the presence of hygromycin, resistance to hygromycin was used as a marker of hph reporter gene expression. Transformants were identified in which the expression of tTA conferred hygromycin resistance by activating expression of the tetO7-hph reporter gene, and the addition of doxycycline to the medium suppressed hygromycin resistance in a dose-dependent manner. Similarly, transformants were identified in which expression of rtTA2s-M2 conferred hygromycin resistance only in the presence of doxycycline. The levels of doxycycline required to regulate expression of the tetO7-hph reporter gene were within non-toxic ranges for this organism, and low-iron medium was shown to reduce the amount of doxycycline required to accomplish regulation.
Conclusions
The vectors described in this report provide a new set of options to experimentally manipulate the level of specific gene products in A. fumigatus
doi:10.1186/1471-2180-5-1
PMCID: PMC546209  PMID: 15649330
22.  Construction of trypanosome artificial mini-chromosomes. 
Nucleic Acids Research  1995;23(23):4893-4899.
We report the preparation of two linear constructs which, when transformed into the procyclic form of Trypanosoma brucei, become stably inherited artificial mini-chromosomes. Both of the two constructs, one of 10 kb and the other of 13 kb, contain a T.brucei PARP promoter driving a chloramphenicol acetyltransferase (CAT) gene. In the 10 kb construct the CAT gene is followed by one hygromycin phosphotransferase (Hph) gene, and in the 13 kb construct the CAT gene is followed by three tandemly linked Hph genes. At each end of these linear molecules are telomere repeats and subtelomeric sequences. Electroporation of these linear DNA constructs into the procyclic form of T.brucei generated hygromycin-B resistant cell lines. In these cell lines, the input DNA remained linear and bounded by the telomere ends, but it increased in size. In the cell lines generated by the 10 kb construct, the input DNA increased in size to 20-50 kb. In the cell lines generated by the 13 kb constructs, two sizes of linear DNAs containing the input plasmid were detected: one of 40-50 kb and the other of 150 kb. The increase in size was not the result of in vivo tandem repetitions of the input plasmid, but represented the addition of new sequences. These Hph containing linear DNA molecules were maintained stably in cell lines for at least 20 generations in the absence of drug selection and were subsequently referred to as trypanosome artificial mini-chromosomes, or TACs.
Images
PMCID: PMC307480  PMID: 8532534
23.  Rare Homologous Gene Targeting in Histoplasma capsulatum: Disruption of the URA5Hc Gene by Allelic Replacement 
Journal of Bacteriology  1998;180(19):5135-5143.
URA5 genes encode orotidine-5′-monophosphate pyrophosphorylase (OMPpase), an enzyme involved in pyrimidine biosynthesis. We cloned the Histoplasma capsulatum URA5 gene (URA5Hc) by using a probe generated by PCR with inosine-rich primers based on relatively conserved sequences in OMPpases from other organisms. Transformation with this gene restored uracil prototrophy and OMPpase activity to UV-mutagenized ura5 strains of H. capsulatum. We attempted to target the genomic URA5 locus in this haploid organism to demonstrate homologous allelic replacement with transforming DNA, which has not been previously done in H. capsulatum and has been challenging in some other pathogenic fungi. Several strategies commonly used in Saccharomyces cerevisiae and other eukaryotes were unsuccessful, due to the frequent occurrence of ectopic integration, linear plasmid formation, and spontaneous resistance to 5-fluoroorotic acid, which is a selective agent for URA5 gene inactivation. Recent development of an efficient electrotransformation system and of a second selectable marker (hph, conferring hygromycin B resistance) for this fungus enabled us to achieve allelic replacement by using transformation with an insertionally inactivated Δura5Hc::hph plasmid, followed by dual selection with hygromycin B and 5-fluoroorotic acid, or by screening hygromycin B-resistant transformants for uracil auxotrophy. The relative frequency of homologous gene targeting was approximately one allelic replacement event per thousand transformants. This work demonstrates the feasibility but also the potential challenge of gene disruption in this organism. To our knowledge, it represents the first example of experimentally directed allelic replacement in H. capsulatum, or in any dimorphic systemic fungal pathogen of humans.
PMCID: PMC107550  PMID: 9748447
24.  DNA Repair Pathway Selection Caused by Defects in TEL1, SAE2, and De Novo Telomere Addition Generates Specific Chromosomal Rearrangement Signatures 
PLoS Genetics  2014;10(4):e1004277.
Whole genome sequencing of cancer genomes has revealed a diversity of recurrent gross chromosomal rearrangements (GCRs) that are likely signatures of specific defects in DNA damage response pathways. However, inferring the underlying defects has been difficult due to insufficient information relating defects in DNA metabolism to GCR signatures. By analyzing over 95 mutant strains of Saccharomyces cerevisiae, we found that the frequency of GCRs that deleted an internal CAN1/URA3 cassette on chrV L while retaining a chrV L telomeric hph marker was significantly higher in tel1Δ, sae2Δ, rad53Δ sml1Δ, and mrc1Δ tof1Δ mutants. The hph-retaining GCRs isolated from tel1Δ mutants contained either an interstitial deletion dependent on non-homologous end-joining or an inverted duplication that appeared to be initiated from a double strand break (DSB) on chrV L followed by hairpin formation, copying of chrV L from the DSB toward the centromere, and homologous recombination to capture the hph-containing end of chrV L. In contrast, hph-containing GCRs from other mutants were primarily interstitial deletions (mrc1Δ tof1Δ) or inverted duplications (sae2Δ and rad53Δ sml1Δ). Mutants with impaired de novo telomere addition had increased frequencies of hph-containing GCRs, whereas mutants with increased de novo telomere addition had decreased frequencies of hph-containing GCRs. Both types of hph-retaining GCRs occurred in wild-type strains, suggesting that the increased frequencies of hph retention were due to the relative efficiencies of competing DNA repair pathways. Interestingly, the inverted duplications observed here resemble common GCRs in metastatic pancreatic cancer.
Author Summary
Recent advances in the sequencing of human cancer genomes have revealed that some types of genome rearrangements are more common in specific types of cancers. Thus, these cancers may share defects in DNA repair mechanisms, which may play roles in initiation or progression of the disease and may be useful therapeutically. Linking a common rearrangement signature to a specific genetic or epigenetic alteration is currently challenging, because we do not know which rearrangement signatures are linked to which DNA repair defects. Here we used a genetic assay in the model organism Saccharomyces cerevisiae to specifically link two classes of chromosomal rearrangements, interstitial deletions and inverted duplications, to specific genetic defects. These results begin to map out the links between observed chromosomal rearrangements and specific DNA repair defects and in the present case, may provide insights into the chromosomal rearrangements frequently observed in metastatic pancreatic cancer.
doi:10.1371/journal.pgen.1004277
PMCID: PMC3974649  PMID: 24699249
25.  Application of a wide-range yeast vector (CoMed™) system to recombinant protein production in dimorphic Arxula adeninivorans, methylotrophic Hansenula polymorpha and other yeasts 
Background
Yeasts provide attractive expression platforms in combining ease of genetic manipulation and fermentation of a microbial organism with the capability to secrete and to modify proteins according to a general eukaryotic scheme. However, early restriction to a single yeast platform can result in costly and time-consuming failures. It is therefore advisable to assess several selected systems in parallel for the capability to produce a particular protein in desired amounts and quality. A suitable vector must contain a targeting sequence, a promoter element and a selection marker that function in all selected organisms. These criteria are fulfilled by a wide-range integrative yeast expression vector (CoMed™) system based on A. adeninivorans- and H. polymorpha-derived elements that can be introduced in a modular way.
Results
The vector system and a selection of modular elements for vector design are presented. Individual single vector constructs were used to transform a range of yeast species. Various successful examples are described. A vector with a combination of an rDNA sequence for genomic targeting, the E. coli-derived hph gene for selection and the A. adeninivorans-derived TEF1 promoter for expression control of a GFP (green fluorescent protein) gene was employed in a first example to transform eight different species including Hansenula polymorpha, Arxula adeninivorans and others. In a second example, a vector for the secretion of IL-6 was constructed, now using an A. adeninivorans-derived LEU2 gene for selection of recombinants in a range of auxotrophic hosts. In this example, differences in precursor processing were observed: only in A. adeninivorans processing of a MFα1/IL-6 fusion was performed in a faithful way.
Conclusion
rDNA targeting provides a tool to co-integrate up to 3 different expression plasmids by a single transformation step. Thus, a versatile system is at hand that allows a comparative assessment of newly introduced metabolic pathways in several organisms or a comparative co-expression of bottleneck genes in cases where production or secretion of a certain product is impaired.
doi:10.1186/1475-2859-5-33
PMCID: PMC1654170  PMID: 17105649

Results 1-25 (686509)