Search tips
Search criteria

Results 1-25 (1229949)

Clipboard (0)

Related Articles

1.  S100A8 and S100A9 in experimental osteoarthritis 
The objective was to evaluate the changes in S100A8 S100A9, and their complex (S100A8/S100A9) in cartilage during the onset of osteoarthritis (OA) as opposed to inflammatory arthritis.
S100A8 and S100A9 protein localization were determined in antigen-induced inflammatory arthritis in mice, mouse femoral head cartilage explants stimulated with interleukin-1 (IL-1), and in surgically-induced OA in mice. Microarray expression profiling of all S100 proteins in cartilage was evaluated at different times after initiation of degradation in femoral head explant cultures stimulated with IL-1 and surgically-induced OA. The effect of S100A8, S100A9 or the complex on the expression of aggrecan (Acan), collagen II (Col2a1), disintegrin and metalloproteases with thrombospondin motifs (Adamts1, Adamts 4 &Adamts 5), matrix metalloproteases (Mmp1, Mmp3, Mmp13 &Mmp14) and tissue inhibitors of metalloproteinases (Timp1, Timp2 &Timp3), by primary adult ovine articular chondrocytes was determined using real time quantitative reverse transcription polymerase chain reaction (qRT-PCR).
Stimulation with IL-1 increased chondrocyte S100a8 and S100a9 mRNA and protein levels. There was increased chondrocyte mRNA expression of S100a8 and S100a9 in early but not late mouse OA. However, loss of the S100A8 staining in chondrocytes occurred as mouse OA progressed, in contrast to the positive reactivity for both S100A8 and S100A9 in chondrocytes in inflammatory arthritis in mice. Homodimeric S100A8 and S100A9, but not the heterodimeric complex, significantly upregulated chondrocyte Adamts1, Adamts4 and Adamts 5, Mmp1, Mmp3 and Mmp13 gene expression, while collagen II and aggrecan mRNAs were significantly decreased.
Chondrocyte derived S100A8 and S100A9 may have a sustained role in cartilage degradation in inflammatory arthritis. In contrast, while these proteins may have a role in initiating early cartilage degradation in OA by upregulating MMPs and aggrecanases, their reduced expression in late stages of OA suggests they do not have an ongoing role in cartilage degradation in this non-inflammatory arthropathy.
PMCID: PMC2875644  PMID: 20105291
2.  Caesalpinia sappan extract inhibits IL1β-mediated overexpression of matrix metalloproteinases in human chondrocytes 
Genes & Nutrition  2011;7(2):307-318.
Exacerbated production of matrix metalloproteinases (MMPs) is a key event in the progression of osteoarthritis (OA) and represents a promising target for the management of OA with nutraceuticals. In this study, we sought to determine the MMP-inhibitory activity of an ethanolic Caesalpinia sappan extract (CSE) in human OA chondrocytes. Thus, human articular chondrocytes isolated from OA cartilage and SW1353 chondrocytes were stimulated with Interleukin-1beta (IL1β), without or with pretreatment with CSE. Following viability assays, the production of MMP-2 and MMP-13 was assessed using ELISA, whereas mRNA levels of MMP-1, MMP-2, MMP-3, MMP-7, MMP-8, MMP-9, MMP-13 and TIMP-1, TIMP-2, TIMP-3 were quantified using RT-qPCR assays. Chondrocytes were co-transfected with a MMP-13 luciferase reporter construct and NF-kB p50 and p65 expression vectors in the presence or absence of CSE. In addition, the direct effect of CSE on the proteolytic activities of MMP-2 was evaluated using gelatin zymography. We found that CSE significantly suppressed IL1β-mediated upregulation of MMP-13 mRNA and protein levels via abrogation of the NF-kB(p65/p50)-driven MMP-13 promoter activation. We further observed that the levels of IL1β-induced MMP-1, MMP-3, MMP-7, and MMP-9 mRNA, but not TIMP mRNA levels, were down-regulated in chondrocytes in response to CSE. Zymographic results suggested that CSE did not directly interfere with the proteolytic activity of MMP-2. In summary, this study provides evidence for the MMP-inhibitory potential of CSE or CSE-derived compounds in human OA chondrocytes. The data indicate that the mechanism of this inhibition might, at least in part, involve targeting of NF-kB-mediated promoter activation.
Electronic supplementary material
The online version of this article (doi:10.1007/s12263-011-0244-8) contains supplementary material, which is available to authorized users.
PMCID: PMC3316743  PMID: 21850498
Chondrocytes; Osteoarthritis; Caesalpinia sappan; Matrix metalloproteinase; Tissue inhibitors of MMP; NFkB
3.  Oncostatin M in combination with tumour necrosis factor α induces a chondrocyte membrane associated aggrecanase that is distinct from ADAMTS aggrecanase-1 or -2 
Annals of the Rheumatic Diseases  2005;64(11):1624-1632.
Objective: To determine whether oncostatin M (OSM) + tumour necrosis factor α (TNFα) induces aggrecanase activity in chondrocyte membranes, to determine the effects of transforming growth factor ß1 (TGFß1), interleukin 4 (IL4), and tissue inhibitor of metalloproteinases (TIMPs) on this activity, and to determine whether this activity is due to a known ADAMTS aggrecanase.
Methods: Aggrecanase activity and ability of agents to prevent membrane associated aggrecanase activity were assessed by Western blotting. Expression of known aggrecanases was measured by real time polymerase chain reaction in bovine nasal and human articular chondrocytes.
Results: Chondrocyte membrane associated aggrecanase activity and increased mRNA expression of ADAMTS-1, -4, -5, and -9, but not ADAMTS-4 or -15, were enhanced after stimulation by OSM+TNFα in bovine chondrocytes. This activity was inhibited by TIMP-3. In human chondrocytes, OSM+TNFα also enhanced ADAMTS-1 and -4 expression, but not that of other ADAMTSs. TNFα alone induced ADAMTS-9 expression, whereas OSM addition caused suppression. Both TGFß1 and IL4 blocked membrane associated aggrecanase activity and decreased OSM+TNFα-induced expression of ADAMTS-9 in bovine and human chondrocytes. IL4 down regulated ADAMTS-4 mRNA, whereas TGFß1 increased this expression in both bovine and human chondrocytes.
Conclusions: OSM+TNFα up regulates membrane associated aggrecanase activity and several ADAMTS aggrecanase mRNAs in chondrocytes. The chondroprotective effects of IL4 and TIMP-3 suggest that they may have therapeutic benefit for aggrecanolysis, whereas the differential inhibitory effects of TGFß1 may limit its therapeutic potential. Induced membrane associated aggrecanase activity is distinct from known soluble ADAMTS aggrecanases and merits further investigation.
PMCID: PMC1755260  PMID: 15883123
4.  Rose hip and its constituent galactolipids confer cartilage protection by modulating cytokine, and chemokine expression 
Clinical studies have shown that rose hip powder (RHP) alleviates osteoarthritis (OA). This might be due to anti-inflammatory and cartilage-protective properties of the complete RHP or specific constituents of RHP. Cellular systems (macrophages, peripheral blood leukocytes and chondrocytes), which respond to inflammatory and OA-inducing stimuli, are used as in vitro surrogates to evaluate the possible pain-relief and disease-modifying effects of RHP.
(1) Inflammatory processes were induced in RAW264.7 cells or human peripheral blood leukocytes (PBL) with LPS. Inflammatory mediators (nitric oxide (NO), prostaglandin E2 (PGE2) and cytokines/chemokines) were determined by the Griess reaction, EIA and multiplex ELISA, respectively. Gene expression was quantified by RT-PCR. RHP or its constituent galactolipid, GLGPG (galactolipid (2S)-1, 2-di-O-[(9Z, 12Z, 15Z)-octadeca-9, 12, 15-trienoyl]-3-O-β-D-galactopyranosyl glycerol), were added at various concentrations and the effects on biochemical and molecular parameters were evaluated. (2) SW1353 chondrosarcoma cells and primary human knee articular chondrocytes (NHAC-kn) were treated with interleukin (IL)-1β to induce in vitro processes similar to those occurring during in vivo degradation of cartilage. Biomarkers related to OA (NO, PGE2, cytokines, chemokines, metalloproteinases) were measured by multiplex ELISA and gene expression analysis in chondrocytes. We investigated the modulation of these events by RHP and GLGPG.
In macrophages and PBL, RHP and GLGPG inhibited NO and PGE2 production and reduced the secretion of cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12) and chemokines (CCL5/RANTES, CXCL10/IP-10). In SW1353 cells and primary chondrocytes, RHP and GLGPG diminished catabolic gene expression and inflammatory protein secretion as shown by lower mRNA levels of matrix metalloproteinases (MMP-1, MMP-3, MMP-13), aggrecanase (ADAMTS-4), macrophage inflammatory protein (MIP-2, MIP-3α), CCL5/RANTES, CXCL10/IP-10, IL-8, IL-1α and IL-6. The effects of GLGPG were weaker than those of RHP, which presumably contains other chondro-protective substances besides GLGPG.
RHP and GLGPG attenuate inflammatory responses in different cellular systems (macrophages, PBLs and chondrocytes). The effects on cytokine production and MMP expression indicate that RHP and its constituent GLGPG down-regulate catabolic processes associated with osteoarthritis (OA) or rheumatoid arthritis (RA). These data provide a molecular and biochemical basis for cartilage protection provided by RHP.
PMCID: PMC3231956  PMID: 22051322
5.  IKKα/CHUK Regulates Extracellular Matrix Remodeling Independent of Its Kinase Activity to Facilitate Articular Chondrocyte Differentiation 
PLoS ONE  2013;8(9):e73024.
The non-canonical NF-κB activating kinase IKKα, encoded by CHUK (conserved-helix-loop-helix-ubiquitous-kinase), has been reported to modulate pro- or anti- inflammatory responses, cellular survival and cellular differentiation. Here, we have investigated the mechanism of action of IKKα as a novel effector of human and murine chondrocyte extracellular matrix (ECM) homeostasis and differentiation towards hypertrophy.
Methodology/Principal Findings
IKKα expression was ablated in primary human osteoarthritic (OA) chondrocytes and in immature murine articular chondrocytes (iMACs) derived from IKKαf/f:CreERT2 mice by retroviral-mediated stable shRNA transduction and Cre recombinase-dependent Lox P site recombination, respectively. MMP-10 was identified as a major target of IKKα in chondrocytes by mRNA profiling, quantitative RT-PCR analysis, immunohistochemistry and immunoblotting. ECM integrity, as assessed by type II collagen (COL2) deposition and the lack of MMP-dependent COL2 degradation products, was enhanced by IKKα ablation in mice. MMP-13 and total collagenase activities were significantly reduced, while TIMP-3 (tissue inhibitor of metalloproteinase-3) protein levels were enhanced in IKKα-deficient chondrocytes. IKKα deficiency suppressed chondrocyte differentiation, as shown by the quantitative inhibition of.Alizarin red staining and the reduced expression of multiple chondrocyte differentiation effectors, including Runx2, Col10a1 and Vegfa,. Importantly, the differentiation of IKKα-deficient chondrocytes was rescued by a kinase-dead IKKα protein mutant.
IKKα acts independent of its kinase activity to help drive chondrocyte differentiation towards a hypertrophic-like state. IKKα positively modulates ECM remodeling via multiple downstream targets (including MMP-10 and TIMP-3 at the mRNA and post-transcriptional levels, respectively) to maintain maximal MMP-13 activity, which is required for ECM remodeling leading to chondrocyte differentiation. Chondrocytes are the unique cell component in articular cartilage, which are quiescent and maintain ECM integrity during tissue homeostasis. In OA, chondrocytes reacquire the capacity to proliferate and differentiate and their activation results in pronounced cartilage degeneration. Τηυσ, our findings are also of potential relevance for defining the onset and/or progression of OA disease.
PMCID: PMC3759388  PMID: 24023802
6.  Cytokine signaling-1 suppressor is inducible by IL-1beta and inhibits the catabolic effects of IL-1beta in chondrocytes: its implication in the paradoxical joint-protective role of IL-1beta 
Arthritis Research & Therapy  2013;15(6):R191.
Although IL-1β is believed to be crucial in the pathogenesis of osteoarthritis (OA), the IL-1β blockade brings no therapeutic benefit in human OA and results in OA aggravation in several animal models. We explored the role of a cytokine signaling 1 (SOCS1) suppressor as a regulatory modulator of IL-1β signaling in chondrocytes.
Cartilage samples were obtained from patients with knee OA and those without OA who underwent surgery for femur-neck fracture. SOCS1 expression in cartilage was assessed with immunohistochemistry. IL-1β-induced SOCS1 expression in chondrocytes was analyzed with quantitative polymerase chain reaction and immunoblot. The effect of SOCS1 on IL-1β signaling pathways and the synthesis of matrix metalloproteinases (MMPs) and aggrecanase-1 was investigated in SOCS1-overexpressing or -knockdown chondrocytes.
SOCS1 expression was significantly increased in OA cartilage, especially in areas of severe damage (P < 0.01). IL-1β stimulated SOCS1 mRNA expression in a dose-dependent pattern (P < 0.01). The IL-1β-induced production of MMP-1, MMP-3, MMP-13, and ADAMTS-4 (aggrecanase-1, a disintegrin and metalloproteinase with thrombospondin motifs 4) was affected by SOCS1 overexpression or knockdown in both SW1353 cells and primary human articular chondrocytes (all P values < 0.05). The inhibitory effects of SOCS1 were mediated by blocking p38, c-Jun N-terminal kinase (JNK), and nuclear factor κB (NF-κB) activation, and by downregulating transforming growth factor-β-activated kinase 1 (TAK1) expression.
Our results show that SOCS1 is induced by IL1-β in OA chondrocytes and suppresses the IL-1β-induced synthesis of matrix-degrading enzymes by inhibiting IL-1β signaling at multiple levels. It suggests that the IL-1β-inducible SOCS1 acts as a negative regulator of the IL-1β response in OA cartilage.
PMCID: PMC3979110  PMID: 24238405
7.  The effects of 1α,25-dihydroxyvitamin D3 on matrix metalloproteinase and prostaglandin E2 production by cells of the rheumatoid lesion 
Arthritis Research  1999;1(1):63-70.
The biologically active metabolite of vitamin D3, 1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], acts through vitamin D receptors, which were found in rheumatoid tissues in the present study. IL-1β-activated rheumatoid synovial fibroblasts and human articular chondrocytes were shown to respond differently to exposure to 1α,25(OH)2D3, which has different effects on the regulatory pathways of specific matrix metalloproteinases and prostaglandin E2.
1α,25-dihydroxyvitamin D3 [1α,25(OH)2D3], the biologically active metabolite of vitamin D3, acts through an intracellular vitamin D receptor (VDR) and has several immunostimulatory effects. Animal studies have shown that production of some matrix metalloproteinases (MMPs) may be upregulated in rat chondrocytes by administration of 1α,25(OH)2D3; and cell cultures have suggested that 1α,25(OH)2D3 may affect chondrocytic function. Discoordinate regulation by vitamin D of MMP-1 and MMP-9 in human mononuclear phagocytes has also been reported. These data suggest that vitamin D may regulate MMP expression in tissues where VDRs are expressed. Production of 1α,25(OH)2D3 within synovial fluids of arthritic joints has been shown and VDRs have been found in rheumatoid synovial tissues and at sites of cartilage erosion. The physiological function of 1α,25(OH)2D3 at these sites remains obscure. MMPs play a major role in cartilage breakdown in the rheumatoid joint and are produced locally by several cell types under strict control by regulatory factors. As 1α,25(OH)2D3 modulates the production of specific MMPs and is produced within the rheumatoid joint, the present study investigates its effects on MMP and prostaglandin E2 (PGE2) production in two cell types known to express chondrolytic enzymes.
To investigate VDR expression in rheumatoid tissues and to examine the effects of 1α,25-dihydroxyvitamin D3 on cultured rheumatoid synovial fibroblasts (RSFs) and human articular chondrocytes (HACs) with respect to MMP and PGE2 production.
Rheumatoid synovial tissues were obtained from arthroplasty procedures on patients with late-stage rheumatoid arthritis; normal articular cartilage was obtained from lower limb amputations. Samples were embedded in paraffin, and examined for presence of VDRs by immunolocalisation using a biotinylated antibody and alkaline-phosphatase-conjugated avidin-biotin complex system. Cultured synovial fibroblasts and chondrocytes were treated with either 1α,25(OH)2D3, or interleukin (IL)-1β or both. Conditioned medium was assayed for MMP and PGE2 by enzyme-linked immunosorbent assay (ELISA), and the results were normalised relative to control values.
The rheumatoid synovial tissue specimens (n = 18) immunostained for VDRs showed positive staining but at variable distributions and in no observable pattern. VDR-positive cells were also observed in association with some cartilage-pannus junctions (the rheumatoid lesion). MMP production by RSFs in monolayer culture was not affected by treatment with 1α,25(OH)2D3 alone, but when added simultaneously with IL-1β the stimulation by IL-1β was reduced from expected levels by up to 50%. In contrast, 1α,25(OH)2D3 had a slight stimulatory effect on basal production of MMPs 1 and 3 by monolayer cultures of HACs, but stimulation of MMP-1 by IL-1β was not affected by the simultaneous addition of 1α,25(OH)2D3 whilst MMP-3 production was enhanced (Table 1). The production of PGE2 by RSFs was unaffected by 1α,25(OH)2D3 addition, but when added concomitantly with IL-1β the expected IL-1 β-stimulated increase was reduced to almost basal levels. In contrast, IL-1β stimulation of PGE2 in HACs was not affected by the simultaneous addition of 1α,25(OH)2D3 (Table 2). Pretreatment of RSFs with 1α,25(OH)2D3 for 1 h made no significant difference to IL-1β-induced stimulation of PGE2, but incubation for 16 h suppressed the expected increase in PGE2 to control values. This effect was also noted when 1α,25(OH)2D3 was removed after the 16h and the IL-1 added alone. Thus it appears that 1α,25(OH)2D3 does not interfere with the IL-1β receptor, but reduces the capacity of RSFs to elaborate PGE2 after IL-1β induction.
Cells within the rheumatoid lesion which expressed VDR were fibroblasts, macrophages, lymphocytes and endothelial cells. These cells are thought to be involved in the degradative processes associated with rheumatoid arthritis (RA), thus providing evidence of a functional role of 1α,25(OH)2D3 in RA. MMPs may play important roles in the chondrolytic processes of the rheumatoid lesion and are known to be produced by both fibroblasts and chondrocytes. The 1α,25(OH)2D3 had little effect on basal MMP production by RSFs, although more pronounced differences were noted when IL-1β-stimulated cells were treated with 1α,25(OH)2D3, with the RSF and HAC showing quite disparate responses. These opposite effects may be relevant to the processes of joint destruction, especially cartilage loss, as the ability of 1α,25(OH)2D3 to potentiate MMP-1 and MMP-3 expression by 'activated' chondrocytes might facilitate intrinsic cartilage chondrolysis in vivo. By contrast, the MMP-suppressive effects observed for 1α,25(OH)2D3 treatment of 'activated' synovial fibroblasts might reduce extrinsic chondrolysis and also matrix degradation within the synovial tissue. Prostaglandins have a role in the immune response and inflammatory processes associated with RA. The 1α,25(OH)2D3 had little effect on basal PGE2 production by RSF, but the enhanced PGE2 production observed following IL-1β stimulation of these cells was markedly suppressed by the concomitant addition of 1α,25(OH)2D3. As with MMP production, there are disparate effects of 1α,25(OH)2D3 on IL-1β stimulated PGE2 production by the two cell types; 1α,25(OH)2D3 added concomitantly with IL-1β had no effect on PGE2 production by HACs. In summary, the presence of VDRs in the rheumatoid lesion demonstrates that 1α,25(OH)2D3 may have a functional role in the joint disease process. 1α,25(OH)2D3 does not appear to directly affect MMP or PGE2 production but does modulate cytokine-induced production.
Comparative effects of 1 α,25-dihydroxyvitamin D3 (1 α,25D3) on interleukin (IL)-1-stimulated matrix metalloproteinase (MMP)-1 and MMP-3 production by rheumatoid synovial fibroblasts and human articular chondrocytes in vivo
Data given are normalized relative to control values and are expressed ± SEM for three cultures of each cell type.
Comparative effects of 1α,25-dihydroxyvitamin D3 (1α,25D3) on Interleukin (IL)-1-stimulated prostaglandin E2 production by rheumatoid synovial fibroblasts and human articular chondrocyte in vivo
Data given are normalized relative to control values and are expressed ± SEM for three cultures of each cell type.
PMCID: PMC17774  PMID: 11056661
1α,25-dihydroxyvitamin D3; matrix metalloproteinase; prostaglandin E2; rheumatoid arthritis
8.  Treatment with SiMiaoFang, an Anti-Arthritis Chinese Herbal Formula, Inhibits Cartilage Matrix Degradation in Osteoarthritis Rat Model 
Rejuvenation Research  2013;16(5):364-376.
A Chinese herbal preparation, SiMiaoFang (SMF), has been used clinically for treating arthralgia by virtue of its anti-inflammatory and pain-relieving activities. However, no evidence base links SMF to anti-osteoarthritis (OA), particularly its link to inhibiting cartilage matrix degradation. In this study, we undertook a characterization of anti-OA activity of SMF using an in vivo rat model induced by anterior cruciate ligament transection and medial meniscus resection (ACLT+MMx) together with in vitro studies with chondrocytes for further molecular characterization. ACLT+MMx rats were treated with SMF at doses of 0.63, 1.25, and 2.5 grams/kg per day for 6 weeks. SMF treatments significantly inhibited cartilage matrix degradation, as indicated by increasing proteoglycan and collagen content, particularly type II collagen expression in articular cartilage, decreasing CTX-II (collagen type II degradation marker), and increasing CPII (collagen type II synthesis marker) in circulation. Moreover, SMF suppressed synovial inflammation and inhibited release of interleukin-1β (IL-1β) and tumor necrosis factor-α in serum. The levels of serum prostaglandin E2 and nitric oxide productions were decreased via suppression of the production of cyclooxygenase-2 and inducible nitric oxide synthase, respectively. Importantly, SMF interfered with OA-augmented expression of matrix metalloproteinases (MMPs) -3 and -13 and aggrecanases (ADAMTS) -4 and -5, which are considered to be key enzymes in cartilage matrix degradation, and simultaneously augmented OA-reduced tissue inhibitors of metalloproteinases (TIMPs) -1 and -3 expression in the joints. The largest changes in these parameters were found at the highest dose. Meanwhile, SMF significantly decreased MMP-3 and -13 and increased TIMP-1 and -3 at mRNA and protein levels in IL-1β–induced chondrocytes. These findings provide the first evidence that SMF effectively treats OA by inhibiting cartilage matrix degradation.
PMCID: PMC3804322  PMID: 23799821
9.  Rat tail static compression model mimics extracellular matrix metabolic imbalances of matrix metalloproteinases, aggrecanases, and tissue inhibitors of metalloproteinases in intervertebral disc degeneration 
The longitudinal degradation mechanism of extracellular matrix (ECM) in the interbertebral disc remains unclear. Our objective was to elucidate catabolic and anabolic gene expression profiles and their balances in intervertebral disc degeneration using a static compression model.
Forty-eight 12-week-old male Sprague-Dawley rat tails were instrumented with an Ilizarov-type device with springs and loaded statically at 1.3 MPa for up to 56 days. Experimental loaded and distal-unloaded control discs were harvested and analyzed by real-time reverse transcription-polymerase chain reaction (PCR) messenger RNA quantification for catabolic genes [matrix metalloproteinase (MMP)-1a, MMP-2, MMP-3, MMP-7, MMP-9, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, and ADAMTS-5], anti-catabolic genes [tissue inhibitor of metalloproteinases (TIMP)-1, TIMP-2, and TIMP-3], ECM genes [aggrecan-1, collagen type 1-α1, and collagen type 2-α1], and pro-inflammatory cytokine genes [tumor necrosis factor (TNF)-α, interleukin (IL)-1α, IL-1β, and IL-6]. Immunohistochemistry for MMP-3, ADAMTS-4, ADAMTS-5, TIMP-1, TIMP-2, and TIMP-3 was performed to assess their protein expression level and distribution. The presence of MMP- and aggrecanase-cleaved aggrecan neoepitopes was similarly investigated to evaluate aggrecanolytic activity.
Quantitative PCR demonstrated up-regulation of all MMPs and ADAMTS-4 but not ADAMTS-5. TIMP-1 and TIMP-2 were almost unchanged while TIMP-3 was down-regulated. Down-regulation of aggrecan-1 and collagen type 2-α1 and up-regulation of collagen type 1-α1 were observed. Despite TNF-α elevation, ILs developed little to no up-regulation. Immunohistochemistry showed, in the nucleus pulposus, the percentage of immunopositive cells of MMP-cleaved aggrecan neoepitope increased from 7 through 56 days with increased MMP-3 and decreased TIMP-1 and TIMP-2 immunopositivity. The percentage of immunopositive cells of aggrecanase-cleaved aggrecan neoepitope increased at 7 and 28 days only with decreased TIMP-3 immunopositivity. In the annulus fibrosus, MMP-cleaved aggrecan neoepitope presented much the same expression pattern. Aggrecanase-cleaved aggrecan neoepitope increased at 7 and 28 days only with increased ADAMTS-4 and ADAMTS-5 immunopositivity.
This rat tail sustained static compression model mimics ECM metabolic imbalances of MMPs, aggrecanases, and TIMPs in human degenerative discs. A dominant imbalance of MMP-3/TIMP-1 and TIMP-2 relative to ADAMTS-4 and ADAMTS-5/TIMP-3 signifies an advanced stage of intervertebral disc degeneration.
PMCID: PMC3446417  PMID: 22394620
10.  Fibroblast growth factor receptor 1 is principally responsible for fibroblast growth factor 2-induced catabolic activities in human articular chondrocytes 
Arthritis Research & Therapy  2011;13(4):R130.
Cartilage degeneration driven by catabolic stimuli is a critical pathophysiological process in osteoarthritis (OA). We have defined fibroblast growth factor 2 (FGF-2) as a degenerative mediator in adult human articular chondrocytes. Biological effects mediated by FGF-2 include inhibition of proteoglycan production, up-regulation of matrix metalloproteinase-13 (MMP-13), and stimulation of other catabolic factors. In this study, we identified the specific receptor responsible for the catabolic functions of FGF-2, and established a pathophysiological connection between the FGF-2 receptor and OA.
Primary human articular chondrocytes were cultured in monolayer (24 hours) or alginate beads (21 days), and stimulated with FGF-2 or FGF18, in the presence or absence of FGFR1 (FGF receptor 1) inhibitor. Proteoglycan accumulation and chondrocyte proliferation were assessed by dimethylmethylene blue (DMMB) assay and DNA assay, respectively. Expression of FGFRs (FGFR1 to FGFR4) was assessed by flow cytometry, immunoblotting, and quantitative real-time PCR (qPCR). The distinctive roles of FGFR1 and FGFR3 after stimulation with FGF-2 were evaluated using either pharmacological inhibitors or FGFR small interfering RNA (siRNA). Luciferase reporter gene assays were used to quantify the effects of FGF-2 and FGFR1 inhibitor on MMP-13 promoter activity.
Chondrocyte proliferation was significantly enhanced in the presence of FGF-2 stimulation, which was inhibited by the pharmacological inhibitor of FGFR1. Proteoglycan accumulation was reduced by 50% in the presence of FGF-2, and this reduction was successfully rescued by FGFR1 inhibitor. FGFR1 inhibitors also fully reversed the up-regulation of MMP-13 expression and promoter activity stimulated by FGF-2. Blockade of FGFR1 signaling by either chemical inhibitors or siRNA targeting FGFR1 rather than FGFR3 abrogated the up-regulation of matrix metalloproteinases 13 (MMP-13) and a disintegrin and metalloproteinase with a thrombospondin type 1 motif 5 (ADAMTS5), as well as down-regulation of aggrecan after FGF-2 stimulation. Flow cytometry, qPCR and immunoblotting analyses suggested that FGFR1 and FGFR3 were the major FGFR isoforms expressed in human articular chondrocytes. FGFR1 was activated more potently than FGFR3 upon FGF-2 stimulation. In osteoarthritic chondrocytes, FGFR3 was significantly down regulated (P < 0.05) with a concomitant increase in the FGFR1 to FGFR3 expression ratio (P < 0.05), compared to normal chondrocytes. Our results also demonstrate that FGFR3 was negatively regulated by FGF-2 at the transcriptional level through the FGFR1-ERK (extracellular signal-regulated kinase) signaling pathway in human articular chondrocytes.
FGFR1 is the major mediator with the degenerative potential in the presence of FGF-2 in human adult articular chondrocytes. FGFR1 activation by FGF-2 promotes catabolism and impedes anabolism. Disruption of the balance between FGFR1 and FGFR3 signaling ratio may contribute to the pathophysiology of OA.
PMCID: PMC3239372  PMID: 21835001
11.  Standardized butanol fraction of WIN-34B suppresses cartilage destruction via inhibited production of matrix metalloproteinase and inflammatory mediator in osteoarthritis human cartilage explants culture and chondrocytes 
WIN-34B is a novel Oriental medicine, which represents the n-butanol fraction prepared from dried flowers of Lonicera japonica Thunb and dried roots of Anemarrhena asphodeloides BUNGE. The component herb of WIN-34B is used for arthritis treatment in East Asian countries. The aim of this study was to determine the cartilage-protective effects and mechanisms of WIN-34B and its major phenolic compounds, chlorogenic acid and mangiferin, in osteoarthritis (OA) human cartilage explants culture and chondrocytes.
The investigation focused on whether WIN-34B and its standard compounds protected cartilage in interleukin (IL)-1β-stimulated cartilage explants culture and chondrocytes derived from OA patients. Also, the mechanisms of WIN-34B on matrix metalloproteinases (MMPs), tissue inhibitor of matrix metalloproteinases (TIMPs), inflammatory mediators, and mitogen-activated protein kinases (MAPKs) pathways were assessed.
WIN-34B was not cytotoxic to cultured cartilage explants or chondrocytes. WIN-34B dose-dependently inhibited the release of glycosaminoglycan and type II collagen, increased the mRNA expression of aggrecan and type II collagen, and recovered the intensity of proteoglycan and collagen by histological analysis in IL-1β-stimulated human cartilage explants culture. The cartilage protective effect of WIN-34B was similar to or better than that of chlorogenic acid and mangiferin. Compared to chlorogenic acid and mangiferin, WIN-34B displayed equal or greater decreases in the levels of MMP-1, MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5, and markedly up-regulated TIMP-1 and TIMP-3. WIN-34B inhibited inflammatory mediators involved in cartilage destruction, such as prostaglandin E2, nitric oxide, tumor necrosis factor-alpha, and IL-1β. The phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38 was significantly reduced by WIN-34B treatment, while phosphorylation of JNK was only inhibited by chlorogenic acid or mangiferin in IL-1β-stimulated chondrocytes.
WIN-34B is potentially valuable as a treatment for OA by virtue of its suppression of MMPs, ADAMTSs, and inflammatory mediators, and it’s up-regulation of TIMP-1 and TIMP-3 involved in the MAPK pathway.
PMCID: PMC3559294  PMID: 23241445
WIN-34B; Standard compounds; Cartilage protection; Matrix proteinases; Inflammatory mediators
12.  Dual function of β-catenin in articular cartilage growth and degeneration at different stages of postnatal cartilage development 
International Orthopaedics  2011;36(3):655-664.
The objective of this study was to determine the role of β-catenin in normal postnatal articular cartilage growth and degeneration.
We investigated β-catenin gene and protein expression in hip cartilage cells of normal Wistar rats at two, four, six and eight weeks of age by using reverse transcriptase polymerase chain reaction (RT-PCR) and immunohistochemistry. Primary articular chondrocytes from eight week old rats were cultured and treated with LiCl for activation of β-catenin. Collagen X and matrix metalloproteinase 13 (MMP-13) were detected by quantitative RT-PCR and immunofluorescence. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4 and 5 were detected by quantitative RT-PCR, and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) was used for detecting cell apoptosis.
The highest levels of β-catenin expressions were detected in two week old rats, after which a steady decline was observed over the remaining period of observation (p < 0.05). When primary articular chondrocytes from eight week old rats were treated with LiCl, β-catenin mRNA and protein were induced (p < 0.05). Moreover, LiCl-activated β-catenin in chondrocytes was associated with significant concomitant increases in mRNA expression of collagen X and the MMP-13 encoding collagenase 3. Significantly increased mRNA expression of ADAMTS-5 was also seen in primary chondrocytes from eight week old rats after LiCl treatment (p < 0.05). The effect was specific to ADAMTS-5 since ADAMTS-4, which has similar proteolytic activity but different aggrecanase activity, was unaffected. Finally, TUNEL staining revealed that LiCl-activated β-catenin signalling led to increased cell apoptotic events in chondrocytes (p < 0.05).
Our findings suggest that normal spatiotemporal patterns and degrees of Wnt/β-catenin signalling are needed to maintain postnatal articular cartilage growth and function. In the early stages of cartilage development, activation of β-catenin signalling is necessary for articular cartilage growth, while in adult cartilage it leads to degeneration and osteoarthritic-like chondrocytes.
PMCID: PMC3291762  PMID: 21755332
13.  Insulin-like growth factor 1 blocks collagen release and down regulates matrix metalloproteinase-1, -3, -8, and -13 mRNA expression in bovine nasal cartilage stimulated with oncostatin M in combination with interleukin 1α 
Annals of the Rheumatic Diseases  2001;60(3):254-261.
OBJECTIVE—To investigate the effect of insulin-like growth factor 1 (IGF1) on the release of collagen, and the production and expression of matrix metalloproteinases (MMPs) induced by the proinflammatory cytokine interleukin 1α (IL1α) in combination with oncostatin M (OSM) from bovine nasal cartilage and primary human articular chondrocytes.
METHODS—Human articular chondrocytes and bovine nasal cartilage were cultured with and without IGF1 in the presence of IL1α or IL1α + OSM. The release of collagen was measured by an assay for hydroxyproline. Collagenase activity was determined with the diffuse fibril assay using 3H acetylated collagen. The expression of MMP-1, MMP-3, MMP-8, MMP-13, and tissue inhibitor of metalloproteinase 1 (TIMP-1) mRNA was analysed by northern blot.
RESULTS—IGF1 can partially inhibit the release of collagen induced by IL1α or IL1α + OSM from bovine nasal cartilage. This was accompanied by a reduced secretion and activation of collagenase by bovine nasal cartilage. IGF1 can also down regulate IL1α or IL1α + OSM induced MMP-1, MMP-3, MMP-8, and MMP-13 mRNA expression in human articular chondrocytes and bovine chondrocytes. It had no significant effect on the production and expression of TIMP-1 mRNA in chondrocytes.
CONCLUSION—This study shows for the first time that IGF1 can partially block the release of collagen from cartilage and suggests that down regulation of collagenases by IGF1 may be an important mechanism in preventing cartilage resorption initiated by proinflammatory cytokines.

PMCID: PMC1753584  PMID: 11171688
14.  Differential expression patterns of matrix metalloproteinases and their inhibitors during development of osteoarthritis in a transgenic mouse model 
Annals of the Rheumatic Diseases  2002;61(7):591-597.
Objective: To characterise the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) during degeneration of articular cartilage in a transgenic Del1 mouse model for osteoarthritis.
Methods: Northern analysis was used to measure mRNA levels of MMP-2, -3, -8, -9, -13, and -14, and TIMP-1, -2, and -3 in total RNA extracted from knee joints of transgenic Del1 mice, harbouring a 15 amino acid deletion in the triple helical domain of the α1(II) collagen chain, using their non-transgenic littermates as controls. Immunohistochemistry was used to study the presence of cleavage products (neoepitopes) of type II collagen, and the distribution of MMP-13 and TIMP-1 in degenerating cartilage.
Results: Each of the MMP and TIMP mRNAs analysed exhibited distinct expression patterns during development and osteoarthritic degeneration of the knee joint. The most striking change was up regulation of MMP-13 mRNA expression in the knee joints of Del1 mice at the onset of cartilage degeneration. However, the strongest immunostaining for MMP-13 and its inhibitor TIMP-1 was not seen in the degenerating articular cartilage but in synovial tissue, deep calcified cartilage, and subchondral bone. The localisation of type II collagen neoepitopes in chondrocytes and their pericellular matrix followed a similar pattern; they were not seen in cartilage fibrillations, but in adjacent unaffected cartilage.
Conclusion: The primary localisation of MMP-13 and TIMP-1 in hyperplastic synovial tissue, subchondral bone, and calcified cartilage suggests that up regulation of MMP-13 expression during early degeneration of articular cartilage is a secondary response to cartilage erosion. This interpretation is supported by the distribution of type II collagen neoepitopes. Synovial production of MMP-13 may be related to removal of tissue debris released from articular cartilage. In the deep calcified cartilage and adjacent subchondral bone, MMP-13 probably participates in tissue remodelling.
PMCID: PMC1754156  PMID: 12079898
15.  Protective effects of biochanin A on articular cartilage: in vitro and in vivo studies 
Increased production of matrix metalloproteinases (MMPs) is closely related to the progression of osteoarthritis (OA). The present study was performed to investigate the potential value of biochanin A in inhibition of MMP expression in both rabbit chondrocytes and an animal model of OA.
MTT assay was performed to assess chondrocyte survival in monolayers. The mRNA and protein expression of MMPs (including MMP-1, MMP-3, and MMP-13) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in interleukin-1 < beta > (IL-1β)-induced rabbit chondrocytes were determined by quantitative real-time PCR and enzyme-linked immunosorbent assay (ELISA), respectively. The involvement of the NF-kappaB (NF-κB) pathway activated by IL-1β was determined by western blotting. The in vivo effects of biochanin A were evaluated by intra-articular injection in an experimental OA rabbit model induced by anterior cruciate ligament transection (ACLT).
Biochanin A downregulated the expression of MMPs and upregulated TIMP-1 at both the mRNA and protein levels in IL-1β-induced chondrocytes in a dose-dependent manner. In addition, IL-1β-induced activation of NF-κB was attenuated by biochanin A, as determined by western blotting. Moreover, biochanin A decreased cartilage degradation as determined by both morphological and histological analyses in vivo.
Taken together, these findings suggest that biochanin A may be a useful agent in the treatment and prevention of OA.
PMCID: PMC4251671  PMID: 25398247
Biochanin A; Osteoarthritis; Chondroprotection; Interleukin-1beta; Matrix metalloproteinases; Anterior cruciate ligament transection (ACLT)
16.  Esculetin inhibits cartilage resorption induced by interleukin 1α in combination with oncostatin M 
Annals of the Rheumatic Diseases  2001;60(2):158-165.
OBJECTIVE—To determine if a new inhibitor, esculetin (EST), can block resorption of cartilage.
METHODS—Interleukin 1α (IL1α, 0.04-5 ng/ml) and oncostatin M (OSM, 0.4-50 ng/ml) were used to stimulate the release of proteoglycan and collagen from bovine nasal cartilage and human articular cartilage in explant culture. Proteoglycan and collagen loss were assessed by dimethylmethylene blue and hydroxyproline assays, respectively. Collagenase levels were measured by assay of bioactivity and by enzyme linked immunosorbent assay (ELISA). The effects of EST on the expression of matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinase-1 (TIMP-1) in the transformed human chondrocyte cell line T/C28a4 were assessed by northern blot analysis. TIMP-1 protein levels were assayed by ELISA. The effect of EST on the MMP-1 promoter was assessed using a promoter-luciferase construct in transient transfection studies.
RESULTS—EST inhibited proteoglycan and collagen resorption in a dose dependent manner with significant decreases seen at 66 µM and 100 µM EST, respectively. Collagenolytic activity was significantly decreased in bovine nasal cartilage cultures. In human articular cartilage, EST also inhibited IL1α + OSM stimulated resorption and decreased MMP-1 levels. TIMP-1 levels were not altered compared with controls. In T/C28a4 chondrocytes the IL1α + OSM induced expression of MMP-1, MMP-3, and MMP-13 mRNA was reduced to control levels by 250 µM EST. TIMP-1 mRNA levels were unaffected by EST treatment. All cytokine stimulation of an MMP-1 luciferase-promoter construct was lost in the presence of the inhibitor.
CONCLUSION—EST inhibits degradation of bovine nasal cartilage and human articular cartilage stimulated to resorb with IL1α + OSM.

PMCID: PMC1753478  PMID: 11156550
17.  Dual regulation of metalloproteinase expression in chondrocytes by WISP3/CCN6 
Arthritis and Rheumatism  2012;64(7):2289-2299.
WISP3/CCN6 is mutated in progressive pseudorheumatoid dysplasia and may have effects on cartilage homeostasis. In order to uncover further roles for WISP3/CCN6 its expression was explored in osteoarthritic cartilage. Effects of WISP3/CCN6 on cartilage-relevant metalloproteinase expression were investigated in immortalised (C-28/I2) and primary chondrocytes.
Cartilage steady state levels of WISP3/CCN6 mRNA and protein production were determined by quantitative RT-PCR and immunohistochemistry respectively. WISP3/CCN6 was over-expressed in C-28/I2 cells and resultant stable clones analysed by real time RT-PCR for metalloproteinase expression and signalling pathways involved explored with pharmacological inhibition. Effects of WISP3/CCN6 on metalloproteinase expression in primary chondrocytes were investigated by an siRNA approach.
WISP3/CCN6 was highly expressed in osteoarthritic cartilage compared to undamaged cartilage at RNA and protein levels. WISP3/CCN6 over-expression in C-28/I2 cells resulted in unexpected dual regulation of metalloproteinases: the expression of the potent aggrecanase, ADAMTS5, was down-regulated 9-fold, whilst MMP10 was up-regulated 14-fold, responses accentuated by suspension culture. MMP10 up-regulation was dependent on several MAP kinases but WISP3/CCN6-mediated ADAMTS5 repression was independent of these pathways and partially relieved by activation of β-catenin signalling. WISP3/CCN6 also suppressed ADAMTS5 expression in C-28/I2 cells treated with cytokines. In cytokine-treated primary chondrocytes gene silencing of WISP3/CCN6 resulted in enhanced ADAMTS5 expression whilst MMP10 expression was suppressed.
WISP3/CCN6 was highly expressed in end-stage osteoarthritic cartilage suggesting a role for this growth factor in cartilage homeostasis. WISP3/CCN6 repression of ADAMTS5 expression and regulation of MMP10 expression suggests complex and context-dependent roles for WISP3/CCN6 in cartilage biology.
PMCID: PMC3366172  PMID: 22294415
18.  Sanmiao formula inhibits chondrocyte apoptosis and cartilage matrix degradation in a rat model of osteoarthritis 
Sanmiao formula (SM) is a basic prescription for the treatment of gouty and rheumatoid arthritis that has been used in China over a long period of history. However, there is no evidence associating SM with the treatment of osteoarthritis (OA). In this study, a characterization of the anti-OA effect of SM was conducted using an in vivo rat model induced by anterior cruciate ligament transection and medial meniscus resection (ACLT plus MMx), together with in vitro studies using chondrocytes for further molecular characterization. Rats subjected to ACLT plus MMx were treated with SM at doses of 0.63, 1.25 and 2.5 g/kg per day for three or six weeks. SM treatment significantly inhibited the histopathological changes of articular cartilage damage and synovial inflammation in the rats following ACLT plus MMx. SM (2.5 g/kg) clearly inhibited chondrocyte apoptosis and prevented cartilage matrix degradation, which was indicated by the increased proteoglycan and collagen content, particularly with regard to type II collagen expression in articular cartilage. Furthermore, SM (2.5 g/kg) markedly inhibited the release of interleukin (IL)-1β, tumor necrosis factor-α and nitric oxide in serum, while simultaneously increasing the levels of bone morphogenetic protein-2 and transforming growth factor-β in the circulation. Notably, SM (2.5 g/kg) clearly attenuated the OA-augmented expression of matrix metalloproteinase (MMP)-13 and augmented the OA-reduced expression of tissue inhibitor of metalloproteinase (TIMP)-1 in the knee joints. In addition, SM significantly reduced the proportion of early and late apoptotic and sub-G1 phase cells, and clearly decreased the expression of MMP-13 and increased that of TIMP-1 at the mRNA and protein levels in IL-1β-induced chondrocytes. These findings provide the first evidence that SM effectively treats OA by inhibiting chondrocyte apoptosis, cartilage matrix degradation and the inflammatory response.
PMCID: PMC4151698  PMID: 25187798
Sanmiao formula; chondrocytes; proteoglycan; collagen; inflammatory cytokines; metalloproteinases; tissue inhibitors of metalloproteinase
19.  Metalloproteinase and inhibitor expression profiling of resorbing cartilage reveals pro-collagenase activation as a critical step for collagenolysis 
Excess proteolysis of the extracellular matrix (ECM) of articular cartilage is a key characteristic of arthritis. The main enzymes involved belong to the metalloproteinase family, specifically the matrix metalloproteinases (MMPs) and a group of proteinases with a disintegrin and metalloproteinase domain with thrombospondin motifs (ADAMTS). Chondrocytes are the only cell type embedded in the cartilage ECM, and cell-matrix interactions can influence gene expression and cell behaviour. Thus, although the use of monolayer cultures can be informative, it is essential to study chondrocytes encapsulated within their native environment, cartilage, to fully assess cellular responses. The aim of this study was to profile the temporal gene expression of metalloproteinases and their endogenous inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), reversion-inducing cysteine-rich protein with Kazal motifs (RECK), and α2-macroglobulin (α2M), in actively resorbing cartilage. The addition of the pro-inflammatory cytokine combination of interleukin-1 (IL-1) + oncostatin M (OSM) to bovine nasal cartilage induces the synthesis and subsequent activation of pro-metalloproteinases, leading to cartilage resorption. We show that IL-1+OSM upregulated the expression of MMP-1, -2, -3, -9, 12, -13, -14, TIMP-1, and ADAMTS-4, -5, and -9. Differences in basal expression and the magnitude of induction were observed, whilst there was no significant modulation of TIMP-2, -3, RECK, or ADAMTS-15 gene expression. IL-1+OSM downregulated MMP-16,TIMP-4, and α2M expression. All IL-1+OSM-induced metalloproteinases showed marked upregulation early in the culture period, whilst inhibitor expression was reduced throughout the stimulation period such that metalloproteinase production would be in excess of inhibitors. Moreover, although pro-collagenases were upregulated and synthesized early (by day 5), collagenolysis became apparent later with the presence of active collagenases (day 10) when inhibitor levels were low. These findings indicate that the activation cascades for pro-collagenases are delayed relative to collagenase expression, further confirm the coordinated regulation of metalloproteinases in actively resorbing cartilage, and support the use of bovine nasal cartilage as a model system to study the mechanisms that promote cartilage degradation.
PMCID: PMC1779431  PMID: 16919164
20.  Inhibition of interleukin 1‐induced matrix metalloproteinase 13 expression in human chondrocytes by interferon γ 
Annals of the Rheumatic Diseases  2006;66(6):782-789.
Despite well‐documented immunomodulation by interferon γ (IFNγ), its role and mechanism of regulation of matrix metalloproteinase 13 (MMP13) gene expression in human chondrocytes is unknown.
To investigate the ability and mechanism of IFNγ to suppress interleukin 1 (IL1)‐induced MMP13 expression in articular chondrocytes.
Human chondrocytes were treated with IFNγ or IL1β alone or in combination. MMP13 mRNA was analysed by semiquantitative reverse transcriptase‐PCR. MMP13 protein, phospho‐signal transducer and activator of transcription 1 (STAT1) and p44/42 mitogen‐activated protein kinase levels were measured by western blotting. MMP13 promoter luciferase, cytomegalovirus cyclic AMP response element‐binding protein (CBP)/p300 plasmids and STAT1 small interfering RNA (siRNA) were transfected by the calcium phosphate method. IFNγ receptor was also neutralised. Activator protein (AP) 1 activity was monitored by the TransAM transcription factor kit. STAT1‐CBP/p300 interaction was studied by immunoprecipitation.
IFNγ potently suppressed IL1‐induced expression of MMP13 and promoter activity. Blockade with neutralising IFNγ R1 antibody revealed that MMP13 inhibition by IFNγ is mediated by the IFN receptor. IFNγ‐stimulated activation of STAT1 was directly correlated with MMP13 suppression. Knockdown of the STAT1 gene by specific siRNA or its inhibition with fludarabine partially restored the IL1β induction of MMP13 expression and promoter activity. IFNγ did not alter AP1 binding ability but promoted physical interaction of STAT1 and CBP/p300 coactivator. p300 overexpression reversed IFNγ inhibition of endogenous MMP13 mRNA expression and exogenous MMP13 promoter activity.
IFNγ, through its receptor, activates STAT1, which binds with CBP/p300 coactivator, sequesters it from the cell system, and thus inhibits transcriptional induction of the MMP13 gene in chondrocytes. IFNγ and its signalling pathways could be targeted therapeutically for diminishing IL1‐induced cartilage degradation by MMP13 in patients with arthritis.
PMCID: PMC1954643  PMID: 17179173
21.  1,25-dihydroxyvitamin D3 Activates MMP13 Gene Expression in Chondrocytes through p38 MARK Pathway 
Osteoarthritis (OA) is the most prevalent degenerative joint disease. The highly regulated balance of matrix synthesis and degradation is disrupted in OA, leading to progressive breakdown of articular cartilage. The molecular events and pathways involved in chondrocyte disfunction of cartilage in OA are not fully understood. It is known that 1,25-dihydroxyvitamin D₃ (1,25-(OH)2D3) is synthesized by macrophages derived from synovial fluid of patients with inflammatory arthritis. Vitmain D receptor is expressed in chondrocytes within osteoarthritic cartilage, suggesting a contributory role of 1,25-(OH)2D3 in the aberrant behavior of chondrocytes in OA. However, the physiological function of 1,25-(OH)2D3 on chondrocytes in OA remains obscure. Effect of 1,25-(OH)2D3 on gene expression in chondrocytes was investigated in this study. We found that 1,25-(OH)2D3 activated MMP13 expression in a dose-dependent and time-dependent manner, a major enzyme that targets cartilage for degradation. Interestingly, a specific mitogen-activated protein kinase p38 inhibitor SB203580, but not JNK kinase inhibitor SP600125, abrogated 1,25-(OH)2D3 activation of MMP13 expression. 1,25-(OH)2D3-induced increase in MMP13 protein level was in parallel with the phosphorylation of p38 in chondrocytes. To further address the effect of 1,25-(OH)2D3 on MMP13 expression, transfection assays were used to show that 1,25-(OH)2D3 activated the MMP13 promoter reporter expression. MMP13 is known to target type II collagen and aggrecan for degradation, two major components of cartilage matrix. We observed that the treatment of 1,25-(OH)2D3 in chondrocytes results in downregulation of both type II collagen and aggrecan while MMP13 was upregulated. Taken together, we provide the first evidence to demonstrate that 1,25-(OH)2D3 activates MMP13 expression through p38 pathway in chondrocytes. Since MMP13 plays a major role in cartilage degradation in OA, we speculate that the ability of 1,25-(OH)2D3 to potentiate MMP13 expression might facilitate cartilage erosion at the site of inflammatory arthritis.
PMCID: PMC3708044  PMID: 23847446
1,25-(OH)2D3; MMP13; Osteoarthritis; p38; Gene expression; Chondrocyte.
22.  Human articular chondrocytes express 15-lipoxygenase-1 and -2: potential role in osteoarthritis 
15-Lipoxygenases and their metabolites have been shown to exhibit anti-inflammatory and immunomodulatory properties, but little is known regarding their expression and function in chondrocytes. The objective of this study was to evaluate the expression of 15-lipoxygenase-1 and -2 in human articular chondrocytes, and to investigate the effects of their metabolites 13(S)-hydroxy octadecadienoic and 15(S)-hydroxyeicosatetraenoic acids on IL-1β-induced matrix metalloproteinase (MMP)-1 and MMP-13 expression.
The expression levels of 15-lipoxygenase-1 and -2 were analyzed by reverse transcription PCR and Western blotting in chondrocytes, and by immunohistochemistry in cartilage. Chondrocytes or cartilage explants were stimulated with IL-1β in the absence or presence of 13(S)-hydroxy octadecadienoic and 15(S)-hydroxyeicosatetraenoic acids, and the levels of MMP-1 and MMP-13 protein production and type II collagen cleavage were evaluated using immunoassays. The role of peroxisome proliferator-activated receptor (PPAR)γ was evaluated using transient transfection experiments and the PPARγ antagonist GW9662.
Articular chondrocytes express 15-lipoxygenase-1 and -2 at the mRNA and protein levels. 13(S)-hydroxy octadecadienoic and 15(S)-hydroxyeicosatetraenoic acids dose dependently decreased IL-1β-induced MMP-1 and MMP-13 protein and mRNA expression as well as type II collagen cleavage. The effect on MMP-1 and MMP-13 expression does not require de novo protein synthesis. 13(S)-hydroxy octadecadienoic and 15(S)-hydroxyeicosatetraenoic acids activated endogenous PPARγ, and GW9662 prevented their suppressive effect on MMP-1 and MMP-13 production, suggesting the involvement of PPARγ in these effects.
This study is the first to demonstrate the expression of 15-lipoxygenase-1 and -2 in articular chondrocytes. Their respective metabolites, namely 13(S)-hydroxy octadecadienoic and 15(S)-hydroxyeicosatetraenoic acids, suppressed IL-1β-induced MMP-1 and MMP-13 expression in a PPARγ-dependent pathway. These data suggest that 15-lipoxygenases may have chondroprotective properties by reducing MMP-1 and MMP-13 expression.
PMCID: PMC2688191  PMID: 19296842
23.  Mechanisms involved in enhancement of the expression and function of aggrecanases by hyaluronan oligosaccharides 
Arthritis and Rheumatism  2012;64(1):187-197.
Small hyaluronan (HA) oligosaccharides serve as competitive receptor antagonists to displace HA from the cell surface and induce cell signaling events. In articular chondrocytes this cell signaling is mediated by the HA receptor CD44 and induces stimulation of genes involved in matrix degradation such as matrix metalloproteinases as well as matrix repair genes including collagen type II, aggrecan and HA synthase-2. The objective of this study was to determine changes in the expression and function of aggrecanases after disruption of chondrocyte CD44-HA interactions.
Bovine articular chondrocytes or bovine cartilage tissue were pre-treated with a variety of inhibitors of major signaling pathways prior to the addition of HA oligosaccharides. Changes in aggrecanase were monitored by real time reverse transcriptase-polymerase chain reaction and western blot analysis of ADAMTS4, ADAMTS5 and aggrecan proteolytic fragments. To test the interactions between ADAMTS4 and MT4-MMP, protein lysates purified from stimulated chondrocytes were subjected to co-immunoprecipitation.
Disruption of chondrocyte CD44-HA interactions with HA oligosaccharides induced the transcription of ADAMTS4 and ADAMTS5 in time- and dose-dependent manner. The association of GPI-anchored MT4-MMP with ADAMTS4 was also induced in articular chondrocytes by HA oligosaccharides. Inhibition of the NF-κB pathway blocked HA oligosaccharides-mediated stimulation of aggrecanases.
Disruptive changes in chondrocyte-matrix interactions by HA oligosaccharides induce matrix degradation and elevate aggrecanases via the activation of the NF-κB signaling pathway.
PMCID: PMC3241893  PMID: 21905012
Hyaluronan; Hyaluronan oligosaccharides; CD44; ADAMTS4; ADAMTS5; MT4-MMP
24.  Dual effects of 17ß-oestradiol on interleukin 1ß-induced proteoglycan degradation in chondrocytes 
Annals of the Rheumatic Diseases  2004;63(2):191-199.
Objective: To determine whether 17ß-oestradiol (E2) modulates interleukin (IL) 1ß-induced proteoglycan degradation in chondrocytes, and to analyse the part played by metalloproteinases (MMPs) in this process.
Methods: Primary cultured rabbit articular chondrocytes were prepared and treated with 10 ng/ml IL1ß combined or not with 0.1–10 nM E2. Neosynthesised proteoglycans (PGs) were evaluated after incorporation of [35SO4]sulphate and further analysed after chromatography on a Sepharose 2B column. Chondrocyte mRNA levels of aggrecan, MMP-1, -3, -13, and tissue inhibitor of metalloproteinase-1 (TIMP-1) were studied by northern blot. MMP-1 activity was measured by zymography. MMP-1 gene transcription was studied by transient transfection of chondrocytes with an MMP-1-luciferase construct.
Results: E2 modulated the IL1ß-induced total sulphated PGs in rabbit articular chondrocytes, which decreased as the E2 concentration was increased. At a low concentration (0.1 nmol/l) E2 counteracts the IL1ß-induced decrease in sulphated PG, while at high concentration (10 nmol/l) E2 enhances the IL1ß effects. A biphasic E2 effect was also observed on IL1ß-induced disaggregation of PG, 53–58 kDa gelatinolytic activity, and MMP-1, -3, and -13 mRNA levels. In contrast, E2 did not modify the level of aggrecan mRNA and had no effect on TIMP-1 mRNA expression. Finally, simultaneous addition of IL1ß and E2 (0.1–10 nmol/l) did not modify IL1ß-induced MMP-1-luciferase activity, suggesting that E2 effects probably occur at the post-transcriptional level of MMP gene expression.
Conclusion: Oestrogen concentration may have an inverse effect on IL1ß stimulated proteoglycan degradation and MMP production by chondrocytes.
PMCID: PMC1754890  PMID: 14722210
25.  Hypoxia promotes redifferentiation and suppresses markers of hypertrophy and degeneration in both healthy and osteoarthritic chondrocytes 
Hypoxia is considered to be a positive influence on the healthy chondrocyte phenotype and cartilage matrix formation. However, hypoxia-inducible factors (HIFs) have been implicated in the pathogenesis of osteoarthritis (OA). Thus, we assessed whether healthy and OA chondrocytes have distinct responses to oxygen, particularly with regard to hypertrophy and degradation during redifferentiation.
Monolayer-expanded healthy and OA chondrocytes were redifferentiated for 14 days in pellet cultures under standard (20% oxygen) or hypoxic (2% oxygen) conditions. Cartilage matrix gene expression, matrix quality and quantity, degradative enzyme expression and HIF expression were measured.
In hypoxia, both healthy and OA chondrocytes had higher human collagen type II, α1 gene (COL2A1), and aggrecan (ACAN) expression and sulfated glycosaminoglycan (sGAG) accumulation, concomitant with lower human collagen type X, α1 gene (COL10A1), and human collagen type I, α1 gene (COL1A1), expression and collagen I extracellular accumulation. OA chondrocytes had significantly lower sGAGs/DNA than healthy chondrocytes, but only in high oxygen conditions. Hypoxia also caused significantly greater sGAG retention and hyaluronic acid synthase 2 (HAS2) expression by OA chondrocytes. Both healthy and OA chondrocytes had significantly lower expression of matrix metalloproteinases (MMPs) MMP1, MMP2, MMP3 and MMP13 in hypoxia and less active MMP2 enzyme, consistent with lower MMP14 expression. However, aggrecanase (ADAMTS4 and ADAMTS5) expression was significantly lowered by hypoxia only in healthy cells, and COL10A1 and MMP13 remained significantly higher in OA chondrocytes than in healthy chondrocytes in hypoxic conditions. HIF-1α and HIF-2α had similar expression profiles in healthy and OA cells, increasing to maximal levels early in hypoxia and decreasing over time.
Hypoxic culture of human chondrocytes has long been acknowledged to result in increased matrix accumulation, but still little is known of its effects on catabolism. We show herein that the increased expression of matrix proteins, combined with decreased expression of numerous degradative enzymes by hypoxia, minimizes but does not abolish differences between redifferentiated healthy and OA chondrocytes. Hypoxia-induced HIF expression is associated with hypertrophic marker and degradative enzyme downregulation and increased measures of redifferentiation in both healthy and OA chondrocytes. Therefore, though HIFs may be involved in the pathogenesis of OA, conditions that promote HIF expression in vitro promote matrix accumulation and decrease degradation and hypertrophy, even in cells from OA joints.
PMCID: PMC3979022  PMID: 23965235

Results 1-25 (1229949)