PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (610630)

Clipboard (0)
None

Related Articles

1.  A General Pairwise Interaction Model Provides an Accurate Description of In Vivo Transcription Factor Binding Sites 
PLoS ONE  2014;9(6):e99015.
The identification of transcription factor binding sites (TFBSs) on genomic DNA is of crucial importance for understanding and predicting regulatory elements in gene networks. TFBS motifs are commonly described by Position Weight Matrices (PWMs), in which each DNA base pair contributes independently to the transcription factor (TF) binding. However, this description ignores correlations between nucleotides at different positions, and is generally inaccurate: analysing fly and mouse in vivo ChIPseq data, we show that in most cases the PWM model fails to reproduce the observed statistics of TFBSs. To overcome this issue, we introduce the pairwise interaction model (PIM), a generalization of the PWM model. The model is based on the principle of maximum entropy and explicitly describes pairwise correlations between nucleotides at different positions, while being otherwise as unconstrained as possible. It is mathematically equivalent to considering a TF-DNA binding energy that depends additively on each nucleotide identity at all positions in the TFBS, like the PWM model, but also additively on pairs of nucleotides. We find that the PIM significantly improves over the PWM model, and even provides an optimal description of TFBS statistics within statistical noise. The PIM generalizes previous approaches to interdependent positions: it accounts for co-variation of two or more base pairs, and predicts secondary motifs, while outperforming multiple-motif models consisting of mixtures of PWMs. We analyse the structure of pairwise interactions between nucleotides, and find that they are sparse and dominantly located between consecutive base pairs in the flanking region of TFBS. Nonetheless, interactions between pairs of non-consecutive nucleotides are found to play a significant role in the obtained accurate description of TFBS statistics. The PIM is computationally tractable, and provides a general framework that should be useful for describing and predicting TFBSs beyond PWMs.
doi:10.1371/journal.pone.0099015
PMCID: PMC4057186  PMID: 24926895
2.  Assessment of clusters of transcription factor binding sites in relationship to human promoter, CpG islands and gene expression 
BMC Genomics  2004;5:16.
Background
Gene expression is regulated mainly by transcription factors (TFs) that interact with regulatory cis-elements on DNA sequences. To identify functional regulatory elements, computer searching can predict TF binding sites (TFBS) using position weight matrices (PWMs) that represent positional base frequencies of collected experimentally determined TFBS. A disadvantage of this approach is the large output of results for genomic DNA. One strategy to identify genuine TFBS is to utilize local concentrations of predicted TFBS. It is unclear whether there is a general tendency for TFBS to cluster at promoter regions, although this is the case for certain TFBS. Also unclear is the identification of TFs that have TFBS concentrated in promoters and to what level this occurs. This study hopes to answer some of these questions.
Results
We developed the cluster score measure to evaluate the correlation between predicted TFBS clusters and promoter sequences for each PWM. Non-promoter sequences were used as a control. Using the cluster score, we identified a PWM group called PWM-PCP, in which TFBS clusters positively correlate with promoters, and another PWM group called PWM-NCP, in which TFBS clusters negatively correlate with promoters. The PWM-PCP group comprises 47% of the 199 vertebrate PWMs, while the PWM-NCP group occupied 11 percent. After reducing the effect of CpG islands (CGI) against the clusters using partial correlation coefficients among three properties (promoter, CGI and predicted TFBS cluster), we identified two PWM groups including those strongly correlated with CGI and those not correlated with CGI.
Conclusion
Not all PWMs predict TFBS correlated with human promoter sequences. Two main PWM groups were identified: (1) those that show TFBS clustered in promoters associated with CGI, and (2) those that show TFBS clustered in promoters independent of CGI. Assessment of PWM matches will allow more positive interpretation of TFBS in regulatory regions.
doi:10.1186/1471-2164-5-16
PMCID: PMC375527  PMID: 15053842
promoter; tissue-specific gene expression; position weight matrix; regulatory motif
3.  Identification of co-occurring transcription factor binding sites from DNA sequence using clustered position weight matrices 
Nucleic Acids Research  2011;40(5):e38.
Accurate prediction of transcription factor binding sites (TFBSs) is a prerequisite for identifying cis-regulatory modules that underlie transcriptional regulatory circuits encoded in the genome. Here, we present a computational framework for detecting TFBSs, when multiple position weight matrices (PWMs) for a transcription factor are available. Grouping multiple PWMs of a transcription factor (TF) based on their sequence similarity improves the specificity of TFBS prediction, which was evaluated using multiple genome-wide ChIP-Seq data sets from 26 TFs. The Z-scores of the area under a receiver operating characteristic curve (AUC) values of 368 TFs were calculated and used to statistically identify co-occurring regulatory motifs in the TF bound ChIP loci. Motifs that are co-occurring along with the empirical bindings of E2F, JUN or MYC have been evaluated, in the basal or stimulated condition. Results prove our method can be useful to systematically identify the co-occurring motifs of the TF for the given conditions.
doi:10.1093/nar/gkr1252
PMCID: PMC3300004  PMID: 22187154
4.  Tree-Based Position Weight Matrix Approach to Model Transcription Factor Binding Site Profiles 
PLoS ONE  2011;6(9):e24210.
Most of the position weight matrix (PWM) based bioinformatics methods developed to predict transcription factor binding sites (TFBS) assume each nucleotide in the sequence motif contributes independently to the interaction between protein and DNA sequence, usually producing high false positive predictions. The increasing availability of TF enrichment profiles from recent ChIP-Seq methodology facilitates the investigation of dependent structure and accurate prediction of TFBSs. We develop a novel Tree-based PWM (TPWM) approach to accurately model the interaction between TF and its binding site. The whole tree-structured PWM could be considered as a mixture of different conditional-PWMs. We propose a discriminative approach, called TPD (TPWM based Discriminative Approach), to construct the TPWM from the ChIP-Seq data with a pre-existing PWM. To achieve the maximum discriminative power between the positive and negative datasets, the cutoff value is determined based on the Matthew Correlation Coefficient (MCC). The resulting TPWMs are evaluated with respect to accuracy on extensive synthetic datasets. We then apply our TPWM discriminative approach on several real ChIP-Seq datasets to refine the current TFBS models stored in the TRANSFAC database. Experiments on both the simulated and real ChIP-Seq data show that the proposed method starting from existing PWM has consistently better performance than existing tools in detecting the TFBSs. The improved accuracy is the result of modelling the complete dependent structure of the motifs and better prediction of true positive rate. The findings could lead to better understanding of the mechanisms of TF-DNA interactions.
doi:10.1371/journal.pone.0024210
PMCID: PMC3166302  PMID: 21912677
5.  Identifying Functional Transcription Factor Binding Sites in Yeast by Considering Their Positional Preference in the Promoters 
PLoS ONE  2013;8(12):e83791.
Transcription factor binding site (TFBS) identification plays an important role in deciphering gene regulatory codes. With comprehensive knowledge of TFBSs, one can understand molecular mechanisms of gene regulation. In the recent decades, various computational approaches have been proposed to predict TFBSs in the genome. The TFBS dataset of a TF generated by each algorithm is a ranked list of predicted TFBSs of that TF, where top ranked TFBSs are statistically significant ones. However, whether these statistically significant TFBSs are functional (i.e. biologically relevant) is still unknown. Here we develop a post-processor, called the functional propensity calculator (FPC), to assign a functional propensity to each TFBS in the existing computationally predicted TFBS datasets. It is known that functional TFBSs reveal strong positional preference towards the transcriptional start site (TSS). This motivates us to take TFBS position relative to the TSS as the key idea in building our FPC. Based on our calculated functional propensities, the TFBSs of a TF in the original TFBS dataset could be reordered, where top ranked TFBSs are now the ones with high functional propensities. To validate the biological significance of our results, we perform three published statistical tests to assess the enrichment of Gene Ontology (GO) terms, the enrichment of physical protein-protein interactions, and the tendency of being co-expressed. The top ranked TFBSs in our reordered TFBS dataset outperform the top ranked TFBSs in the original TFBS dataset, justifying the effectiveness of our post-processor in extracting functional TFBSs from the original TFBS dataset. More importantly, assigning functional propensities to putative TFBSs enables biologists to easily identify which TFBSs in the promoter of interest are likely to be biologically relevant and are good candidates to do further detailed experimental investigation. The FPC is implemented as a web tool at http://santiago.ee.ncku.edu.tw/FPC/.
doi:10.1371/journal.pone.0083791
PMCID: PMC3873331  PMID: 24386279
6.  Mechanisms and Evolution of Control Logic in Prokaryotic Transcriptional Regulation 
Summary: A major part of organismal complexity and versatility of prokaryotes resides in their ability to fine-tune gene expression to adequately respond to internal and external stimuli. Evolution has been very innovative in creating intricate mechanisms by which different regulatory signals operate and interact at promoters to drive gene expression. The regulation of target gene expression by transcription factors (TFs) is governed by control logic brought about by the interaction of regulators with TF binding sites (TFBSs) in cis-regulatory regions. A factor that in large part determines the strength of the response of a target to a given TF is motif stringency, the extent to which the TFBS fits the optimal TFBS sequence for a given TF. Advances in high-throughput technologies and computational genomics allow reconstruction of transcriptional regulatory networks in silico. To optimize the prediction of transcriptional regulatory networks, i.e., to separate direct regulation from indirect regulation, a thorough understanding of the control logic underlying the regulation of gene expression is required. This review summarizes the state of the art of the elements that determine the functionality of TFBSs by focusing on the molecular biological mechanisms and evolutionary origins of cis-regulatory regions.
doi:10.1128/MMBR.00037-08
PMCID: PMC2738135  PMID: 19721087
7.  Flanking sequence context-dependent transcription factor binding in early Drosophila development 
BMC Bioinformatics  2013;14:298.
Background
Gene expression in the Drosophila embryo is controlled by functional interactions between a large network of protein transcription factors (TFs) and specific sequences in DNA cis-regulatory modules (CRMs). The binding site sequences for any TF can be experimentally determined and represented in a position weight matrix (PWM). PWMs can then be used to predict the location of TF binding sites in other regions of the genome, although there are limitations to this approach as currently implemented.
Results
In this proof-of-principle study, we analyze 127 CRMs and focus on four TFs that control transcription of target genes along the anterio-posterior axis of the embryo early in development. For all four of these TFs, there is some degree of conserved flanking sequence that extends beyond the predicted binding regions. A potential role for these conserved flanking sequences may be to enhance the specificity of TF binding, as the abundance of these sequences is greatly diminished when we examine only predicted high-affinity binding sites.
Conclusions
Expanding PWMs to include sequence context-dependence will increase the information content in PWMs and facilitate a more efficient functional identification and dissection of CRMs.
doi:10.1186/1471-2105-14-298
PMCID: PMC3851692  PMID: 24093548
Transcription factor; Binding site; Position weight matrix; Enhancer; Cis-regulatory module; Drosophila
8.  A ChIP-Seq Benchmark Shows That Sequence Conservation Mainly Improves Detection of Strong Transcription Factor Binding Sites 
PLoS ONE  2011;6(4):e18430.
Background
Transcription factors are important controllers of gene expression and mapping transcription factor binding sites (TFBS) is key to inferring transcription factor regulatory networks. Several methods for predicting TFBS exist, but there are no standard genome-wide datasets on which to assess the performance of these prediction methods. Also, it is believed that information about sequence conservation across different genomes can generally improve accuracy of motif-based predictors, but it is not clear under what circumstances use of conservation is most beneficial.
Results
Here we use published ChIP-seq data and an improved peak detection method to create comprehensive benchmark datasets for prediction methods which use known descriptors or binding motifs to detect TFBS in genomic sequences. We use this benchmark to assess the performance of five different prediction methods and find that the methods that use information about sequence conservation generally perform better than simpler motif-scanning methods. The difference is greater on high-affinity peaks and when using short and information-poor motifs. However, if the motifs are specific and information-rich, we find that simple motif-scanning methods can perform better than conservation-based methods.
Conclusions
Our benchmark provides a comprehensive test that can be used to rank the relative performance of transcription factor binding site prediction methods. Moreover, our results show that, contrary to previous reports, sequence conservation is better suited for predicting strong than weak transcription factor binding sites.
doi:10.1371/journal.pone.0018430
PMCID: PMC3077367  PMID: 21533218
9.  Prediction and Experimental Validation of Novel STAT3 Target Genes in Human Cancer Cells 
PLoS ONE  2009;4(9):e6911.
The comprehensive identification of functional transcription factor binding sites (TFBSs) is an important step in understanding complex transcriptional regulatory networks. This study presents a motif-based comparative approach, STAT-Finder, for identifying functional DNA binding sites of STAT3 transcription factor. STAT-Finder combines STAT-Scanner, which was designed to predict functional STAT TFBSs with improved sensitivity, and a motif-based alignment to minimize false positive prediction rates. Using two reference sets containing promoter sequences of known STAT3 target genes, STAT-Finder identified functional STAT3 TFBSs with enhanced prediction efficiency and sensitivity relative to other conventional TFBS prediction tools. In addition, STAT-Finder identified novel STAT3 target genes among a group of genes that are over-expressed in human cancer cells. The binding of STAT3 to the predicted TFBSs was also experimentally confirmed through chromatin immunoprecipitation. Our proposed method provides a systematic approach to the prediction of functional TFBSs that can be applied to other TFs.
doi:10.1371/journal.pone.0006911
PMCID: PMC2731854  PMID: 19730699
10.  Dinucleotide Weight Matrices for Predicting Transcription Factor Binding Sites: Generalizing the Position Weight Matrix 
PLoS ONE  2010;5(3):e9722.
Background
Identifying transcription factor binding sites (TFBS) in silico is key in understanding gene regulation. TFBS are string patterns that exhibit some variability, commonly modelled as “position weight matrices” (PWMs). Though convenient, the PWM has significant limitations, in particular the assumed independence of positions within the binding motif; and predictions based on PWMs are usually not very specific to known functional sites. Analysis here on binding sites in yeast suggests that correlation of dinucleotides is not limited to near-neighbours, but can extend over considerable gaps.
Methodology/Principal Findings
I describe a straightforward generalization of the PWM model, that considers frequencies of dinucleotides instead of individual nucleotides. Unlike previous efforts, this method considers all dinucleotides within an extended binding region, and does not make an attempt to determine a priori the significance of particular dinucleotide correlations. I describe how to use a “dinucleotide weight matrix” (DWM) to predict binding sites, dealing in particular with the complication that its entries are not independent probabilities. Benchmarks show, for many factors, a dramatic improvement over PWMs in precision of predicting known targets. In most cases, significant further improvement arises by extending the commonly defined “core motifs” by about 10bp on either side. Though this flanking sequence shows no strong motif at the nucleotide level, the predictive power of the dinucleotide model suggests that the “signature” in DNA sequence of protein-binding affinity extends beyond the core protein-DNA contact region.
Conclusion/Significance
While computationally more demanding and slower than PWM-based approaches, this dinucleotide method is straightforward, both conceptually and in implementation, and can serve as a basis for future improvements.
doi:10.1371/journal.pone.0009722
PMCID: PMC2842295  PMID: 20339533
11.  AthaMap-assisted transcription factor target gene identification in Arabidopsis thaliana 
The AthaMap database generates a map of potential transcription factor binding sites (TFBS) and small RNA target sites in the Arabidopsis thaliana genome. The database contains sites for 115 different transcription factors (TFs). TFBS were identified with positional weight matrices (PWMs) or with single binding sites. With the new web tool ‘Gene Identification’, it is possible to identify potential target genes for selected TFs. For these analyses, the user can define a region of interest of up to 6000 bp in all annotated genes. For TFBS determined with PWMs, the search can be restricted to high-quality TFBS. The results are displayed in tables that identify the gene, position of the TFBS and, if applicable, individual score of the TFBS. In addition, data files can be downloaded that harbour positional information of TFBS of all TFs in a region between −2000 and +2000 bp relative to the transcription or translation start site. Also, data content of AthaMap was increased and the database was updated to the TAIR8 genome release.
Database URL: http://www.athamap.de/gene_ident.php
doi:10.1093/database/baq034
PMCID: PMC3011983  PMID: 21177332
12.  Finding subtypes of transcription factor motif pairs with distinct regulatory roles 
Nucleic Acids Research  2011;39(11):e76.
DNA sequences bound by a transcription factor (TF) are presumed to contain sequence elements that reflect its DNA binding preferences and its downstream-regulatory effects. Experimentally identified TF binding sites (TFBSs) are usually similar enough to be summarized by a ‘consensus’ motif, representative of the TF DNA binding specificity. Studies have shown that groups of nucleotide TFBS variants (subtypes) can contribute to distinct modes of downstream regulation by the TF via differential recruitment of cofactors. A TFA may bind to TFBS subtypes a1 or a2 depending on whether it associates with cofactors TFB or TFC, respectively. While some approaches can discover motif pairs (dyads), none address the problem of identifying ‘variants’ of dyads. TFs are key components of multiple regulatory pathways targeting different sets of genes perhaps with different binding preferences. Identifying the discriminating TF–DNA associations that lead to the differential downstream regulation is thus essential. We present DiSCo (Discovery of Subtypes and Cofactors), a novel approach for identifying variants of dyad motifs (and their respective target sequence sets) that are instrumental for differential downstream regulation. Using both simulated and experimental datasets, we demonstrate how current motif discovery can be successfully leveraged to address this question.
doi:10.1093/nar/gkr205
PMCID: PMC3113591  PMID: 21486752
13.  A Structural-Based Strategy for Recognition of Transcription Factor Binding Sites 
PLoS ONE  2013;8(1):e52460.
Scanning through genomes for potential transcription factor binding sites (TFBSs) is becoming increasingly important in this post-genomic era. The position weight matrix (PWM) is the standard representation of TFBSs utilized when scanning through sequences for potential binding sites. However, many transcription factor (TF) motifs are short and highly degenerate, and methods utilizing PWMs to scan for sites are plagued by false positives. Furthermore, many important TFs do not have well-characterized PWMs, making identification of potential binding sites even more difficult. One approach to the identification of sites for these TFs has been to use the 3D structure of the TF to predict the DNA structure around the TF and then to generate a PWM from the predicted 3D complex structure. However, this approach is dependent on the similarity of the predicted structure to the native structure. We introduce here a novel approach to identify TFBSs utilizing structure information that can be applied to TFs without characterized PWMs, as long as a 3D complex structure (TF/DNA) exists. This approach utilizes an energy function that is uniquely trained on each structure. Our approach leads to increased prediction accuracy and robustness compared with those using a more general energy function. The software is freely available upon request.
doi:10.1371/journal.pone.0052460
PMCID: PMC3540023  PMID: 23320072
14.  MOPAT: a graph-based method to predict recurrent cis-regulatory modules from known motifs 
Nucleic Acids Research  2008;36(13):4488-4497.
The identification of cis-regulatory modules (CRMs) can greatly advance our understanding of eukaryotic regulatory mechanism. Current methods to predict CRMs from known motifs either depend on multiple alignments or can only deal with a small number of known motifs provided by users. These methods are problematic when binding sites are not well aligned in multiple alignments or when the number of input known motifs is large. We thus developed a new CRM identification method MOPAT (motif pair tree), which identifies CRMs through the identification of motif modules, groups of motifs co-ccurring in multiple CRMs. It can identify ‘orthologous’ CRMs without multiple alignments. It can also find CRMs given a large number of known motifs. We have applied this method to mouse developmental genes, and have evaluated the predicted CRMs and motif modules by microarray expression data and known interacting motif pairs. We show that the expression profiles of the genes containing CRMs of the same motif module correlate significantly better than those of a random set of genes do. We also show that the known interacting motif pairs are significantly included in our predictions. Compared with several current methods, our method shows better performance in identifying meaningful CRMs.
doi:10.1093/nar/gkn407
PMCID: PMC2490743  PMID: 18606616
15.  An intuitionistic approach to scoring DNA sequences against transcription factor binding site motifs 
BMC Bioinformatics  2010;11:551.
Background
Transcription factors (TFs) control transcription by binding to specific regions of DNA called transcription factor binding sites (TFBSs). The identification of TFBSs is a crucial problem in computational biology and includes the subtask of predicting the location of known TFBS motifs in a given DNA sequence. It has previously been shown that, when scoring matches to known TFBS motifs, interdependencies between positions within a motif should be taken into account. However, this remains a challenging task owing to the fact that sequences similar to those of known TFBSs can occur by chance with a relatively high frequency. Here we present a new method for matching sequences to TFBS motifs based on intuitionistic fuzzy sets (IFS) theory, an approach that has been shown to be particularly appropriate for tackling problems that embody a high degree of uncertainty.
Results
We propose SCintuit, a new scoring method for measuring sequence-motif affinity based on IFS theory. Unlike existing methods that consider dependencies between positions, SCintuit is designed to prevent overestimation of less conserved positions of TFBSs. For a given pair of bases, SCintuit is computed not only as a function of their combined probability of occurrence, but also taking into account the individual importance of each single base at its corresponding position. We used SCintuit to identify known TFBSs in DNA sequences. Our method provides excellent results when dealing with both synthetic and real data, outperforming the sensitivity and the specificity of two existing methods in all the experiments we performed.
Conclusions
The results show that SCintuit improves the prediction quality for TFs of the existing approaches without compromising sensitivity. In addition, we show how SCintuit can be successfully applied to real research problems. In this study the reliability of the IFS theory for motif discovery tasks is proven.
doi:10.1186/1471-2105-11-551
PMCID: PMC3098096  PMID: 21059262
16.  An information transmission model for transcription factor binding at regulatory DNA sites 
Background
Computational identification of transcription factor binding sites (TFBSs) is a rapid, cost-efficient way to locate unknown regulatory elements. With increased potential for high-throughput genome sequencing, the availability of accurate computational methods for TFBS prediction has never been as important as it currently is. To date, identifying TFBSs with high sensitivity and specificity is still an open challenge, necessitating the development of novel models for predicting transcription factor-binding regulatory DNA elements.
Results
Based on the information theory, we propose a model for transcription factor binding of regulatory DNA sites. Our model incorporates position interdependencies in effective ways. The model computes the information transferred (TI) between the transcription factor and the TFBS during the binding process and uses TI as the criterion to determine whether the sequence motif is a possible TFBS. Based on this model, we developed a computational method to identify TFBSs. By theoretically proving and testing our model using both real and artificial data, we found that our model provides highly accurate predictive results.
Conclusions
In this study, we present a novel model for transcription factor binding regulatory DNA sites. The model can provide an increased ability to detect TFBSs.
doi:10.1186/1742-4682-9-19
PMCID: PMC3442977  PMID: 22672438
17.  Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions 
BMC Bioinformatics  2007;8:481.
Background
Reliable transcription factor binding site (TFBS) prediction methods are essential for computer annotation of large amount of genome sequence data. However, current methods to predict TFBSs are hampered by the high false-positive rates that occur when only sequence conservation at the core binding-sites is considered.
Results
To improve this situation, we have quantified the performance of several Position Weight Matrix (PWM) algorithms, using exhaustive approaches to find their optimal length and position. We applied these approaches to bio-medically important TFBSs involved in the regulation of cell growth and proliferation as well as in inflammatory, immune, and antiviral responses (NF-κB, ISGF3, IRF1, STAT1), obesity and lipid metabolism (PPAR, SREBP, HNF4), regulation of the steroidogenic (SF-1) and cell cycle (E2F) genes expression. We have also gained extra specificity using a method, entitled SiteGA, which takes into account structural interactions within TFBS core and flanking regions, using a genetic algorithm (GA) with a discriminant function of locally positioned dinucleotide (LPD) frequencies.
To ensure a higher confidence in our approach, we applied resampling-jackknife and bootstrap tests for the comparison, it appears that, optimized PWM and SiteGA have shown similar recognition performances. Then we applied SiteGA and optimized PWMs (both separately and together) to sequences in the Eukaryotic Promoter Database (EPD). The resulting SiteGA recognition models can now be used to search sequences for BSs using the web tool, SiteGA.
Analysis of dependencies between close and distant LPDs revealed by SiteGA models has shown that the most significant correlations are between close LPDs, and are generally located in the core (footprint) region. A greater number of less significant correlations are mainly between distant LPDs, which spanned both core and flanking regions. When SiteGA and optimized PWM models were applied together, this substantially reduced false positives at least at higher stringencies.
Conclusion
Based on this analysis, SiteGA adds substantial specificity even to optimized PWMs and may be considered for large-scale genome analysis. It adds to the range of techniques available for TFBS prediction, and EPD analysis has led to a list of genes which appear to be regulated by the above TFs.
doi:10.1186/1471-2105-8-481
PMCID: PMC2265442  PMID: 18093302
18.  COTRASIF: conservation-aided transcription-factor-binding site finder 
Nucleic Acids Research  2009;37(7):e49.
COTRASIF is a web-based tool for the genome-wide search of evolutionary conserved regulatory regions (transcription factor-binding sites, TFBS) in eukaryotic gene promoters. Predictions are made using either a position-weight matrix search method, or a hidden Markov model search method, depending on the availability of the matrix and actual sequences of the target TFBS. COTRASIF is a fully integrated solution incorporating both a gene promoter database (based on the regular Ensembl genome annotation releases) and both JASPAR and TRANSFAC databases of TFBS matrices. To decrease the false-positives rate an integrated evolutionary conservation filter is available, which allows the selection of only those of the predicted TFBS that are present in the promoters of the related species’ orthologous genes. COTRASIF is very easy to use, implements a regularly updated database of promoters and is a powerful solution for genome-wide TFBS searching. COTRASIF is freely available at http://biomed.org.ua/COTRASIF/.
doi:10.1093/nar/gkp084
PMCID: PMC2673430  PMID: 19264796
19.  A new generation of JASPAR, the open-access repository for transcription factor binding site profiles 
Nucleic Acids Research  2005;34(Database issue):D95-D97.
JASPAR is the most complete open-access collection of transcription factor binding site (TFBS) matrices. In this new release, JASPAR grows into a meta-database of collections of TFBS models derived by diverse approaches. We present JASPAR CORE—an expanded version of the original, non-redundant collection of annotated, high-quality matrix-based transcription factor binding profiles, JASPAR FAM—a collection of familial TFBS models and JASPAR phyloFACTS—a set of matrices computationally derived from statistically overrepresented, evolutionarily conserved regulatory region motifs from mammalian genomes. JASPAR phyloFACTS serves as a non-redundant extension to JASPAR CORE, enhancing the overall breadth of JASPAR for promoter sequence analysis. The new release of JASPAR is available at .
doi:10.1093/nar/gkj115
PMCID: PMC1347477  PMID: 16381983
20.  A probabilistic approach to learn chromatin architecture and accurate inference of the NF-κB/RelA regulatory network using ChIP-Seq 
Nucleic Acids Research  2013;41(15):7240-7259.
Using nuclear factor-κB (NF-κB) ChIP-Seq data, we present a framework for iterative learning of regulatory networks. For every possible transcription factor-binding site (TFBS)-putatively regulated gene pair, the relative distance and orientation are calculated to learn which TFBSs are most likely to regulate a given gene. Weighted TFBS contributions to putative gene regulation are integrated to derive an NF-κB gene network. A de novo motif enrichment analysis uncovers secondary TFBSs (AP1, SP1) at characteristic distances from NF-κB/RelA TFBSs. Comparison with experimental ENCODE ChIP-Seq data indicates that experimental TFBSs highly correlate with predicted sites. We observe that RelA-SP1-enriched promoters have distinct expression profiles from that of RelA-AP1 and are enriched in introns, CpG islands and DNase accessible sites. Sixteen novel NF-κB/RelA-regulated genes and TFBSs were experimentally validated, including TANK, a negative feedback gene whose expression is NF-κB/RelA dependent and requires a functional interaction with the AP1 TFBSs. Our probabilistic method yields more accurate NF-κB/RelA-regulated networks than a traditional, distance-based approach, confirmed by both analysis of gene expression and increased informativity of Genome Ontology annotations. Our analysis provides new insights into how co-occurring TFBSs and local chromatin context orchestrate activation of NF-κB/RelA sub-pathways differing in biological function and temporal expression patterns.
doi:10.1093/nar/gkt493
PMCID: PMC3753626  PMID: 23771139
21.  Identification of polymorphic antioxidant response elements (AREs) in the human genome 
Human molecular genetics  2007;16(10):1188-1200.
Single nucleotide polymorphisms (SNPs) in transcription factor binding sites (TFBSs) may affect the binding of transcription factors, lead to differences in gene expression and phenotypes, and therefore affect susceptibility to environmental exposure. We developed an integrated computational system for discovering functional SNPs in TFBSs in the human genome and predicting their impact on the expression of target genes. In this system we: (1) construct a position weight matrix (PWM) from a collection of experimentally discovered TFBSs; (2) predict TFBSs in SNP sequences using the PWM and map SNPs to the upstream regions of genes; (3) examine the evolutionary conservation of putative TFBSs by phylogenetic footprinting; (4) prioritize candidate SNPs based on microarray expression profiles from tissues in which the transcription factor of interest is either deleted or over-expressed; and (5) finally, analyze association of SNP genotypes with gene expression phenotypes. The application of our system has been tested to identify functional polymorphisms in the antioxidant response element (ARE), a cis-acting enhancer sequence found in the promoter region of many genes that encode antioxidant and Phase II detoxification enzymes/proteins. In response to oxidative stress, the transcription factor NRF2 (nuclear factor erythroid-derived 2-like 2) binds to AREs, mediating transcriptional activation of its responsive genes and modulating in vivo defense mechanisms against oxidative damage. Using our novel computational tools, we have identified a set of polymorphic AREs with functional evidence, showing the utility of our system to direct further experimental validation of genomic sequence variations that could be useful for identifying high-risk individuals.
doi:10.1093/hmg/ddm066
PMCID: PMC2805149  PMID: 17409198
22.  Optimizing the GATA-3 position weight matrix to improve the identification of novel binding sites 
BMC Genomics  2012;13:416.
Background
The identifying of binding sites for transcription factors is a key component of gene regulatory network analysis. This is often done using position-weight matrices (PWMs). Because of the importance of in silico mapping of tentative binding sites, we previously developed an approach for PWM optimization that substantially improves the accuracy of such mapping.
Results
The present work implements the optimization algorithm applied to the existing PWM for GATA-3 transcription factor and builds a new di-nucleotide PWM. The existing available PWM is based on experimental data adopted from Jaspar. The optimized PWM substantially improves the sensitivity and specificity of the TF mapping compared to the conventional applications. The refined PWM also facilitates in silico identification of novel binding sites that are supported by experimental data. We also describe uncommon positioning of binding motifs for several T-cell lineage specific factors in human promoters.
Conclusion
Our proposed di-nucleotide PWM approach outperforms the conventional mono-nucleotide PWM approach with respect to GATA-3. Therefore our new di-nucleotide PWM provides new insight into plausible transcriptional regulatory interactions in human promoters.
doi:10.1186/1471-2164-13-416
PMCID: PMC3481455  PMID: 22913572
Transcription factor; Binding sites; GATA-3; Human promoter; Position weight matrix; Optimization
23.  Multiplatform genome-wide identification and modeling of functional human estrogen receptor binding sites 
Genome Biology  2006;7(9):R82.
Refinement of the functional human estrogen receptor binding site model using a multi-platform genome-wide approach reveals extended binding specificity signal.
Background
Transcription factor binding sites (TFBS) impart specificity to cellular transcriptional responses and have largely been defined by consensus motifs derived from a handful of validated sites. The low specificity of the computational predictions of TFBSs has been attributed to ubiquity of the motifs and the relaxed sequence requirements for binding. We posited that the inadequacy is due to limited input of empirically verified sites, and demonstrated a multiplatform approach to constructing a robust model.
Results
Using the TFBS for the estrogen receptor (ER)α (estrogen response element [ERE]) as a model system, we extracted EREs from multiple molecular and genomic platforms whose binding to ERα has been experimentally confirmed or rejected. In silico analyses revealed significant sequence information flanking the standard binding consensus, discriminating ERE-like sequences that bind ERα from those that are nonbinders. We extended the ERE consensus by three bases, bearing a terminal G at the third position 3' and an initiator C at the third position 5', which were further validated using surface plasmon resonance spectroscopy. Our functional human ERE prediction algorithm (h-ERE) outperformed existing predictive algorithms and produced fewer than 5% false negatives upon experimental validation.
Conclusion
Building upon a larger experimentally validated ERE set, the h-ERE algorithm is able to demarcate better the universe of ERE-like sequences that are potential ER binders. Only 14% of the predicted optimal binding sites were utilized under the experimental conditions employed, pointing to other selective criteria not related to EREs. Other factors, in addition to primary nucleotide sequence, will ultimately determine binding site selection.
doi:10.1186/gb-2006-7-9-r82
PMCID: PMC1794554  PMID: 16961928
24.  ModuleDigger: an itemset mining framework for the detection of cis-regulatory modules 
BMC Bioinformatics  2009;10(Suppl 1):S30.
Background
The detection of cis-regulatory modules (CRMs) that mediate transcriptional responses in eukaryotes remains a key challenge in the postgenomic era. A CRM is characterized by a set of co-occurring transcription factor binding sites (TFBS). In silico methods have been developed to search for CRMs by determining the combination of TFBS that are statistically overrepresented in a certain geneset. Most of these methods solve this combinatorial problem by relying on computational intensive optimization methods. As a result their usage is limited to finding CRMs in small datasets (containing a few genes only) and using binding sites for a restricted number of transcription factors (TFs) out of which the optimal module will be selected.
Results
We present an itemset mining based strategy for computationally detecting cis-regulatory modules (CRMs) in a set of genes. We tested our method by applying it on a large benchmark data set, derived from a ChIP-Chip analysis and compared its performance with other well known cis-regulatory module detection tools.
Conclusion
We show that by exploiting the computational efficiency of an itemset mining approach and combining it with a well-designed statistical scoring scheme, we were able to prioritize the biologically valid CRMs in a large set of coregulated genes using binding sites for a large number of potential TFs as input.
doi:10.1186/1471-2105-10-S1-S30
PMCID: PMC2648767  PMID: 19208131
25.  Motif-blind, genome-wide discovery of cis-regulatory modules in Drosophila and mouse 
Developmental cell  2009;17(4):568-579.
SUMMARY
We present new approaches to cis-regulatory module (CRM) discovery in the common scenario where relevant transcription factors and/or motifs are unknown. Beginning with a small list of CRMs mediating a common gene expression pattern, we search genome-wide for CRMs with similar functionality, using new statistical scores, and without requiring known motifs or accurate motif discovery. We cross-validate our predictions on 31 regulatory networks in Drosophila and through correlations with gene expression data. Five predicted modules tested using an in vivo reporter gene assay all show tissue-specific regulatory activity. We also demonstrate our methods’ ability to predict mammalian tissue-specific enhancers. Finally, we predict human CRMs that regulate early blood and cardiovascular development. In vivo transgenic mouse analysis of two predicted CRMs demonstrates that both have appropriate enhancer activity. Overall, 7/7 predictions were validated successfully in vivo, demonstrating the effectiveness of our approach for insect and mammalian genomes.
doi:10.1016/j.devcel.2009.09.002
PMCID: PMC2768654  PMID: 19853570

Results 1-25 (610630)