PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (489403)

Clipboard (0)
None

Related Articles

1.  Investigation of the locus near MC4R with childhood obesity in Americans of European and African ancestry 
Obesity (Silver Spring, Md.)  2009;17(7):1461-1465.
Recently a modest, but consistently, replicated association was demonstrated between obesity and the single nucleotide polymorphism (SNP), rs17782313, 3’ of the MC4R locus as a consequence of a meta-analysis of genome wide association (GWA) studies of the disease in Caucasian populations. We investigated the association in the context of the childhood form of the disease utilizing data from our ongoing GWA study in a cohort of 728 European American (EA) obese children (BMI ≥ 95th percentile) and 3,960 EA controls (BMI < 95th percentile), as well as 1,008 African American (AA) obese children and 2,715 AA controls. rs571312, rs10871777 and rs476828 (perfect surrogates for rs17782313) yielded odds ratios in the EA cohort of 1.142 (P = 0.045), 1.137 (P = 0.054) and 1.145 (P = 0.042); however, there was no significant association with these SNPs in the AA cohort. When investigating all thirty SNPs present on the Illumina BeadChip at this locus, again there was no evidence for association in AA cases when correcting for the number of tests employed. As such, variants 3’ to the MC4R locus present on the genotyping platform utilized confer a similar magnitude of risk of obesity in Caucasian children as to their adult Caucasian counterparts but this observation did not extend to African Americans.
doi:10.1038/oby.2009.53
PMCID: PMC2860794  PMID: 19265794
2.  The missense variation landscape of FTO, MC4R and TMEM18 in obese children of African ancestry 
Obesity (Silver Spring, Md.)  2013;21(1):159-163.
Common variation at the loci harboring FTO, MC4R and TMEM18 is consistently reported as being statistically the most strongly associated with obesity. We investigated if these loci also harbor rarer missense variants that confer substantially higher risk of common childhood obesity in African American (AA) children. We sequenced the exons of FTO, MC4R and TMEM18 in an initial subset of our cohort i.e. 200 obese (BMI≥95th percentile) and 200 lean AA children (BMI≤5th percentile). Any missense exonic variants that were uncovered went on to be further genotyped in a further 768 obese and 768 lean (BMI≤50th percentile) children of the same ethnicity. A number of exonic variants were observed from our sequencing effort: seven in FTO, of which four were non-synonymous (A163T, G182A, M400V and A405V), thirteen in MC4R, of which six were non-synonymous (V103I, N123S, S136A, F202L, N240S and I251L) and four in TMEM18, of which two were non-synonymous (P2S and V113L). Follow-up genotyping of these missense variants revealed only one significant difference in allele frequency between cases and controls, namely with N240S in MC4R(Fisher's Exact P = 0.0001). In summary, moderately rare missense variants within the FTO, MC4R and TMEM18 genes observed in our study did not confer risk of common childhood obesity in African Americans except for a degree of evidence for one known loss-of-function variant in MC4R.
doi:10.1002/oby.20147
PMCID: PMC3605748  PMID: 23505181
Obesity; Pediatrics; Genomics
3.  Association of FTO Polymorphisms with Early Age of Obesity in Obese Italian Subjects 
Experimental Diabetes Research  2012;2012:872176.
Obesity is recognized as a major health problem worldwide. Genetic factors play a major role in obesity, and genomewide association studies have provided evidence that several common variants within the fat mass- and obesity-associated (FTO) gene are significantly associated with obesity. Very limited data is available on FTO in the Italian population. Aims of our study are to investigate: (1) the association of FTO gene SNPs rs9939609 and rs9930506 with body mass index (BMI) and obesity-related parameters in a large cohort (n = 752) of Italian obese subjects; (2) the association between the two FTO SNPs and age of onset of obesity. Our results demonstrate a strong association between FTO SNPs rs9939609 (P < 0.043) and rs9930506 (P < 0.029) with BMI in the Italian population. FTO rs9930506 was significantly associated with higher BMI in a G allele dose-dependent manner (BMI + 1.4 kg/m2 per G allele). We also observed that the association with BMI of the two FTO variants varied with age, with the carriers of the risk alleles developing an increase in body weight earlier in life. In conclusion, our study further demonstrates a role of the genetic variability in FTO on BMI in a large Italian population.
doi:10.1155/2012/872176
PMCID: PMC3290805  PMID: 22454631
4.  Associations of Six Single Nucleotide Polymorphisms in Obesity-Related Genes With BMI and Risk of Obesity in Chinese Children 
Diabetes  2010;59(12):3085-3089.
OBJECTIVE
Childhood obesity strongly predisposes to some adult diseases. Recently, genome-wide association (GWA) studies in Caucasians identified multiple single nucleotide polymorphisms (SNPs) associated with BMI and obesity. The associations of those SNPs with BMI and obesity among other ethnicities are not fully described, especially in children. Among those previously identified SNPs, we selected six (rs7138803, rs1805081, rs6499640, rs17782313, rs6265, and rs10938397, in or near obesity-related genes FAIM2, NPC1, FTO, MC4R, BDNF, and GNPDA2, respectively) because of the relatively high minor allele frequencies in Chinese individuals and tested the associations of the SNPs with BMI and obesity in Chinese children.
RESEARCH DESIGN AND METHODS
We investigated the associations of these SNPs with BMI and obesity in school-aged children. A total of 3,503 children participated in the study, including 1,229 obese, 655 overweight, and 1,619 normal-weight children (diagnosed by the Chinese age- and sex-specific BMI cutoffs).
RESULTS
After age and sex adjustment and correction for multiple testing, the SNPs rs17782313, rs6265, and rs10938397 were associated with BMI (P = 1.0 × 10−5, 0.038, and 0.00093, respectively) and also obesity (P = 5.0 × 10−6, 0.043, and 0.00085, respectively) in the Chinese children. The SNPs rs17782313 and rs10938397 were also significantly associated with waist circumference, waist-to-height ratio, and fat mass percentage.
CONCLUSIONS
Results of this study support obesity-related genes in adults as important genes for BMI variation in children and suggest that some SNPs identified by GWA studies in Caucasians also confer risk for obesity in Chinese children.
doi:10.2337/db10-0273
PMCID: PMC2992769  PMID: 20843981
5.  The contribution of FTO and UCP-1 SNPs to extreme obesity, diabetes and cardiovascular risk in Brazilian individuals 
BMC Medical Genetics  2012;13:101.
Background
Obesity has become a common human disorder associated with significant morbidity and mortality and adverse effects on quality of life. Sequence variants in two candidate genes, FTO and UCP-1, have been reported to be overrepresented in obese Caucasian population. The association of these genes polymorphisms with the obesity phenotype in a multiethnic group such as the Brazilian population has not been previously reported.
Methods
To assess the putative contribution of both FTO and UCP-1 to body mass index (BMI) and cardiovascular risk we genotyped SNPs rs9939609 (FTO) and rs6536991, rs22705565 and rs12502572 (UCP-1) from 126 morbidly obese subjects (BMI 42.9 ± 5.6 kg/m2, mean ± SE) and 113 normal-weight ethnically matched controls (BMI 22.6 ± 3.5 kg/m2, mean ± SE). Waist circumference, blood pressure, glucose and serum lipids were also measured. Each sample was also genotyped for 40 biallelic short insertion/deletion polymorphism (indels) for ethnic assignment and to estimate the proportion of European, African and Amerindian biogeographical ancestry in the Brazilian population.
Results
Cases did not differ from controls in the proportions of genomic ancestry. The FTO SNP rs9939609 and UCP-1 SNP rs6536991 were significantly associated with BMI (p= 0.04 and p<0.0001 respectively). An allele dose dependent tendency was observed for BMI for rs6536991 sample of controls. No other significant associations between any SNP and hypertension, hyperlipidemia and diabetes were noted after correction for BMI and no significant synergistic effect between FTO and UCP-1 SNPs with obesity were noted. There was not an association between rs9939609 (FTO) and rs6536991 (UCP-1) in with maximum weight loss after 1 year in 94 obese patients who underwent bariatric surgery.
Conclusion
Our data are consistent with FTO rs9939609 and UCP-1 rs6536991 common variants as contributors to obesity in the Brazilian population.
doi:10.1186/1471-2350-13-101
PMCID: PMC3526455  PMID: 23134754
FTO; UCP-1; Morbid obesity; Brazilian population; Multiethnic sample
6.  Analysis of FTO Gene Variants with Measures of Obesity and Glucose Homeostasis in the IRAS Family Study 
Human genetics  2009;125(5-6):615-626.
Multiple studies have identified FTO gene variants associated with measures of adiposity in European-derived populations. The study objective was to determine whether FTO variants were associated with adiposity, including visceral and subcutaneous adipose tissue (VAT; SAT), and glucose homeostasis measures in the Insulin Resistance Atherosclerosis Family Study (IRASFS). A total of 27 SNPs in FTO intron 1, including SNPs prominent in the literature (rs9939609, rs8050136, rs1121980, rs17817449, rs1421085, and rs3751812), were genotyped in 1,424 Hispanic Americans and 604 African Americans. Multiple SNPs were associated with BMI and SAT (p-values ranging from 0.001 to 0.033), and trending or associated with waist circumference (p-values ranging from 0.008 to 0.099) in the Hispanic Americans. No association was observed with VAT, illustrating that FTO variants are associated with overall fat mass instead of specific fat depots. For the glucose homeostasis measures, variants were associated with fasting insulin but, consistent with other studies, after BMI adjustment, no evidence of association remained. The lack of association of FTO SNPs with insulin sensitivity is consistent with the lack of association with VAT, since these traits are strongly correlated. In the African Americans, only rs8050136 and rs9939609 were associated with BMI and WAIST (p-values of 0.011 and 0.034), and associated or trending towards association with SAT (p-values of 0.038 and 0.058). These results confirm that FTO variants are associated with adiposity measures, predisposing individuals to obesity by increasing overall fat mass in Hispanic Americans and to a lesser degree in African Americans.
doi:10.1007/s00439-009-0656-3
PMCID: PMC2792578  PMID: 19322589
fat mass and obesity associated (FTO) gene; single nucleotide polymorphism; genetic association; adiposity; glucose homeostasis
7.  Association Study of Fat-mass and Obesity-associated Gene and Body Mass Index in Japanese Patients with Schizophrenia and Healthy Subjects 
Objective
Fat-mass and obesity-associated (FTO) gene is known to be involved in the pathophysiology of obesity and a single-nucleotide polymorphism (SNP) rs9939609 of FTO gene is repeatedly confirmed to be associated with body mass index (BMI) and obesity. The aim of this study is to elucidate effects of FTO gene polymorphism on BMI in Japanese patients with schizophrenia and healthy subjects.
Methods
Three hundred fifty one patients with schizophrenia and 342 age- and sex-matched healthy subjects participated in the study. Information on BMI and antipsychotic medication was also collected from patients and healthy subjects. Genotype of the FTO SNP rs9939609 was determined by TaqMan SNP Genotyping Assays.
Results
There was no significant difference in BMI between patients and healthy subjects. No significant difference in BMI was observed among any medications. We observed no significant difference in rs9939609 allele frequencies between patients and healthy subjects. There was a significant difference in BMI between healthy subjects with risk (AA or TA) genotypes and those with TT genotype. We also observed a significant positive correlation between the number of risk allele (A allele) and BMI in healthy subjects.
Conclusion
Our study suggested that FTO rs9939609 polymorphism might have some impacts on the BMI in healthy subjects, but might not have same impacts on the BMI of patients with schizophrenia.
doi:10.9758/cpn.2012.10.3.185
PMCID: PMC3569167  PMID: 23431037
Fat-mass and obesity-associated; Body mass index; Schizophrenia; Gene association studies; Antipsychotics agents
8.  FTO polymorphisms are associated with adult body mass index (BMI) and colorectal adenomas in African-Americans 
Carcinogenesis  2011;32(5):748-756.
Obesity is a known risk factor for colon cancer and higher body mass index (BMI) has been associated with colorectal adenomas, which are precursor lesions to most colorectal cancers. Polymorphisms in the fat-mass and obesity-associated (FTO) gene have been associated with BMI and larger effects in older versus younger children have been reported. However, no studies have examined associations between FTO polymorphisms, BMI throughout adulthood and colorectal adenomas. Therefore, we evaluated associations between FTO polymorphisms (rs1421085, rs17817449, rs8050136, rs9939609, rs8044769), adult BMI (at recruitment, 50s, 40s, 30s, 20s age decades) and colorectal adenomas in 759 Caucasians and 469 African-Americans. We found that the highest versus the lowest BMI tertile at recruitment [odds ratio (OR) = 1.82; 95% confidence interval (CI): 1.07–2.16] and in the 30s (OR = 1.50; 95% CI: 1.04–2.15) was associated with higher adenoma risk. Stratification by ethnicity revealed that these associations only remained significant in Caucasians. We found that, in Caucasians, having two versus no copies of the variant allele in rs17817449, rs8050136 and rs9939609, which are all in strong linkage disequilibrium, was associated with higher BMI in the 30s and 40s but none of the polymorphisms were associated with adenomas. In African-Americans, having one or two copies of the variant in rs17817449 (OR = 0.61; 95% CI: 0.39–0.95) and rs8050136 (OR = 0.59; 95% CI: 0.38–0.93) was associated with colorectal adenomas and, having two variant copies in rs17817449 and rs8050136 was associated with higher BMI at recruitment and in the 40s, respectively. Our results are consistent with prior studies and show for the first time that FTO polymorphisms are associated with colorectal adenomas in African-Americans.
doi:10.1093/carcin/bgr026
PMCID: PMC3086700  PMID: 21317302
9.  Variations in the FTO gene are associated with severe obesity in the Japanese 
Journal of Human Genetics  2008;53(6):546-553.
Variations in the fat-mass and obesity-associated gene (FTO) are associated with the obesity phenotype in many Caucasian populations. This association with the obesity phenotype is not clear in the Japanese. To investigate the relationship between the FTO gene and obesity in the Japanese, we genotyped single nucleotide polymorphisms (SNPs) in the FTO genes from severely obese subjects [n = 927, body mass index (BMI) ≥ 30 kg/m2] and normal-weight control subjects (n = 1,527, BMI < 25 kg/m2). A case-control association analysis revealed that 15 SNPs, including rs9939609 and rs1121980, in a linkage disequilibrium (LD) block of approximately 50 kb demonstrated significant associations with obesity; rs1558902 was most significantly associated with obesity. P value in additive mode was 0.0000041, and odds ratio (OR) adjusted for age and gender was 1.41 [95% confidential interval (CI) = 1.22–1.62]. Obesity-associated phenotypes, which include the level of plasma glucose, hemoglobin A1c, total cholesterol, triglycerides, high-density lipoprotein (HDL) cholesterol, and blood pressure were not associated with the rs1558902 genotype. Thus, the SNPs in the FTO gene were found to be associated with obesity, i.e., severe obesity, in the Japanese.
Electronic supplementary material
The online version of this article (doi:10.1007/s10038-008-0283-1) contains supplementary material, which is available to authorized users.
doi:10.1007/s10038-008-0283-1
PMCID: PMC2413114  PMID: 18379722
Fat-mass and obesity-associated gene; Obesity; Japanese population; Association; SNP
10.  The role of the fat mass and obesity associated gene (FTO) in breast cancer risk 
BMC Medical Genetics  2011;12:52.
Background
Obesity has been shown to increase breast cancer risk. FTO is a novel gene which has been identified through genome wide association studies (GWAS) to be related to obesity. Our objective was to evaluate tissue expression of FTO in breast and the role of FTO SNPs in predicting breast cancer risk.
Methods
We performed a case-control study of 354 breast cancer cases and 364 controls. This study was conducted at Northwestern University. We examined the role of single nucleotide polymorphisms (SNPs) of intron 1 of FTO in breast cancer risk. We genotyped cases and controls for four SNPs: rs7206790, rs8047395, rs9939609 and rs1477196. We also evaluated tissue expression of FTO in normal and malignant breast tissue.
Results
We found that all SNPs were significantly associated with breast cancer risk with rs1477196 showing the strongest association. We showed that FTO is expressed both in normal and malignant breast tissue. We found that FTO genotypes provided powerful classifiers to predict breast cancer risk and a model with epistatic interactions further improved the prediction accuracy with a receiver operating characteristic (ROC) curves of 0.68.
Conclusion
In conclusion we have shown a significant expression of FTO in malignant and normal breast tissue and that FTO SNPs in intron 1 are significantly associated with breast cancer risk. Furthermore, these FTO SNPs are powerful classifiers in predicting breast cancer risk.
doi:10.1186/1471-2350-12-52
PMCID: PMC3089782  PMID: 21489227
11.  Association between Common Variation at the FTO Locus and Changes in Body Mass Index from Infancy to Late Childhood: The Complex Nature of Genetic Association through Growth and Development 
PLoS Genetics  2011;7(2):e1001307.
An age-dependent association between variation at the FTO locus and BMI in children has been suggested. We meta-analyzed associations between the FTO locus (rs9939609) and BMI in samples, aged from early infancy to 13 years, from 8 cohorts of European ancestry. We found a positive association between additional minor (A) alleles and BMI from 5.5 years onwards, but an inverse association below age 2.5 years. Modelling median BMI curves for each genotype using the LMS method, we found that carriers of minor alleles showed lower BMI in infancy, earlier adiposity rebound (AR), and higher BMI later in childhood. Differences by allele were consistent with two independent processes: earlier AR equivalent to accelerating developmental age by 2.37% (95% CI 1.87, 2.87, p = 10−20) per A allele and a positive age by genotype interaction such that BMI increased faster with age (p = 10−23). We also fitted a linear mixed effects model to relate genotype to the BMI curve inflection points adiposity peak (AP) in infancy and AR. Carriage of two minor alleles at rs9939609 was associated with lower BMI at AP (−0.40% (95% CI: −0.74, −0.06), p = 0.02), higher BMI at AR (0.93% (95% CI: 0.22, 1.64), p = 0.01), and earlier AR (−4.72% (−5.81, −3.63), p = 10−17), supporting cross-sectional results. Overall, we confirm the expected association between variation at rs9939609 and BMI in childhood, but only after an inverse association between the same variant and BMI in infancy. Patterns are consistent with a shift on the developmental scale, which is reflected in association with the timing of AR rather than just a global increase in BMI. Results provide important information about longitudinal gene effects and about the role of FTO in adiposity. The associated shifts in developmental timing have clinical importance with respect to known relationships between AR and both later-life BMI and metabolic disease risk.
Author Summary
Variation at the FTO locus is reliably associated with BMI and adiposity-related traits, but little is still known about the effects of variation at this gene, particularly in children. We have examined a large collection of samples for which both genotypes at rs9939609 and multiple measurements of BMI are available. We observe a positive association between the minor allele (A) at rs9939609 and BMI emerging in childhood that has the characteristics of a shift in the age scale leading simultaneously to lower BMI during infancy and higher BMI in childhood. Assessed in cross section and longitudinally, we find evidence of variation at rs9939609 being associated with the timing of AR and the concert of events expected with such a change to the BMI curve. Importantly, the apparently negative association between the minor allele (A) and BMI in early life, which is then followed by an earlier AR and greater BMI in childhood, is a pattern known to be associated with both the risk of adult BMI and metabolic disorders such as type 2 diabetes (T2D). These findings are important in our understanding of the contribution of FTO to adiposity, but also in light of efforts to appreciate genetic effects in a lifecourse context.
doi:10.1371/journal.pgen.1001307
PMCID: PMC3040655  PMID: 21379325
12.  Interaction of FTO and physical activity level on adiposity in African-American and European American adults: The ARIC Study 
Obesity (Silver Spring, Md.)  2011;19(9):1866-1872.
Physical inactivity accentuates the association of variants in the FTO locus with obesity-related traits but evidence is largely lacking in non-European populations.
Methods
Here we tested the hypothesis that physical activity (PA) modifies the association of the FTO single-nucleotide polymorphism (SNP) rs9939609 on adiposity traits in 2,656 African Americans (AA) (1,626 women and 1,030 men) and 9,867 European Americans (EA) (5,286 women and 4,581 men) aged 45-66 years in the Atherosclerosis Risk in Communities (ARIC) study. Individuals in the lowest quintile of the sport activity index of the Baecke questionnaire were categorized as low PA. Baseline BMI, waist circumference (WC), and skinfold measures were dependent variables in regression models testing the additive effect of the SNP, low PA, and their interaction, adjusting for age, alcohol use, cigarette use, educational attainment, and percent European ancestry in AA adults, stratified by sex and race/ethnicity.
Results
rs9939609 was associated with adiposity in all groups other than AA women. The SNPxPA interaction was significant in AA men (p≤0.002 for all traits) and EA men (p≤0.04 for all traits). For each additional copy of the A (risk) allele, WC in AA men was higher in those with low PA (βlowPA : 5.1 cm, 95% C.I. 2.6-7.5) than high PA (βhighPA: 0.7 cm, 95% C.I. −0.4 – 1.9); p (interaction) = 0.002). The interaction effect was not observed in EA or AA women.
Conclusion
FTO SNP x PA interactions on adiposity were observed for AA as well as EA men. Differences by sex require further examination.
doi:10.1038/oby.2011.131
PMCID: PMC3293392  PMID: 21593801
Genetics; genotype; FTO; obesity; adiposity; BMI; physical activity; exercise; African-American; interaction; environment
13.  Association between the FTO rs9939609 polymorphism and the metabolic syndrome in a non-Caucasian multi-ethnic sample 
Background
The rs9939609 T>A single-nucleotide polymorphism (SNP) in the FTO gene has previously been found to be associated with obesity in European Caucasian samples. The objective of this study is to examine whether this association extends to metabolic syndrome (MetS) and applies in non-Caucasian samples.
Methods
The FTO rs9939609 SNP was genotyped in 2121 subjects from four different non-Caucasian geographical ancestries. Subjects were classified for the presence or absence of MetS according to the International Diabetes Federation (IDF) and National Cholesterol Education Program Adult Treatment Panel (NCEP ATP) III definitions.
Results
Carriers of ≥ 1 copy of the rs9939609 A allele were significantly more likely to have IDF-defined MetS (35.8%) than non-carriers (31.2%), corresponding to a carrier odds ratio (OR) of 1.23 (95% confidence interval [CI] 1.01 to 1.50), with a similar trend for the NCEP ATP III-defined MetS. Subgroup analysis showed that the association was particularly strong in men. The association was related to a higher proportion of rs9939609 A allele carriers meeting the waist circumference criterion; a higher proportion also met the HDL cholesterol criterion compared with wild-type homozygotes.
Conclusion
Thus, the FTO rs9939609 SNP was associated with an increased risk for MetS in this multi-ethnic sample, confirming that the association extends to non-Caucasian population samples.
doi:10.1186/1475-2840-7-5
PMCID: PMC2275229  PMID: 18339204
14.  Detailed Analysis of Variants in FTO in Association with Body Composition in a Cohort of 70-Year-Olds Suggests a Weakened Effect among Elderly 
PLoS ONE  2011;6(5):e20158.
Background
The rs9939609 single-nucleotide polymorphism (SNP) in the fat mass and obesity (FTO) gene has previously been associated with higher BMI levels in children and young adults. In contrast, this association was not found in elderly men. BMI is a measure of overweight in relation to the individuals' height, but offers no insight into the regional body fat composition or distribution.
Objective
To examine whether the FTO gene is associated with overweight and body composition-related phenotypes rather than BMI, we measured waist circumference, total fat mass, trunk fat mass, leg fat mass, visceral and subcutaneous adipose tissue, and daily energy intake in 985 humans (493 women) at the age of 70 years. In total, 733 SNPs located in the FTO gene were genotyped in order to examine whether rs9939609 alone or the other SNPs, or their combinations, are linked to obesity-related measures in elderly humans.
Design
Cross-sectional analysis of the Prospective Investigation of the Vasculature in Uppsala Seniors (PIVUS) cohort.
Results
Neither a single SNP, such as rs9939609, nor a SNP combination was significantly linked to overweight, body composition-related measures, or daily energy intake in elderly humans. Of note, these observations hold both among men and women.
Conclusions
Due to the diversity of measurements included in the study, our findings strengthen the view that the effect of FTO on body composition appears to be less profound in later life compared to younger ages and that this is seemingly independent of gender.
doi:10.1371/journal.pone.0020158
PMCID: PMC3103532  PMID: 21637715
15.  FTO Genetic Variation and Association With Obesity in West Africans and African Americans 
Diabetes  2010;59(6):1549-1554.
OBJECTIVE
The FTO gene is one of the most consistently replicated loci for obesity. However, data from populations of African ancestry are limited. We evaluated genetic variation in the FTO gene and investigated associations with obesity in West Africans and African Americans.
RESEARCH DESIGN AND METHODS
The study samples comprised 968 African Americans (59% female, mean age 49 years, mean BMI 30.8 kg/m2) and 517 West Africans (58% female, mean age 54 years, mean BMI 25.5 kg/m2). FTO genetic variation was evaluated by genotyping 262 tag single nucleotide polymorphisms (SNPs) across the entire gene. Association of each SNP with BMI, waist circumference, and percent fat mass was investigated under an additive model.
RESULTS
As expected, both African-ancestry samples showed weaker linkage disequilibrium (LD) patterns compared with other continental (e.g., European) populations. Several intron 8 SNPs, in addition to intron 1 SNPs, showed significant associations in both study samples. The combined effect size for BMI for the top SNPs from meta-analysis was 0.77 kg/m2 (P = 0.009, rs9932411) and 0.70 kg/m2 (P = 0.006, rs7191513). Two previously reported associations with intron 1 SNPs (rs1121980 and rs7204609, r2 = 0.001) were replicated among the West Africans.
CONCLUSIONS
The FTO gene shows significant differences in allele frequency and LD patterns in populations of African ancestry compared with other continental populations. Despite these differences, we observed evidence of associations with obesity in African Americans and West Africans, as well as evidence of heterogeneity in association. More studies of FTO in multiple ethnic groups are needed.
doi:10.2337/db09-1252
PMCID: PMC2874717  PMID: 20299471
16.  Influence of common variants in FTO and near INSIG2 and MC4R on growth curves for adiposity in African– and European–American youth 
European Journal of Epidemiology  2011;26(6):463-473.
Recent genome-wide association (GWA) studies identified several common variants for obesity: rs9939609 in FTO, rs7566605 near INSIG2 and both rs17782313 and rs17700633 near the MC4R gene. This study aimed to assess the influence of these polymorphisms on development of adiposity in European– (EA) and African–American (AA) youth in two ongoing longitudinal studies including 986 and 606 participants with age ranges of 10–25.8 and 4.0–23.9 years, respectively. Individual growth curve modeling was conducted separately in the two studies. We tested the effect of the SNPs on levels and increase with age (i.e., slope) of weight, body mass index (BMI), waist circumference and skinfolds from childhood to adulthood, and potential moderation by ethnicity or gender. Beta coefficients computed in the two studies were pooled using meta-analysis. Rs9939609 was associated with logtransformed levels of BMI (β = 0.021, P = 0.01), weight (β = 0.019, P = 0.04) and waist circumference (β = 0.012, P = 0.04). Rs17782313 was associated with triceps (β = 0.05, P = 0.02). Significant interactions of rs17700633 with gender were observed on subscapular-, suprailiac- and sum of skinfolds, with significant associations limited to males (P < 0.05). No significant interactions with ethnicity were found. Only one effect on the slope was observed, rs17700633 showed a significant interaction with age on triceps (β = 0.004, P = 0.04). In two longitudinal studies of EA and AA youth, we replicated the effect of FTO and common variants near MC4R on general and central adiposity. These variants did not affect the increase with age of adiposity from childhood to adulthood with one exception. Common variants for obesity identified in GWA studies have detectable but modest effects on growth curves for adiposity in EA and AA youth.
Electronic supplementary material
The online version of this article (doi:10.1007/s10654-011-9583-4) contains supplementary material, which is available to authorized users.
doi:10.1007/s10654-011-9583-4
PMCID: PMC3115048  PMID: 21544599
Adiposity; Genetic; Growth curve model
17.  Impact of FTO genotypes on BMI and weight in polycystic ovary syndrome: a systematic review and meta-analysis 
Diabetologia  2012;55(10):2636-2645.
Aims/hypothesis
FTO gene single nucleotide polymorphisms (SNPs) have been shown to be associated with obesity-related traits and type 2 diabetes. Several small studies have suggested a greater than expected effect of the FTO rs9939609 SNP on weight in polycystic ovary syndrome (PCOS). We therefore aimed to examine the impact of FTO genotype on BMI and weight in PCOS.
Methods
A systematic search of medical databases (PubMed, EMBASE and Cochrane CENTRAL) was conducted up to the end of April 2011. Seven studies describing eight distinct PCOS cohorts were retrieved; seven were genotyped for SNP rs9939609 and one for SNP rs1421085. The per allele effect on BMI and body weight increase was calculated and subjected to meta-analysis.
Results
A total of 2,548 women with PCOS were included in the study; 762 were TT homozygotes, 1,253 had an AT/CT genotype, and 533 were AA/CC homozygotes. Each additional copy of the effect allele (A/C) increased the BMI by a mean of 0.19 z score units (95% CI 0.13, 0.24; p = 2.26 × 10−11) and body weight by a mean of 0.20 z score units (95% CI 0.14, 0.26; p = 1.02 × 10−10). This translated into an approximately 3.3 kg/m2 increase in BMI and an approximately 9.6 kg gain in body weight between TT and AA/CC homozygotes. The association between FTO genotypes and BMI was stronger in the cohorts with PCOS than in the general female populations from large genome-wide association studies. Deviation from an additive genetic model was observed in heavier populations.
Conclusions/interpretation
The effect of FTO SNPs on obesity-related traits in PCOS seems to be more than two times greater than the effect found in large population-based studies. This suggests an interaction between FTO and the metabolic context or polygenic background of PCOS.
doi:10.1007/s00125-012-2638-6
PMCID: PMC3433670  PMID: 22801903
BMI; FTO; Meta-analysis; Polycystic ovary syndrome; Systematic review; Weight
18.  Common Variant rs9939609 in Gene FTO Confers Risk to Polycystic Ovary Syndrome 
PLoS ONE  2013;8(7):e66250.
Background
Fat mass and obesity-associated gene (FTO) has been associated with obesity, especially the common variant rs9939609. Polycystic ovary syndrome (PCOS) is a complex endocrine-metabolic disorder and over 50% of patients are overweight/obese. Thus FTO is a potential candidate gene for PCOS but their relationship is confusing and remains to be clarified in different population with a large sample size.
Method
This study was performed adopting a two-stage design by genotyping SNP rs9939609. The first set comprise of 741 PCOS and 704 control subjects, with data from our previous GWAS. The second phase of replication study was performed among another independent group of 2858 PCOS and 2358 control subjects using TaqMan-MGB probe assay. All subjects are from Han Chinese.
Results
The less meaningful association of FTO rs9939609 and PCOS discovered in GWAS (P = 2.47E-03), was further confirmed in the replication study (P = 1.86E-09). Using meta-analysis, the P-meta value has reached 6.89E-12, over-exceeding the genome-wide association level of 5.00E-8. By combination, the P value was 1.26E-11 and after BMI adjustment it remained significant(P = 1.82E-06). To further elucidate whether this association is resulted from obesity or PCOS per se, the samples were divided into two groups–obese and non-obese PCOS, and the results were still positive in obese group (P obese = 5.81E-05, OR = 1.55), as well as in non-obese PCOS group (P non-obese = 7.06E-04, OR = 1.28).
Conclusion
Variant rs9939609 in FTO is associated with PCOS in Chinese women, not only in obese PCOS subjects, but also in non-obese cases.
doi:10.1371/journal.pone.0066250
PMCID: PMC3698074  PMID: 23840863
19.  Association between a frequent variant of the FTO gene and anthropometric phenotypes in Brazilian children 
BMC Medical Genetics  2013;14:34.
Background
Our goal was to analyze the association of the fat mass and obesity- associated (FTO) gene rs9939609 variant (T/A) with the anthropometric and dietary intake phenotypes related to obesity in Brazilian children.
Methods
We analyzed the association of this single nucleotide polymorphism (SNP) with phenotypes related to the accumulation of body mass in a cohort of 348 children followed from the time of birth until 8 years old and then replicated the main findings in an independent schoolchildren sample (n = 615).
Results
At the age of 4, we observed a significant association between the A/A genotype and a higher mean BMI Z-score (P = 0.036). At the age of 8, the A/A individuals still presented with a higher BMI Z-score (P = 0.011) and with marginal differences in the volume of subcutaneous fat (P = 0.048). We replicated these findings in the schoolchildren sample, which showed that those with at least one copy of the A allele presented with a higher BMI Z-score (P = 0.029) and volume of subcutaneous fat (P = 0.016).
Conclusion
Our results indicate that this FTO variant is associated with increased body mass and subcutaneous fat in Brazilian children beginning at the age of 4.
doi:10.1186/1471-2350-14-34
PMCID: PMC3662589  PMID: 23497514
Childhood obesity; FTO gene and genetic susceptibility
20.  FTO Polymorphisms Are Associated With Obesity but Not Diabetes Risk in Postmenopausal Women 
Obesity (Silver Spring, Md.)  2008;16(11):2472-2480.
The FTO gene was recently identified as a susceptibility locus for both obesity and type 2 diabetes by whole-genome association analyses of several European populations. We tested for an association between FTO risk alleles and obesity and diabetes in a well-characterized multiethnic cohort of postmenopausal women in the United States. We genotyped two most significantly associated single-nucleotide polymorphisms (SNPs) (rs9939609 and rs8050136) in intron 1 of FTO gene in a nested case–control study of 1,517 diabetes cases and 2,123 controls from the Women’s Health Initiative–Observational Study (WHI-OS). The allelic frequencies of either rs9939609 or rs8050136 differed widely across four ethnic groups. The frequency of the rare allele A of rs9939609 among controls was much lower in Asians/Pacific Islanders (17%) than in blacks (45%), whites (40%), and Hispanics (31%). We found significant associations of rs9939609 with BMI and waist circumference in white and Hispanic women, but not among black and Asian/Pacific Islander women. On average, each copy of the risk-allele A at rs9939609 was significantly associated with 0.45 kg/m2 increase in BMI (95% confidence interval (CI): 0.16–0.74; P = 0.004) and 0.97 cm increase in waist circumference (95% CI: 0.21–0.65; P = 0.0002). Similar results were observed for rs8050136. However, we found no significant genetic associations with diabetes risk, either within the full study sample or in any ethnic group. In conclusion, common genetic variants in the intron 1 of FTO gene may confer a modest susceptibility to obesity in an ethnicity-specific manner, but may be unlikely to contribute to a clinically significant diabetes risk.
doi:10.1038/oby.2008.408
PMCID: PMC2732012  PMID: 18787525
21.  Fat Mass–and Obesity-Associated (FTO) Gene Variant Is Associated With Obesity 
Diabetes  2008;57(11):3145-3151.
OBJECTIVE—To examine the longitudinal association of fat mass–and obesity-associated (FTO) variant with obesity, circulating adipokine levels, and FTO expression in various materials from human and mouse.
RESEARCH DESIGN AND METHODS—We genotyped rs9939609 in 2,287 men and 3,520 women from two prospective cohorts. Plasma adiponectin and leptin were measured in a subset of diabetic men (n = 854) and women (n = 987). Expression of FTO was tested in adipocytes from db/db mice and mouse macrophages.
RESULTS—We observed a trend toward decreasing associations between rs9939609 and BMI at older age (≥65 years) in men, whereas the associations were constant across different age groups in women. In addition, the single nucleotide polymorphism (SNP) rs9939609 was associated with lower plasma adiponectin (log[e]− means, 1.82 ± 0.04, 1.73 ± 0.03, and 1.68 ± 0.05 for TT, TA, and AA genotypes, respectively; P for trend = 0.02) and leptin (log[e]− means, 3.56 ± 0.04, 3.63 ± 0.04, and 3.70 ± 0.06; P for trend = 0.06) in diabetic women. Adjustment for BMI attenuated the associations. FTO gene was universally expressed in human and mice tissues, including adipocytes. In an ancillary study of adipocytes from db/db mice, FTO expression was ∼50% lower than in those from wild-type mice.
CONCLUSIONS—The association between FTO SNP rs9939609 and obesity risk may decline at older age. The variant affects circulating adiponectin and leptin levels through the changes in BMI. In addition, the expression of FTO gene was reduced in adipocytes from db/db mice.
doi:10.2337/db08-0006
PMCID: PMC2570413  PMID: 18647953
22.  Association of genetic variation in FTO with risk of obesity and type 2 diabetes with data from 96,551 East and South Asians 
Diabetologia  2011;55(4):981-995.
Aims/hypothesis
FTO harbours the strongest known obesity-susceptibility locus in Europeans. While there is growing evidence for a role for FTO in obesity risk in Asians, its association with type 2 diabetes, independently of BMI, remains inconsistent. To test whether there is an association of the FTO locus with obesity and type 2 diabetes, we conducted a meta-analysis of 32 populations including 96,551 East and South Asians.
Methods
All studies published on the association between FTO-rs9939609 (or proxy [r2 > 0.98]) and BMI, obesity or type 2 diabetes in East or South Asians were invited. Each study group analysed their data according to a standardised analysis plan. Association with type 2 diabetes was also adjusted for BMI. Random-effects meta-analyses were performed to pool all effect sizes.
Results
The FTO-rs9939609 minor allele increased risk of obesity by 1.25-fold/allele (p = 9.0 × 10−19), overweight by 1.13-fold/allele (p = 1.0 × 10−11) and type 2 diabetes by 1.15-fold/allele (p = 5.5 × 10−8). The association with type 2 diabetes was attenuated after adjustment for BMI (OR 1.10-fold/allele, p = 6.6 × 10−5). The FTO-rs9939609 minor allele increased BMI by 0.26 kg/m2 per allele (p = 2.8 × 10−17), WHR by 0.003/allele (p = 1.2 × 10−6), and body fat percentage by 0.31%/allele (p = 0.0005). Associations were similar using dominant models. While the minor allele is less common in East Asians (12–20%) than South Asians (30–33%), the effect of FTO variation on obesity-related traits and type 2 diabetes was similar in the two populations.
Conclusions/interpretation
FTO is associated with increased risk of obesity and type 2 diabetes, with effect sizes similar in East and South Asians and similar to those observed in Europeans. Furthermore, FTO is also associated with type 2 diabetes independently of BMI.
Electronic supplementary material
The online version of this article (doi:10.1007/s00125-011-2370-7) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
doi:10.1007/s00125-011-2370-7
PMCID: PMC3296006  PMID: 22109280
Asians; FTO; Meta-analysis; Obesity; Type 2 diabetes
23.  'Fat mass and obesity associated' gene (FTO): No significant association of variant rs9939609 with weight loss in a lifestyle intervention and lipid metabolism markers in German obese children and adolescents 
BMC Medical Genetics  2008;9:85.
Background
We have previously identified strong association of six single nucleotide polymorphisms (SNPs) in FTO (fat mass and obesity associated gene) to early onset extreme obesity within the first genome wide association study (GWA) for this phenotype. The aim of this study was to investigate whether the obesity risk allele of one of these SNPs (rs9939609) is associated with weight loss in a lifestyle intervention program. Additionally, we tested for association of rs9939609 alleles with fasting blood parameters indicative of glucose and lipid metabolism.
Methods
We initially analysed rs9939609 in a case-control study comprising 519 German overweight and obese children and adolescents and 178 normal weight adults. In 207 of the obese individuals who took part in the outpatient obesity intervention program 'Obeldicks' we further analysed whether carrier status of the obesity risk A-allele of rs9939609 has a differential influence on weight loss after the intervention program. Additionally, we investigated in 480 of the overweight and obese patients whether rs9939609 is associated with fasting blood levels of glucose, triglycerides and HDL and LDL-cholesterol. Genotyping was performed using allele specific polymerase chain reaction (ARMS-PCR). For the association study (case-control approach), the Cochran-Armitage trend test was applied. Blood parameters were analysed using commercially available test kits and the log10-transformed blood parameters and changes in BMI-standard deviation scores (BMI-SDS) were analysed by linear regression with sex and age as covariates under an additive mode of inheritance with the rs9939609 A-allele as risk allele.
Results
We confirmed the association of the risk A-allele of rs9939609 with overweight and early onset obesity (one sided p = 0.036). However, we observed no association of rs9939609 alleles with weight loss or fasting levels of blood glucose, triglycerides and cholesterol.
Conclusion
We confirmed the rs9939609 A-allele as a risk factor for early onset obesity whereas its impact on weight loss or on serum levels of glucose, triglycerides and cholesterol could not be detected in our samples.
Trial Registration
This study is registered at clinicaltrials.gov (NCT00435734).
doi:10.1186/1471-2350-9-85
PMCID: PMC2553771  PMID: 18799002
24.  Rs9939609 Variant of the Fat Mass and Obesity-Associated Gene and Trunk Obesity in Adolescents 
Journal of Obesity  2011;2011:186368.
A common T/A polymorphism (rs9939609) in the fat mass and obesity associated (FTO) gene was found associated with early-onset and severe obesity in both adults and children. However, recent observations failed to find associations of FTO with obesity. To investigate the genetic background of early obesity, we analysed the single nucleotide polymorphism (SNP) rs9939609 of FTO in 371 styrian adolescents towards degree of obesity, subcutaneous adipose tissue (SAT)-distribution determined by lipometry, early metabolic and preatherosclerotic symptoms. The percentage of AA homozygotes for the rs9939609 SNP of FTO was significantly increased in the obese adolescents. Compared to the TT wildtype, AA homozygotes showed significantly elevated values of SAT thickness at the trunk-located lipometer measure points neck and frontal chest, body weight, body mass index, waist, and hip circumference. No associations were found with carotis communis intima media thickness, systolic, diastolic blood pressure, ultrasensitive C-reactive protein (US-CRP), homocystein, total cholesterol, triglycerides, HDL cholesterol, oxidized LDL, fasted glucose, insulin, HOMA-index, liver transaminases, uric acid, and adipokines like resistin, leptin, and adiponectin. Taken together, to the best of our knowledge we are the first to report that the rs9939609 FTO SNP is associated with trunk weighted obesity as early as in adolescence.
doi:10.1155/2011/186368
PMCID: PMC3026980  PMID: 21318054
25.  The common rs9939609 variant of the fat mass and obesity-associated gene is associated with obesity risk in children and adolescents of Beijing, China 
BMC Medical Genetics  2010;11:107.
Background
Previous genome-wide association studies for type 2 diabetes susceptibility genes have confirmed that a common variant, rs9939609, in the fat mass and obesity associated (FTO) gene region is associated with body mass index (BMI) in European children and adults. A significant association of the same risk allele has been described in Asian adult populations, but the results are conflicting. In addition, no replication studies have been conducted in children and adolescents of Asian ancestry.
Methods
A population-based survey was carried out among 3503 children and adolescents (6-18 years of age) in Beijing, China, including 1229 obese and 2274 non-obese subjects. We investigated the association of rs9939609 with BMI and the risk of obesity. In addition, we tested the association of rs9939609 with weight, height, waist circumference, waist-to-height ratio, fat mass percentage, birth weight, blood pressure and related metabolic traits.
Results
We found significant associations of rs9939609 variant with weight, BMI, BMI standard deviation score (BMI-SDS), waist circumference, waist-to-height ratio, and fat mass percentage in children and adolescents (p for trend = 3.29 × 10-5, 1.39 × 10-6, 3.76 × 10-6, 2.26 × 10-5, 1.94 × 10-5, and 9.75 × 10-5, respectively). No significant associations were detected with height, birth weight, systolic and diastolic blood pressure and related metabolic traits such as total cholesterol, triglycerides, HDL-cholesterol, LDL-cholesterol and fasting plasma glucose (all p > 0.05). Each additional copy of the rs9939609 A allele was associated with a BMI increase of 0.79 [95% Confidence interval (CI) 0.47 to 1.10] kg/m2, equivalent to 0.25 (95%CI 0.14 to 0.35) BMI-SDS units. This rs9939609 variant is significantly associated with the risk of obesity under an additive model [Odds ratio (OR) = 1.29, 95% CI 1.11 to 1.50] after adjusting for age and gender. Moreover, an interaction between the FTO rs9939609 genotype and physical activity (p < 0.001) was detected on BMI levels, the effect of rs9939609-A allele on BMI being (0.95 ± 0.10), (0.77 ± 0.08) and (0.67 ± 0.05) kg/m2, for subjects who performed low, moderate and severe intensity physical activity.
Conclusion
The FTO rs9939609 variant is strongly associated with BMI and the risk of obesity in a population of children and adolescents in Beijing, China.
doi:10.1186/1471-2350-11-107
PMCID: PMC2914647  PMID: 20598163

Results 1-25 (489403)