PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1529838)

Clipboard (0)
None

Related Articles

1.  Analysis of prognostic factors in localized high-risk prostate cancer patients treated with HDR brachytherapy, hypofractionated 3D-CRT and neoadjuvant/adjuvant androgen deprivation therapy (trimodality therapy) 
Journal of Radiation Research  2013;55(3):527-532.
Trimodality therapy consisting of high dose rate (HDR) brachytherapy combined with external beam radiation therapy (EBRT), neoadjuvant hormonal therapy (NHT) and adjuvant hormonal therapy (AHT) has been used to treat localized high-risk prostate cancer. In this study, an analysis of patients receiving the trimodality therapy was performed to identify prognostic factors of biochemical relapse-free survival (bRFS). Between May 2005 and November 2008, 123 high-risk prostate cancer patients (D'Amico classification) were treated with NHT prior to HDR brachytherapy combined with hypofractionated EBRT. Among these patients, 121 had completed AHT. The patients were assigned by time to be treated with a low-dose or high-dose arm of HDR brachytherapy with subsequent hypofractionated 3D conformal radiation therapy (3D-CRT). Multivariate analysis was used to determine prognostic factors for bRFS. With a median follow-up of 60 months, the 5-year bRFS for all patients was 84.3% (high-dose arm, 92.9%; low-dose arm, 72.4%, P = 0.047). bRFS in the pre-HDR PSA ≤ 0.1 ng/ml subgroup was significantly improved compared with that in the pre-HDR PSA > 0.1 ng/ml subgroup (88.3% vs 68.2%, P = 0.034). On multivariate analysis, dose of HDR (P = 0.045, HR = 0.25, 95% CI = 0.038–0.97) and pre-HDR PSA level (P = 0.02 HR = 3.2, 95% CI = 1.18–10.16) were significant prognostic factors predicting bRFS. In high-risk prostate cancer patients treated with the trimodality therapy, the dose of HDR and pre-HDR PSA were significant prognostic factors. The pre-HDR PSA ≤ 0.1 subgroup had significantly improved bRFS. Further studies are needed to confirm the relevance of pre-HDR PSA in trimodality therapy.
doi:10.1093/jrr/rrt134
PMCID: PMC4014157  PMID: 24351458
high-risk prostate cancer; HDR; trimodality therapy; PSA response
2.  Efficacy and Safety of High-Dose-Rate Brachytherapy of Single Implant with Two Fractions Combined with External Beam Radiotherapy for Hormone-Naïve Localized Prostate Cancer 
Cancers  2011;3(3):3585-3600.
The purpose of this study was to evaluate the efficacy and safety of high-dose-rate (HDR) brachytherapy of a single implant with two fractions plus external beam radiotherapy (EBRT) for hormone-naïve prostate cancer in comparison with radical prostatectomy. Of 150 patients with localized prostate cancer (T1c–T2c), 59 underwent HDR brachytherapy plus EBRT, and 91 received radical prostatectomy. The median follow-up of patients was 62 months for HDR brachytherapy plus EBRT, and 64 months for radical prostatectomy. In patient backgrounds between the two cohorts, the frequency of T2b plus T2c was greater in HDR brachytherapy cohort than in prostatectomy cohort (27% versus 12%, p = 0.029). Patients in HDR brachytherapy cohort first underwent 3D conformal RT with four beams to the prostate to an isocentric dose of 50 Gy in 25 fractions and then, a total of 15–18 Gy in two fractions at least 5 hours apart. We prescribed 9 Gy/fraction for target (prostate gland plus 3 mm lateral outside margin and seminal vesicle) using CT image method for radiation planning. The total biochemical failure-free control rates (BF-FCR) at 3 and 5 years for the HDR brachytherapy cohort, and for the prostatectomy cohort were 92% and 85%, and 72% and 72%, respectively (significant difference, p = 0.0012). The 3-and 5-year BF-FCR in the HDR brachytherapy cohort and in the prostatectomy cohort by risk group was 100 and 100%, and 80 and 80%, respectively, for the low-risk group (p = 0.1418); 92 and 92%, 73 and 73%, respectively, for the intermediate-risk group (p = 0.0492); and 94 and 72%, 45 and 45%, respectively, for the high-risk group (p = 0.0073). After HDR brachytherapy plus EBRT, no patient experienced Grade 2 or greater genitourinay toxicity. The rate of late Grade 1 and 2 GI toxicity was 6% (n = 4). No patient experienced Grade 3 GI toxicity. HDR brachytherapy plus EBRT is useful for treating patients with hormone-naïve localized prostate cancer, and has low GU and GI toxicities.
doi:10.3390/cancers3033585
PMCID: PMC3759211  PMID: 24212968
prostate cancer; high dose rate brachytherapy; external beam radiation therapy; radical prostatectomy
3.  Timing of High-Dose Rate Brachytherapy With External Beam Radiotherapy in Intermediate and High-Risk Localized Prostate CAncer (THEPCA) Patients and Its Effects on Toxicity and Quality of Life: Protocol of a Randomized Feasibility Trial 
JMIR Research Protocols  2015;4(2):e49.
Background
Prostate cancer is the most common cancer in males in the UK and affects around 105 men for every 100,000. The role of radiotherapy in the management of prostate cancer significantly changed over the last few decades with developments in brachytherapy, external beam radiotherapy (EBRT), intensity-modulated radiotherapy (IMRT), and image-guided radiotherapy (IGRT). One of the challenging factors of radiotherapy treatment of localized prostate cancer is the development of acute and late genitourinary and gastrointestinal toxicities. The recent European guidelines suggest that there is no consensus regarding the timing of high-dose rate (HDR) brachytherapy and EBRT. The schedules vary in different institutions where an HDR boost can be given either before or after EBRT. Few centers deliver HDR in between the fractions of EBRT.
Objective
Assessment of acute genitourinary and gastrointestinal toxicities at various time points to better understand if the order in which treatment modality is delivered (ie, HDR brachytherapy or EBRT first) has an effect on the toxicity profile.
Methods
Timing of HDR brachytherapy with EBRT in Prostate CAncer (THEPCA) is a single-center, open, randomized controlled feasibility trial in patients with intermediate and high-risk localized prostate cancer. A group of 50 patients aged 18 years old and over with histological diagnosis of prostate cancer (stages T1b-T3BNOMO), will be randomized to one of two treatment arms (ratio 1:1), following explanation of the study and informed consent. Patients in both arms of the study will be treated with HDR brachytherapy and EBRT, however, the order in which they receive the treatments will vary. In Arm A, patients will receive HDR brachytherapy before EBRT. In Arm B (control arm), patients will receive EBRT before HDR brachytherapy. Study outcomes will look at prospective assessment of genitourinary and gastrointestinal toxicities. The primary endpoint will be grade 3 genitourinary toxicity and the secondary endpoints will be all other grades of genitourinary toxicities (grades 1 and 2), gastrointestinal toxicities (grades 1 to 4), prostate-specific antigen (PSA) recurrence-free survival, overall survival, and quality of life.
Results
Results from this feasibility trial will be available in mid-2016.
Conclusions
If the results from this feasibility trial show evidence that the sequence of treatment modality does affect the patients’ toxicity profiles, then funding would be sought to conduct a large, multicenter, randomized controlled trial.
Trial Registration
International Standard Randomized Controlled Trial Number (ISRCTN): 15835424; http://www.isrctn.com/ISRCTN15835424 (Archived by WebCite at http://www.webcitation.org/6Xz7jfg1u).
doi:10.2196/resprot.4462
PMCID: PMC4430680  PMID: 25926023
prostate cancer; radiotherapy; brachytherapy; external beam radiotherapy; EBRT; randomized controlled trial; RCT; Southend Hospital
4.  Predictors of distant metastasis after combined HDR brachytherapy and external beam radiation for prostate cancer 
Purpose
To determine predictors of distant metastases (DM) in prostate cancer patients treated with high dose rate brachytherapy boost (HDR-B) and external beam radiation therapy (EBRT).
Material and methods
From 1991 to 2002, 768 men with localized prostate cancer were treated with HDR-B and EBRT. The mean EBRT dose was 37.5 Gy (range: 30.6-45 Gy), and the HDR-B was 22 or 24 Gy delivered in 4 fractions. Univariate and multivariate analyses using a Cox proportional hazards model including age at diagnosis, T stage, Gleason score (GS), pretreatment PSA, biologically equivalent dose (BED), and use of androgen deprivation therapy (ADT) was used to determine predictors of developing distant metastases.
Results
The median follow-up time for the entire patient population was 4.2 years (range: 1-11.2 years). Distant metastases were identified in 22/768 (3%) of patients at a median of 4.1 years. PSA failure according to the Phoenix definition developed in 3%, 5%, and 14% of men with low, intermediate, and high risk disease with a median time to failure of 3.8 years. Prostate cancer specific mortality was observed in 2% of cases. T stage, GS, and use of ADT were significantly associated with developing DM on univariate analysis. GS, and use of ADT were the only factors significantly associated with developing DM on multivariate analysis (p < 0.01). Patients who received ADT had significantly higher risk features suggesting patient selection bias for higher DM in this group of patients rather than a negative interaction between HDR-B and EBRT.
Conclusions
In men treated with HDR-B and EBRT, GS is a significant factor on multivariate analysis for developing distant metastasis.
doi:10.5114/jcb.2013.37942
PMCID: PMC3797412  PMID: 24143146
brachytherapy; distant metastases; high-dose-rate; prostate cancer
5.  The effectiveness and side effects of conformal external beam radiotherapy combined with high-dose-rate brachytherapy boost compared to conformal external beam radiotherapy alone in patients with prostate cancer 
Background
Clinical data that compare external-beam radiotherapy (EBRT) combined with high-dose-rate brachytherapy (HDR-BT) boost versus EBRT alone are scarce. The analysis of published studies suggest that biochemical relapse-free survival in combined EBRT and HDR-BT may be superior compared to EBRT alone. We retrospectively examined the effectiveness and tolerance of both schemes in a single center study.
Methods
Between March 2003 and December 2004, 229 patients were treated for localized T1-T2N0M0 prostate cancer. Median age was 66 years (range, 49 – 83 years). PSA level ranged from 0.34 to 64 ng/ml (median 12.3 ng/ml) and Gleason score ranged from 2 to 10. The analysis included 99 patients who underwent EBRT with HDR-BT (group A) and 130 patients who were treated with EBRT alone (group B).
Results
Median follow-up was 6 years. Biochemical relapses occurred in 34% vs. 22% (p = 0.002), local recurrences in 17% vs. 5% (p = 0.002), and distant metastases in 11% vs. 6% (p = 0.179) of patients in groups A and B, respectively. Five-year biochemical relapse-free survival was 67% vs. 81% (p = 0.005), local recurrence-free survival 95% vs. 99% (p = 0.002), metastases-free survival 95% vs. 94% (p = 0.302) for groups A and B, respectively. Five-year overall survival was 85% in both groups (p = 0.596). Grade 2/3 late GI complications appeared in 9.2% and 24.8% (p = 0.003), respectively. Grade 2/3 late GU symptoms occurred in 12% in both groups.
Conclusions
Although because of the retrospective character of the study and nonrandomized selection of fractionation schedule the present conclusions had limitations EBRT alone appeared more effective than EBRT combined with HDR-BT. It was likely the result of the less frequent use of androgen deprivation therapy (ADT) for combined scheme group, too low dose in a single BT fraction or inadequate assumptions regarding fractionation sensitivity of prostate cancer.
doi:10.1186/s13014-015-0366-z
PMCID: PMC4356106  PMID: 25884489
Brachytherapy; High-dose-rate; Prostate cancer; Radiotherapy
6.  Local prostate cancer radiotherapy after prostate-specific antigen progression during primary hormonal therapy 
Background
The outcome of patients after radiotherapy (RT) for localized prostate cancer in case of prostate-specific antigen (PSA) progression during primary hormonal therapy (HT) is not well known.
Methods
A group of 27 patients presenting with PSA progression during primary HT for local prostate cancer RT was identified among patients who were treated in the years 2000–2004 either using external-beam RT (EBRT; 70.2Gy; n=261) or Ir-192 brachytherapy as a boost to EBRT (HDR-BT; 18Gy + 50.4Gy; n=71). The median follow-up period after RT was 68 months.
Results
Median biochemical recurrence free (BRFS), disease specific (DSS) and overall survival (OS) for patients with PSA progression during primary HT was found to be only 21, 54 and 53 months, respectively, with a 6-year BRFS, DSS and OS of 19%, 41% and 26%. There were no significant differences between different RT concepts (6-year OS of 27% after EBRT and 20% after EBRT with HDR-BT).
Considering all 332 patients in multivariate Cox regression analysis, PSA progression during initial HT, Gleason score>6 and patient age were found to be predictive for lower OS (p<0.001). The highest hazard ratio resulted for PSA progression during initial HT (7.2 in comparison to patients without PSA progression during primary HT). PSA progression and a nadir >0.5 ng/ml during initial HT were both significant risk factors for biochemical recurrence.
Conclusions
An unfavourable prognosis after PSA progression during initial HT needs to be considered in the decision process before local prostate radiotherapy. Results from other centres are needed to validate our findings.
doi:10.1186/1748-717X-7-209
PMCID: PMC3551819  PMID: 23227960
Prostate cancer; Radiotherapy; Brachytherapy; Ir-192; Prostate-specific antigen; Hormone therapy
7.  Virtual HDR CyberKnife SBRT for Localized Prostatic Carcinoma: 5-Year Disease-Free Survival and Toxicity Observations 
Frontiers in Oncology  2014;4:321.
Purpose: Prostate stereotactic body radiotherapy (SBRT) may substantially recapitulate the dose distribution of high-dose-rate (HDR) brachytherapy, representing an externally delivered “Virtual HDR” treatment method. Herein, we present 5-year outcomes from a cohort of consecutively treated virtual HDR SBRT prostate cancer patients.
Methods: Seventy-nine patients were treated from 2006 to 2009, 40 low-risk, and 39 intermediate-risk, under IRB-approved clinical trial, to 38 Gy in four fractions. The planning target volume (PTV) included prostate plus a 2-mm volume expansion in all directions, with selective use of a 5-mm prostate-to-PTV expansion and proximal seminal vesicle coverage in intermediate-risk patients, to better cover potential extraprostatic disease; rectal PTV margin reduced to zero in all cases. The prescription dose covered >95% of the PTV (V100 ≥95%), with a minimum 150% PTV dose escalation to create “HDR-like” PTV dose distribution.
Results: Median pre-SBRT PSA level of 5.6 ng/mL decreased to 0.05 ng/mL 5 years out and 0.02 ng/mL 6 years out. At least one PSA bounce was seen in 55 patients (70%) but only 3 of them subsequently relapsed, biochemical-relapse-free survival was 100 and 92% for low-risk and intermediate-risk patients, respectively, by ASTRO definition (98 and 92% by Phoenix definition). Local relapse did not occur, distant metastasis-free survival was 100 and 95% by risk-group, and disease-specific survival was 100%. Acute and late grade 2 GU toxicity incidence was 10 and 9%, respectively; with 6% late grade 3 GU toxicity. Acute urinary retention did not occur. Acute and late grade 2 GI toxicity was 0 and 1%, respectively, with no grade 3 or higher toxicity. Of patient’s potent pre-SBRT, 65% remained so at 5 years.
Conclusion: Virtual HDR prostate SBRT creates a very low PSA nadir, a high rate of 5-year disease-free survival and an acceptable toxicity incidence, with results closely resembling those reported post-HDR brachytherapy.
doi:10.3389/fonc.2014.00321
PMCID: PMC4241836  PMID: 25505732
CyberKnife; prostate cancer; dosimetry; HDR; brachytherapy; image guided; stereotactic body radiotherapy
8.  High-dose-rate brachytherapy and hypofractionated external beam radiotherapy combined with long-term hormonal therapy for high-risk and very high-risk prostate cancer: outcomes after 5-year follow-up 
Journal of Radiation Research  2013;55(3):509-517.
The purpose of this study was to report the outcomes of high-dose-rate (HDR) brachytherapy and hypofractionated external beam radiotherapy (EBRT) combined with long-term androgen deprivation therapy (ADT) for National Comprehensive Cancer Network (NCCN) criteria-defined high-risk (HR) and very high-risk (VHR) prostate cancer. Data from 178 HR (n = 96, 54%) and VHR (n = 82, 46%) prostate cancer patients who underwent 192Ir-HDR brachytherapy and hypofractionated EBRT with long-term ADT between 2003 and 2008 were retrospectively analyzed. The mean dose to 90% of the planning target volume was 6.3 Gy/fraction of HDR brachytherapy. After five fractions of HDR treatment, EBRT with 10 fractions of 3 Gy was administered. All patients initially underwent ≥6 months of neoadjuvant ADT, and adjuvant ADT was continued for 36 months after EBRT. The median follow-up was 61 months (range, 25–94 months) from the start of radiotherapy. The 5-year biochemical non-evidence of disease, freedom from clinical failure and overall survival rates were 90.6% (HR, 97.8%; VHR, 81.9%), 95.2% (HR, 97.7%; VHR, 92.1%), and 96.9% (HR, 100%; VHR, 93.3%), respectively. The highest Radiation Therapy Oncology Group-defined late genitourinary toxicities were Grade 2 in 7.3% of patients and Grade 3 in 9.6%. The highest late gastrointestinal toxicities were Grade 2 in 2.8% of patients and Grade 3 in 0%. Although the 5-year outcome of this tri-modality approach seems favorable, further follow-up is necessary to validate clinical and survival advantages of this intensive approach compared with the standard EBRT approach.
doi:10.1093/jrr/rrt128
PMCID: PMC4014151  PMID: 24222312
high-dose-rate brachytherapy; prostate cancer; androgen deprivation therapy; high-risk; very high-risk
9.  High-dose-rate brachytherapy combined with hypofractionated external beam radiotherapy for men with intermediate or high risk prostate cancer: analysis of short- and medium-term urinary toxicity and biochemical control 
The best management of localized and locally advanced prostate cancer remains controversial, but there are clinical evidences that for patients considered of unfavorable outcome that dose escalation radiotherapy has a significantly better outcome. Methods: Between 2005-2009 a total of 39 unfavorable patients were treated in a phase I-II trial for dose escalation with high-dose rate (HDR)- 30 Gy given by 4 fractions BID, in two separated implants and hypofractionated conformal/tri-dimensional radiotherapy (hEBRT) - 45 Gy (3 Gy per fraction in 3 weeks), at Hospital AC Camargo, Sao Paulo, Brazil. Results: Median age of patients was 69 (range, 58-80) years old. With a median follow up of 42.5 months the highest RTOG acute severe genitourinary toxicity (GU-TX) was grade 3 in two (5.1%) patients. Late severe GU-TX was observed in one (2.6%) patient. On univariate analysis the prostate volume > 45cc (p=0.024), <11 needles per implant (p=0.038) and urethral dose >130% of prescribed dose (p<0,001) were statistical significant predictive factors. Multivariate analysis showed urethral dose >130% as the only predictive factor for late severe GU-TX, p=0.017 (95%CI-1.39-29.49), HR-6.4. The actuarial overall survival, biochemical control and disease specific survival rates for the entire group at 3.5-years were 92.0%, 87.6% and 96.9%, respectively. Conclusion: HDR combined to hEBRT is well tolerated in the short and medium term. Acute toxicity was minimal and improved outcomes in terms of reduced late toxicity can be achieved using at least 11 needles and prostate with no more than 45cc to be implanted. The maximum urethral dose should be kept bellow 130% of prescribed dose.
PMCID: PMC3048983  PMID: 21394285
Prostate cancer; radiotherapy; brachytherapy; toxicity; biochemical control
10.  MRS-guided HDR brachytherapy boost to the dominant intraprostatic lesion in high risk localised prostate cancer 
BMC Cancer  2010;10:472.
Background
It is known that the vast majority of prostate cancers are multifocal. However radical radiotherapy historically treats the whole gland rather than individual cancer foci.
Magnetic resonance spectroscopy (MRS) can be used to non-invasively locate individual cancerous tumours in prostate. Thus an intentionally non-uniform dose distribution treating the dominant intraprostatic lesion to different dose levels than the remaining prostate can be delivered ensuring the maximum achievable tumour control probability.
The aim of this study is to evaluate, using radiobiological means, the feasibility of a MRS-guided high dose rate (HDR) brachytherapy boost to the dominant lesion.
Methods
Computed tomography and MR/MRS were performed for treatment planning of a high risk localised prostate cancer. Both were done without endorectal coil, which distorts shape of prostate during the exams.
Three treatment plans were compared:
- external beam radiation therapy (EBRT) only
- combination of EBRT and HDR brachytherapy
- combination of EBRT and HDR brachytherapy with a synchronous integrated boost to the dominant lesion
The criteria of plan comparison were: the minimum, maximum and average doses to the targets and organs at risk; dose volume histograms; biologically effective doses for organs at risk and tumour control probability for the target volumes consisting of the dominant lesion as detected by MR/MRS and the remaining prostate volume.
Results
Inclusion of MRS information on the location of dominant lesion allows a safe increase of the dose to the dominant lesion while dose to the remaining target can be even substantially decreased keeping the same, high tumour control probability. At the same time an improved urethra sparing was achieved comparing to the treatment plan using a combination of EBRT and uniform HDR brachytherapy.
Conclusions
MRS-guided HDR brachytherapy boost to dominant lesion has the potential to spare the normal tissue, especially urethra, while keeping the tumour control probability high.
doi:10.1186/1471-2407-10-472
PMCID: PMC2941503  PMID: 20809986
11.  High-dose-rate brachytherapy using molds for lip and oral cavity tumors 
Background
High-dose-rate (HDR) brachytherapy using the mold technique is a less invasive treatment for early lip and oral cavity cancer. However, limited reports exist regarding the feasibility of this method. In this retrospective study, we evaluated the outcome of this therapy and investigated its feasibility for lip and oral cavity tumors.
Methods
Between May 2002 and December 2010, 17 patients (median age, 80.0 years) with histologically confirmed squamous cell carcinoma of the lip or oral cavity were treated by means of HDR brachytherapy using the mold technique after external beam radiotherapy (EBRT). Tumor sites included the buccal mucosa in eight cases, the gingiva in three cases, the lips in two cases, the floor of the mouth in two cases, and the hard palate in two cases. For all patients, EBRT (30 Gy/15 fractions), was performed before HDR brachytherapy. Two 6-Gy fractions were delivered twice daily for 2 days a week with an interval of 6 hours between the fractions. The total HDR brachytherapy dose was 24 Gy. Prior to EBRT, two patients with neck metastasis underwent neck dissection, and one patient with an exophytic tumor underwent tumor resection.
Results
The median follow-up period was 53.4 (range, 4.8–83.4) months. Of the 17 patients, 14 (82.4%) achieved a complete response, and three (17.6%) displayed a partial response.
The overall 3- and 5-year survival rates were both 68.8%, the 3- and 5-year disease-specific survival rates were both 86.7%, and the 3- and 5-year local control rates were both 54.1%. Seven patients developed local recurrence at a median time of 3.4 (range, 1.7–29.1) months after treatment. Nodal and lung metastases occurred separately in two patients. By the end of the follow-up period, two patients had died of the primary disease and four patients had died of other causes.
Conclusions
Although there is a need to improve the technical aspects of the treatment protocol, HDR brachytherapy using the mold technique might be a therapeutic option for superficial lip or oral cavity tumors, especially in older patients who have a poor performance status or are in poor physical condition.
doi:10.1186/s13014-015-0390-z
PMCID: PMC4465005  PMID: 25888772
Lip cancer; Oral cavity cancer; Mold; High-dose-rate; Brachytherapy
12.  Brachytherapy in the therapy of prostate cancer – an interesting choice 
Contemporary Oncology  2013;17(5):407-412.
Brachytherapy is a curative alternative to radical prostatectomy or external beam radiation [i.e. 3D conformal external beam radiation therapy (CRT), intensity-modulated radiation therapy (IMRT)] with comparable long-term survival and biochemical control and the most favorable toxicity. HDR brachytherapy (HDR-BT) in treatment of prostate cancer is most frequently used together with external beam radiation therapy (EBRT) as a boost (increasing the treatment dose precisely to the tumor). In the early stages of the disease (low, sometimes intermediate risk group), HDR-BT is more often used as monotherapy. There are no significant differences in treatment results (overall survival rate – OS, local recurrence rate – LC) between radical prostatectomy, EBRT and HDR-BT. Low-dose-rate brachytherapy (LDR-BT) is a radiation method that has been known for several years in treatment of localized prostate cancer. The LDR-BT is applied as a monotherapy and also used along with EBRT as a boost. It is used as a sole radical treatment modality, but not as a palliative treatment. The use of brachytherapy as monotherapy in treatment of prostate cancer enables many patients to keep their sexual functions in order and causes a lower rate of urinary incontinence. Due to progress in medical and technical knowledge in brachytherapy (“real-time” computer planning systems, new radioisotopes and remote afterloading systems), it has been possible to make treatment time significantly shorter in comparison with other methods. This also enables better protection of healthy organs in the pelvis. The aim of this publication is to describe both brachytherapy methods.
doi:10.5114/wo.2013.38557
PMCID: PMC3934024  PMID: 24596528
HDR brachytherapy; LDR brachytherapy; prostate cancer; seeds
13.  Radiation therapy for primary vaginal carcinoma 
Journal of Radiation Research  2013;54(5):931-937.
Brachytherapy plays a significant role in the management of cervical cancer, but the clinical significance of brachytherapy in the management of vaginal cancer remains to be defined. Thus, a single institutional experience in the treatment of primary invasive vaginal carcinoma was reviewed to define the role of brachytherapy. We retrospectively reviewed the charts of 36 patients with primary vaginal carcinoma who received definitive radiotherapy between 1992 and 2010. The treatment modalities included high-dose-rate intracavitary brachytherapy alone (HDR-ICBT; two patients), external beam radiation therapy alone (EBRT; 14 patients), a combination of EBRT and HDR-ICBT (10 patients), or high-dose-rate interstitial brachytherapy (HDR-ISBT; 10 patients). The median follow-up was 35.2 months. The 2-year local control rate (LCR), disease-free survival (DFS), and overall survival (OS) were 68.8%, 55.3% and 73.9%, respectively. The 2-year LCR for Stage I, II, III and IV was 100%, 87.5%, 51.5% and 0%, respectively (P = 0.007). In subgroup analysis consisting only of T2–T3 disease, the use of HDR-ISBT showed marginal significance for favorable 5-year LCR (88.9% vs 46.9%, P = 0.064). One patient each developed Grade 2 proctitis, Grade 2 cystitis, and a vaginal ulcer. We conclude that brachytherapy can play a central role in radiation therapy for primary vaginal cancer. Combining EBRT and HDR-ISBT for T2–T3 disease resulted in good local control.
doi:10.1093/jrr/rrt028
PMCID: PMC3766300  PMID: 23559599
primary vaginal cancer; radiation therapy; high-dose-rate brachytherapy; intracavitary brachytherapy; interstitial brachytherapy
14.  CT based three dimensional dose-volume evaluations for high-dose rate intracavitary brachytherapy for cervical cancer 
BMC Cancer  2014;14:447.
Background
In this study, high risk clinical target volumes (HR-CTVs) according to GEC-ESTRO guideline were contoured retrospectively based on CT images taken at the time of high-dose rate intracavitary brachytherapy (HDR-ICBT) and correlation between clinical outcome and dose of HR-CTV were analyzed.
Methods
Our study population consists of 51 patients with cervical cancer (Stages IB-IVA) treated with 50 Gy external beam radiotherapy (EBRT) using central shield combined with 2–5 times of 6 Gy HDR-ICBT with or without weekly cisplatin. Dose calculation was based on Manchester system and prescribed dose of 6 Gy were delivered for point A. CT images taken at the time of each HDR-ICBT were reviewed and HR-CTVs were contoured. Doses were converted to the equivalent dose in 2 Gy (EQD2) by applying the linear quadratic model (α/β = 10 Gy).
Results
Three-year overall survival, Progression-free survival, and local control rate was 82.4%, 85.3% and 91.7%, respectively. Median cumulative dose of HR-CTV D90 was 65.0 Gy (52.7-101.7 Gy). Median length from tandem to the most lateral edge of HR-CTV at the first ICBT was 29.2 mm (range, 18.0-51.9 mm). On univariate analysis, both LCR and PFS was significantly favorable in those patients D90 for HR-CTV was 60 Gy or greater (p = 0.001 and 0.03, respectively). PFS was significantly favorable in those patients maximum length from tandem to edge of HR-CTV at first ICBT was shorter than 3.5 cm (p = 0.042).
Conclusion
Volume-dose showed a relationship to the clinical outcome in CT based brachytherapy for cervical carcinoma.
doi:10.1186/1471-2407-14-447
PMCID: PMC4099086  PMID: 24938757
Brachytherapy; Image-based gynecological brachytherapy; Cervical cancer; IGBT; CT-based gynecological brachytherapy
15.  Early observed transient prostate-specific antigen elevations on a pilot study of external beam radiation therapy and fractionated MRI guided High Dose Rate brachytherapy boost 
Purpose
To report early observation of transient PSA elevations on this pilot study of external beam radiation therapy and magnetic resonance imaging (MRI) guided high dose rate (HDR) brachytherapy boost.
Materials and methods
Eleven patients with intermediate-risk and high-risk localized prostate cancer received MRI guided HDR brachytherapy (10.5 Gy each fraction) before and after a course of external beam radiotherapy (46 Gy). Two patients continued on hormones during follow-up and were censored for this analysis. Four patients discontinued hormone therapy after RT. Five patients did not receive hormones. PSA bounce is defined as a rise in PSA values with a subsequent fall below the nadir value or to below 20% of the maximum PSA level. Six previously published definitions of biochemical failure to distinguish true failure from were tested: definition 1, rise >0.2 ng/mL; definition 2, rise >0.4 ng/mL; definition 3, rise >35% of previous value; definition 4, ASTRO defined guidelines, definition 5 nadir + 2 ng/ml, and definition 6, nadir + 3 ng/ml.
Results
Median follow-up was 24 months (range 18–36 mo). During follow-up, the incidence of transient PSA elevation was: 55% for definition 1, 44% for definition 2, 55% for definition 3, 33% for definition 4, 11% for definition 5, and 11% for definition 6.
Conclusion
We observed a substantial incidence of transient elevations in PSA following combined external beam radiation and HDR brachytherapy for prostate cancer. Such elevations seem to be self-limited and should not trigger initiation of salvage therapies. No definition of failure was completely predictive.
doi:10.1186/1748-717X-1-28
PMCID: PMC1564026  PMID: 16914054
16.  High-dose-rate intraluminal brachytherapy during preoperative chemoradiation for locally advanced rectal cancers 
AIM: To determine the feasibility and safety of high dose rate intraluminal brachytherapy (HDR-ILBT) boost during preoperative chemoradiation for rectal cancer.
METHODS: Between 2008 and 2009, thirty-six patients with locally advanced rectal cancer (≥ T3 or N+), were treated initially with concurrent capecitabine (825 mg/m2 oral twice daily) and pelvic external beam radiotherapy (EBRT) (45 Gy in 25 fractions), then were randomized to group A; HDR-ILBT group (n = 17) to receive 5.5-7 Gy × 2 to gross tumor volume (GTV) and group B; EBRT group (n = 19) to receive 5.4 Gy × 3 fractions to GTV with EBRT. All patients underwent total mesorectal excision.
RESULTS: Grade 3 acute toxicities were registered in 12 patients (70.6%) in group A and in 8 (42.1%) in group B. Complete pathologic response of T stage (ypT0) in group A was registered in 10 patients (58.8%) and in group B, 3 patients (15.8%) had ypT0 (P < 0.0001). Sphincter preservation was reported in 6/9 patients (66.7%) in group A and in 5/10 patients (50%) in group B (P < 0.01). Overall radiological response was 68.15% and 66.04% in Group A and B, respectively. During a median follow up of 18 mo, late grade 1 and 2 sequelae were registered in 3 patients (17.6%) and 4 patients (21.1%) in the groups A and B, respectively.
CONCLUSION: HDR-ILBT was found to be effective dose escalation technique in preoperative chemoradiation for rectal cancers, with higher response rates, downstaging and with manageable acute toxicities.
doi:10.3748/wjg.v16.i35.4436
PMCID: PMC2941067  PMID: 20845511
High dose rate; Intraluminal brachytherapy boost; Locally advanced rectal cancer; Preoperative chemoradiation
17.  Salvage brachytherapy in prostate local recurrence after radiation therapy: predicting factors for control and toxicity 
Purpose
To evaluate efficacy and toxicity after salvage brachytherapy (BT) in prostate local recurrence after radiation therapy.
Methods and materials
Between 1993 and 2007, we retrospectively analyzed 56 consecutively patients (pts) undergoing salvage brachytherapy. After local biopsy-proven recurrence, pts received 145 Gy LDR-BT (37 pts, 66%) or HDR-BT (19 pts, 34%) in different dose levels according to biological equivalent doses (BED2 Gy). By the time of salvage BT, only 15 pts (27%) received ADT. Univariate and multivariate analyses were performed to identify predictors of biochemical control and toxicities. Acute and late genitourinary (GU) and gastrointestinal (GI) toxicities were graded using Common Terminology Criteria for Adverse Events (CTCv3.0).
Results
Median follow-up after salvage BT was 48 months. The 5-year FFbF was 77%. HDR and LDR late grade 3 GU toxicities were observed in 21% and 24%. Late grade 3 GI toxicities were observed in 2% (HDR) and 2.7% (LDR). On univariate analysis, pre-salvage prostate-specific antigen (PSA) > 10 ng/ml (p = 0.004), interval to relapse after initial treatment < 24 months (p = 0.004) and salvage HDR-BT doses BED2 Gy level < 227 Gy (p = 0.012) were significant in predicting biochemical failure. On Cox multivariate analysis, pre-salvage PSA, and time to relapse were significant in predicting biochemical failure.
HDR-BT BED2 Gy (α/β 1.5 Gy) levels ≥ 227 (p = 0.013), and ADT (p = 0.049) were significant in predicting grade ≥ 2 urinary toxicity.
Conclusions
Prostate BT is an effective salvage modality in some selected prostate local recurrence patients after radiation therapy. Even, we provide some potential predictors of biochemical control and toxicity for prostate salvage BT, further investigation is recommended.
doi:10.1186/1748-717X-9-102
PMCID: PMC4019368  PMID: 24885287
Salvage brachytherapy; Prostate cancer; High-dose-rate-brachytherapy; Low-dose-rate-brachytherapy; Androgen deprivation therapy
18.  Dosimetry and toxicity outcomes in postoperative high-dose-rate intracavitary brachytherapy for endometrial carcinoma 
Purpose
The optimal dosimetric parameters and planning techniques for high-dose-rate vaginal brachytherapy (HDR-VB) are unclear. Our aim was to evaluate the utility of bladder and rectal dosimetry for patients receiving HDR-VB for postoperative treatment of endometrial carcinoma.
Material and methods
Patients with endometrial cancer who underwent postoperative HDR-VB from January 1, 2004 through December 31, 2010 were included. All patients underwent primary surgery consisting of total hysterectomy and bilateral salpingo-oophrectomy (TH-BSO) with or without lymph node dissection and were treated with HDR-VB without pelvic external beam radiotherapy (EBRT) or chemotherapy. Demographic, pathologic, dosimetric and clinical data were collected.
Results
One hundred patients were identified with the majority of patients receiving HDR-VB in 700 cGy × 3 fractions (45%) or 550 cGy x 4 fractions (53%). No plan was altered based on bladder dosimetry at the time of planning. The rate of acute urinary reactions (< 90 days from beginning of RT) grades 1 and 2 were 14% and 2%, respectively. The rate of late urinary reactions (> 90 days after RT) grades 1 and 2 were 7% and 3%, respectively. Dose to the bladder point did not correlate with urinary toxicity. No rectal toxicity was reported by patients receiving HDR-VB.
Conclusions
In the setting of HDR-VB without EBRT, the measured dose to the bladder point does not predict urinary toxicity and is very unlikely to indicate the need to change the treatment plan. The treatment of endometrial carcinoma utilizing HDR-VB alone is associated with very low rates of high-grade acute or late bladder toxicity.
doi:10.5114/jcb.2012.30679
PMCID: PMC3551376  PMID: 23346142
endometrial cancer; high-dose-rate; brachytherapy
19.  Low-dose-rate or high-dose-rate brachytherapy in treatment of prostate cancer – between options 
Purpose
Permanent low-dose-rate (LDR-BT) and temporary high-dose-rate (HDR-BT) brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never to be conducted comparing these two forms of brachytherapy, a comparative analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. The aim of this paper is to look for possible similarities and differences between both brachytherapy modalities. Indications and contraindications for monotherapy and for brachytherapy as a boost to external beam radiation therapy (EBRT) are presented. It is suggested that each of these techniques has attributes that advocates for one or the other. First, they represent the extreme ends of the spectrum with respect to dose rate and fractionation, and therefore have inherently different radiobiological properties. Low-dose-rate brachytherapy has the great advantage of being practically a one-time procedure, and enjoys a long-term follow-up database supporting its excellent outcomes and low morbidity. Low-dose-rate brachytherapy has been a gold standard for prostate brachytherapy in low risk patients since many years. On the other hand, HDR is a fairly invasive procedure requiring several sessions associated with a brief hospital stay. Although lacking in significant long-term data, it possesses the technical advantage of control over its postimplant dosimetry (by modulating the source dwell time and position), which is absent in LDR brachytherapy. This important difference in dosimetric control allows HDR doses to be escalated safely, a flexibility that does not exist for LDR brachytherapy.
Conclusions
Radiobiological models support the current clinical evidence for equivalent outcomes in localized prostate cancer with either LDR or HDR brachytherapy, using current dose regimens. At present, all available clinical data regarding these two techniques suggests that they are equally effective, stage for stage, in providing high tumor control rates.
doi:10.5114/jcb.2013.34342
PMCID: PMC3635047  PMID: 23634153
brachytherapy; HDR; LDR; prostate cancer; seeds
20.  3D-image-guided HDR-brachytherapy versus 2D HDR - brachytherapy after external beam radiotherapy for early T-stage nasopharyngeal carcinoma 
BMC Cancer  2014;14:894.
Background
Two-dimensional high-dose-rate brachytherapy (2D-HDR-BT) is an effective method of dose escalation for local tumor control in early T-stage nasopharyngeal carcinoma (NPC). Treatment outcomes for 3D-image-guided high-dose-rate brachytherapy (3D-image-guided-HDR-BT) after external beam radiotherapy (ERT) have not been examined in early T-stage NPC patients. The current study was designed to evaluate whether addition of 3D-HDR-BT to ERT showed further improvement in treatment outcomes in patients with early T-stage NPC when compared to 2D-HDR-BT after ERT.
Methods
The current study retrospectively analyzed and compared treatment outcomes for patients with nonmetastatic stage T1-2b NPC treated with 2D-HDR-BT (n =101) or 3D-HDR-BT (n =118) after ERT. Patients in both groups were treated with ERT at a mean dose of 60 Gy and a brachytherapy dose of 12Gy (8 ~ 20Gy), 2.5 ~ 5Gy per fraction under local anesthesia.
Results
Compared to patients treated with 2D-HDR-BT after ERT, patients treated with 3D-HDR-BT after ERT showed improvement in five-year actuarial local control survival rates (p = 0.024), local/regional relapse-free survival rates (p = 0.038), and disease-free survival rates (p = 0.021). Multivariate analysis showed that NPC patients treated with 3D-HDR-BT had improved local control survival (p = 0.042). The incidence rates of acute or chronic complications were similar between two groups.
Conclusions
The current study showed that 3D-image-guided HDR-BT after ERT was an effective treatment modality for patients with stage T1-2 NPC with acceptable complications. The improvement in local tumor control and disease free survival is likely due to improved conformal dose distributions.
doi:10.1186/1471-2407-14-894
PMCID: PMC4289213  PMID: 25432818
Nasopharyngeal carcinoma; Radiotherapy; 3D-image-guided; Brachytherapy; Local control
21.  Interstitial high-dose rate brachytherapy as boost for anal canal cancer 
Aim
To assess clinical outcomes of patients treated with a high-dose rate brachytherapy boost for anal canal cancer (ACC).
Methods
From August 2005 to February 2013, 28 patients presenting an ACC treated by split-course external beam radiotherapy (EBRT) and HDR brachytherapy with or without chemotherapy in a French regional cancer center in Nice were retrospectively analyzed.
Results
Median age was 60.6 years [34 – 83], 25 patients presented a squamous cell carcinoma and 3 an adenocarcinoma; 21 received chemotherapy. Median dose of EBRT was 45 Gy [43.2 – 52]. Median dose of HDR brachytherapy was 12 Gy [10 - 15] with a median duration of 2 days. Median overall treatment time was 63 days and median delay between EBRT and brachytherapy was 20 days. Two-year local relapse free, metastatic free, disease free and overall survivals were 83%, 81.9%, 71.8% and 87.7% respectively. Acute toxicities were frequent but not severe with mostly grade 1 toxicities: 37% of genito-urinary, 40.7% of gastro-intestinal and 3.7% of cutaneous toxicities. Late toxicities were mainly G1 (43.1%) and G2 (22%). Two-year colostomy-free survival was 75.1%, one patient had a definitive sphincter amputation.
Conclusion
High-dose rate brachytherapy for anal canal carcinoma as boost represents a feasible technique compared to low or pulsed-dose rate brachytherapy. This technique remains an excellent approach to precisely boost the tumor in reducing the overall treatment time.
doi:10.1186/s13014-014-0240-4
PMCID: PMC4229617  PMID: 25377886
Brachytherapy; Anal canal cancer; High-dose rate; Boost; Radiotherapy
22.  Nerve tolerance to high-dose-rate brachytherapy in patients with soft tissue sarcoma: a retrospective study 
BMC Cancer  2005;5:79.
Background
Brachytherapy, interstitial tumor bed irradiation, following conservative surgery has been shown to provide excellent local control and limb preservation in patients with soft tissue sarcomas (STS), whereas little is known about the tolerance of peripheral nerves to brachytherapy. In particular, nerve tolerance to high-dose-rate (HDR) brachytherapy has never been properly evaluated. In this study, we examined the efficacy and radiation neurotoxicity of HDR brachytherapy in patients with STS in contact with neurovascular structures.
Methods
Between 1995 and 2000, seven patients with STS involving the neurovascular bundle were treated in our institute with limb-preserving surgery, followed by fractionated HDR brachytherapy. Pathological examination demonstrated that 6 patients had high-grade lesions with five cases of negative margins and one case with positive margins, and one patient had a low-grade lesion with a negative margin. Afterloading catheters placed within the tumor bed directly upon the preserved neurovascular structures were postoperatively loaded with Iridium-192 with a total dose of 50 Gy in 6 patients. One patient received 30 Gy of HDR brachytherapy combined with 20 Gy of adjuvant external beam radiation.
Results
With a median follow-up of 4 years, the 5-year actuarial overall survival, disease-free survival, and local control rates were 83.3, 68.6, and 83.3%, respectively. None of the 7 patients developed HDR brachytherapy-induced peripheral neuropathy. Of 5 survivors, 3 evaluable patients had values of motor nerve conduction velocity of the preserved peripheral nerve in the normal range.
Conclusion
In this study, there were no practical and electrophysiological findings of neurotoxicity of HDR brachytherapy. Despite the small number of patients, our encouraging results are valuable for limb-preserving surgery of unmanageable STS involving critical neurovascular structures.
doi:10.1186/1471-2407-5-79
PMCID: PMC1181808  PMID: 16026629
23.  Dosimetric analysis and comparison of IMRT and HDR brachytherapy in treatment of localized prostate cancer 
Radical radiotherapy is one of the options for the management of prostate cancer. In external beam therapy, 3D conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT) are the options for delivery of increased radiation dose, as vital organs are very close to the prostate and a higher dose to these structures leads to an increased toxicity. In brachytherapy, low dose rate brachytherapy with permanent implant of radioactive seeds and high dose rate brachytherapy (HDR) with remote after loaders are available. A dosimetric analysis has been made on IMRT and HDR brachytherapy plans. Ten cases from each IMRT and HDR brachytherapy have been taken for the study. The analysis includes comparison of conformity and homogeneity indices, D100, D95, D90, D80, D50, D10 and D5 of the target. For the organs at risk (OAR), namely rectum and bladder, V100, V90 and V50 are compared. In HDR brachytherapy, the doses to 1 cc and 0.1 cc of urethra have also been studied. Since a very high dose surrounds the source, the 300% dose volumes in the target and within the catheters are also studied in two plans, to estimate the actual volume of target receiving dose over 300%. This study shows that the prescribed dose covers 93 and 92% of the target volume in IMRT and HDR brachytherapy respectively. HDR brachytherapy delivers a much lesser dose to OAR, compared to the IMRT. For rectum, the V50 in IMRT is 34.0cc whilst it is 7.5cc in HDR brachytherapy. With the graphic optimization tool in HDR brachytherapy planning, the dose to urethra could be kept within 120% of the target dose. Hence it is concluded that HDR brachytherapy may be the choice of treatment for cancer of prostate in the early stage.
doi:10.4103/0971-6203.62201
PMCID: PMC2884303  PMID: 20589121
Brachytherapy; conformity; intensity modulated radiotherapy; prostate
24.  Development of ProCaRS Clinical Nomograms for Biochemical Failure-free Survival Following Either Low-Dose Rate Brachytherapy or Conventionally Fractionated External Beam Radiation Therapy for Localized Prostate Cancer 
Cureus  null;7(6):e276.
Purpose: Although several clinical nomograms predictive of biochemical failure-free survival (BFFS) for localized prostate cancer exist in the medical literature, making valid comparisons can be challenging due to variable definitions of biochemical failure, the disparate distribution of prognostic factors, and received treatments in patient populations. The aim of this investigation was to develop and validate clinically-based nomograms for 5-year BFFS using the ASTRO II “Phoenix” definition for two patient cohorts receiving low-dose rate (LDR) brachytherapy or conventionally fractionated external beam radiation therapy (EBRT) from a large Canadian multi-institutional database.
Methods and Materials: Patients were selected from the GUROC (Genitourinary Radiation Oncologists of Canada) Prostate Cancer Risk Stratification (ProCaRS) database if they received (1) LDR brachytherapy ≥ 144 Gy (n=4208) or (2) EBRT ≥ 70 Gy  (n=822). Multivariable Cox regression analysis for BFFS was performed separately for each cohort and used to generate clinical nomograms predictive of 5-year BFFS. Nomograms were validated using calibration plots of nomogram predicted probability versus observed probability via Kaplan-Meier estimates.
Results: Patients receiving LDR brachytherapy had a mean age of 64 ± 7 years, a mean baseline PSA of 6.3 ± 3.0 ng/mL, 75% had a Gleason 6, and 15% had a Gleason 7, whereas patients receiving EBRT had a mean age of 70 ± 6 years, a mean baseline PSA of 11.6 ± 10.7 ng/mL, 30% had a Gleason 6, 55% had a Gleason 7, and 14% had a Gleason 8-10. Nomograms for 5-year BFFS included age, use and duration of androgen deprivation therapy (ADT), baseline PSA, T stage, and Gleason score for LDR brachytherapy and an ADT (months), baseline PSA, Gleason score, and biological effective dose (Gy) for EBRT.
Conclusions: Clinical nomograms examining 5-year BFFS were developed for patients receiving either LDR brachytherapy or conventionally fractionated EBRT and may assist clinicians in predicting an outcome. Future work should be directed at examining the role of additional prognostic factors, comorbidities, and toxicity in predicting survival outcomes.
doi:10.7759/cureus.276
PMCID: PMC4494461  PMID: 26180700
radiotherapy; prostate cancer; ldr brachytherapy; fractionated external beam radiation therapy; biochemical failure; nomogram
25.  External beam boost irradiation for clinically positive pelvic nodes in patients with uterine cervical cancer 
Journal of Radiation Research  2013;54(4):690-696.
The purpose of this study was to retrospectively analyze the treatment results of boost external beam radiotherapy (EBRT) to clinically positive pelvic nodes in patients with uterine cervical cancer. The study population comprised 174 patients with FIGO stages 1B1–4A cervical cancer who were treated with definitive radiotherapy (RT) or concurrent chemoradiotherapy (CCRT) and high-dose-rate intracavitary brachytherapy (HDR-ICBT). Patients with positive para-aortic or common iliac nodes (≥10 mm in the shortest diameter, as evaluated by CT/MRI) were ineligible for the study. Fifty-seven patients (33%) had clinically positive pelvic nodes. The median maximum diameter of the nodes was 15 mm (range, 10–60 mm) and the median number of positive lymph nodes was two (range, one to four). Fifty-two of 57 patients (91%) with positive nodes were treated with boost EBRT (6–10 Gy in three to five fractions). The median prescribed dose of EBRT for nodes was 56 Gy. The median follow-up time for all patients was 66 months (range, 3–142 months). The 5-year overall survival rate, disease-free survival rate and pelvic control rate for patients with positive and negative nodes were 73% and 92% (P = 0.001), 58% and 84% (P < 0.001), and 83% and 92% (P = 0.082), respectively. Five of 57 node-positive patients (9%) developed pelvic node recurrences. All five patients with nodal failure had concomitant cervical failure and/or distant metastases. No significant difference was observed with respect to the incidence or severity of late complications by application of boost EBRT. The current retrospective study demonstrated that boost EBRT to positive pelvic nodes achieves favorable nodal control without increasing late complications.
doi:10.1093/jrr/rrs138
PMCID: PMC3709666  PMID: 23365264
boost; cervical cancer; lymph node; radiotherapy

Results 1-25 (1529838)