PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1079933)

Clipboard (0)
None

Related Articles

1.  Semantic memory is impaired in both dementia with Lewy bodies and dementia of Alzheimer's type: a comparative neuropsychological study and literature review 
OBJECTIVE—To test the hypothesis that semantic impairment is present in both patients with dementia with Lewy bodies (DLB) and those with dementia of Alzheimer's type (DAT).
METHODS—A comprehensive battery of neuropsychological tasks designed to assess semantic memory, visuoperceptual function, verbal fluency, and recognition memory was given to groups of patients with DLB (n=10), DAT (n=10) matched pairwise for age and mini mental state examination (MMSE), and age matched normal controls (n=15).
RESULTS—Both DLB and DAT groups exhibited impaired performance across the range of tasks designed to assess semantic memory. Whereas patients with DAT showed equivalent comprehension of written words and picture stimuli, patients with DLB demonstrated more severe semantic deficits for pictures than words. As in previous studies, patients with DLB but not those with DAT were found to have impaired visuoperceptual functioning. Letter and category fluency were equally reduced for the patients with DLB whereas performance on letter fluency was significantly better in the DAT group. Recognition memory for faces and words was impaired in both groups.
CONCLUSIONS—Semantic impairment is not limited to patients with DAT. Patients with DLB exhibit particular problems when required to access meaning from pictures that is most likely to arise from a combination of semantic and visuoperceptual impairments.


doi:10.1136/jnnp.70.2.149
PMCID: PMC1737202  PMID: 11160461
2.  Comparison of Clinical Manifestation in Familial Alzheimer's disease and Dementia with Lewy Bodies 
Archives of neurology  2008;65(12):1634-1639.
Background
The clinical delineation of Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) remains unclear.
Objective
To compare the neuropsychological profiles of patients with clinically diagnosed Dementia with Lewy bodies (DLB) and Alzheimer's disease (AD).
Methods
We first compared measures of memory, orientation, language, executive, visual perception and visual construction function between persons with DLB and AD in two Caribbean Hispanic cohorts, including a family dataset (DLB =89; AD: n=118) and an epidemiologic dataset (DLB: n=70; AD: n=157). DLB in the family sample was further divided into i) families with two or more affected family members (DLB), or ii) one affected family member (DLB). To determine whether observed differences in cognitive profiles were driven by heritable factors, we then repeated the analyses in the epidemiologic cohort excluding all familial cases. We applied general linear models adjusting for age, sex, education, disease duration, and APOE-ε4 genotype.
Results
Persons with DLB were in both cohorts more severely impaired in orientation, visual construction and non verbal reasoning after controlling for potential confounders. Persons with 2 or more DLB cases per family had the most severe impairment in episodic and semantic memory, followed by those with one DLB case per family, then by those with AD. When familial AD and DLB cases were excluded from the analysis in the epidemiologic cohort, the differences between the AD and DLB groups persisted but were attenuated.
Conclusions
Compared to persons with AD, persons with DLB are more severely impaired in various cognitive domains, particularly orientation, visual perception and visual construction. The difference appears strong in familial rather than sporadic DLB. Whether this divergence in cognitive functions is caused by gene-gene or gene-environmental interactions remains unclear.
doi:10.1001/archneur.65.12.1634
PMCID: PMC2633487  PMID: 19064751
3.  Dementia with Lewy Bodies versus Alzheimer's Disease and Parkinson's Disease Dementia: A Comparison of Cognitive Profiles 
Background and Purpose
It is particularly difficult to differentiate dementia with Lewy bodies (DLB) from the related dementias of Alzheimer's disease (AD) and Parkinson's disease dementia (PDD). Few studies have been designed to comparatively analyze detailed neuropsychological assessments of DLB patients and patients with AD and PDD.
Methods
Three groups of patients participated in this study: 10 with DLB, 76 with AD, and 17 with PDD, who had been diagnosed as probable DLB, AD, and PDD, respectively, according to the clinical criteria of the consortium on DLB, National Institute of Neurological and Communicative Diseases and Stroke/Alzheimer's Disease and Related Disorder Association, and the clinical diagnostic criteria for PDD. All patients were evaluated by careful neurological examination with detailed neuropsychological testing.
Results
Significant differences among the three groups were found for attention, memory, and executive function, which included tasks of backward digit span, three-word recall, verbal delayed recall, and the Stroop test. Post hoc analysis revealed that the deficiencies of attention on the digit span task were greater in the DLB group than in the AD and PDD groups. The scores for episodic verbal memory tasks were significantly lower in the DLB and AD groups than in the PDD group. The performance in frontal executive function, as indicated by the Stroop test, was significantly worse in the DLB and PDD groups than in the AD group.
Conclusions
The results of the present study show that the pattern of cognitive dysfunction, in terms of attention, episodic memory, and executive functions, differ between patients with DLB and patients with AD and PDD.
doi:10.3988/jcn.2011.7.1.19
PMCID: PMC3079155  PMID: 21519522
dementia with lewy bodies; Alzheimer's disease; Parkinson's disease dementia; cognition; neuropsychology
4.  Comparison of cognitive decline between dementia with Lewy bodies and Alzheimer's disease: a cohort study 
BMJ Open  2012;2(1):e000380.
Objectives
Dementia with Lewy bodies (DLB) accounts for 10%–15% of dementia cases at autopsy and has distinct clinical features associated with earlier institutionalisation and a higher level of carer distress than are seen in Alzheimer's disease (AD). At present, there is on-going debate as to whether DLB is associated with a more rapid cognitive decline than AD. An understanding of the rate of decline of cognitive and non-cognitive symptoms in DLB may help patients and carers to plan for the future.
Design
In this cohort study, the authors compared 100 AD and 58 DLB subjects at baseline and at 12-month follow-up on cognitive and neuropsychiatric measures.
Setting
Patients were recruited from 40 European centres.
Participants
Subjects with mild–moderate dementia. Diagnosis of DLB or AD required agreement between consensus panel clinical diagnosis and visual rating of 123I-FP-CIT (dopamine transporter) single photon emission computed tomography neuroimaging.
Outcome measures
The Cambridge Cognitive Examination including Mini-Mental State Examination and Neuropsychiatric Inventory (NPI).
Results
The AD and DLB groups did not differ at baseline in terms of age, gender, Clinical Dementia Rating score and use of cholinesterase inhibitors or memantine. NPI and NPI carer distress scores were statistically significantly higher for DLB subjects at baseline and at follow-up, and there were no differences between AD and DLB in cognitive scores at baseline or at follow-up. There was no significant difference in rate of progression of any of the variables analysed.
Conclusions
DLB subjects had more neuropsychiatric features at baseline and at follow-up than AD, but the authors did not find any statistically significant difference in rate of progression between the mild–moderate AD and DLB groups on cognitive or neuropsychiatric measures over a 12-month follow-up period.
Article summary
Article focus
Dementia with Lewy bodies (DLB) has distinct neuropsychiatric features.
At present, we do not know whether the poorer prognosis of DLB is due to a more rapid cognitive decline compared with Alzheimer's disease (AD).
Key messages
In this fairly large cohort of patients with DLB and AD, while there was no difference in level of cognitive impairment (Cambridge Cognitive Examination (CAMCOG) score) at baseline and at 12-month follow-up, DLB patients had significantly higher Neuropsychiatric Inventory (NPI) and NPI carer distress scores both at baseline and at 12-month follow-up.
Therefore, the worse prognosis of DLB is likely to be mediated by neuropsychiatric or other symptoms and not only by cognitive decline.
Strengths and limitations of this study
Inclusion of high number of subjects from 40 European clinical centres.
Well-characterised cases with both consensus panel clinical diagnosis (three clinical experts) and dopaminergic transporter single photon emission computed tomography imaging.
No autopsy data were available and therefore it is possible that more rapid cognitive decline may be present in pure DLB.
Only 1 year of follow-up.
There was higher attrition rate (no-follow-up assessment) in the DLB group, and DLB patients that did not return for follow-up were more impaired than AD patients.
doi:10.1136/bmjopen-2011-000380
PMCID: PMC3330257  PMID: 22318660
5.  Higher cortical deficits influence attentional processing in dementia with Lewy bodies, relative to patients with dementia of the Alzheimer's type and controls 
Background
Attentional dysfunction is believed to be a prominent and distinguishing neuropsychological feature of dementia with Lewy bodies (DLB); yet, the specific nature of the attentional deficit and factors that can potentially influence attentional processing in DLB have not been fully defined.
Aims
To clarify the nature of the attentional deficit in early‐stage DLB relative to patients with early‐stage dementia of the Alzheimer's type (DAT) and elderly controls, and examine the effect of task complexity and type of cognitive load on attentional processing in DLB.
Methods
Attentional impairment and fluctuating attention were investigated in three groups of subjects—patients with clinical features of early probable DLB (n = 20), a group with early probable DAT (n = 19) and healthy elderly controls (n = 20)—using an experimental computerised reaction time paradigm.
Results
Patients with DLB showed greater attentional impairment and fluctuations in attention relative to patients with DAT and elderly controls. The attentional deficit was generalised in nature but increased in magnitude as greater demands were placed on attentional selectivity. Attentional deficits in DLB were most pronounced under task conditions that required more active recruitment of executive control and visuospatial cognitive processes.
Conclusions
Attentional deficits in DLB are widespread and encompass all aspects of attentional function. Deficits in higher cortical function influence the degree of attentional impairment and fluctuating attention, suggesting that attentional processing in DLB is mediated by interacting cortical and subcortical mechanisms. These findings serve to clarify the nature of the attentional deficit in DLB and have potentially important ramifications for our understanding of the neurocognitive underpinnings of fluctuations.
doi:10.1136/jnnp.2006.090183
PMCID: PMC2077555  PMID: 16772356
6.  Early Visuospatial Deficits Predict the Occurrence of Visual Hallucinations in Autopsy-Confirmed Dementia with Lewy Bodies 
Objectives
The current study explored the value of visuospatial findings for predicting the occurrence of visual hallucinations (VH) in a sample of patients with Dementia with Lewy bodies (DLB) compared to patients with Alzheimer’s disease (AD).
Participants/Measurements
Retrospective analysis of 55 autopsy-confirmed DLB and 55 demographically-similar, autopsy-confirmed AD cases determined whether severe initial visuospatial deficits on the WISC-R Block Design subtest predicted the development of VH. Visuospatial deficits were considered severe if Block Design z-scores were 2.5 or more standard deviations below the mean of a well-characterized normal control group (Severe-VIS; DLB: n=35, AD: n=26) and otherwise were considered mild (Mild-VIS; DLB: n=20, AD: n=29).
Results
Forty percent of the Severe-VIS DLB group had baseline VH compared to 0% of Mild-VIS DLB patients. Only 8% of the Severe-VIS and 3% Mild-VIS AD patients had baseline VH. During the follow-up period (mean=5.0 years), an additional 61% of the Severe-VIS but only 11% of the Mild-VIS DLB patients developed VH. In that period, 38% of the Severe-VIS and 20% of the Mild-VIS AD patients developed VH. After considering initial MMSE score and rate of decline, logistic regression analyses found that performance on Block Design significantly predicted the presence of VH in the DLB group but not the AD group.
Conclusions
The presence of early, severe deficits on neuropsychological tests of visuospatial skill increases the likelihood that patients with suspected DLB will develop the prototypical DLB syndrome. The presence of such deficits may identify those DLB patients whose syndrome is driven by alpha-synuclein pathology rather than AD pathology and may inform treatment plans as well as future research.
doi:10.1097/JGP.0b013e31823033bc
PMCID: PMC3260388  PMID: 21997600
Lewy body disease; Hallucinations, visual; Alzheimer’s disease; Visuospatial cognition
7.  Performance on the dementia rating scale in Parkinson's disease with dementia and dementia with Lewy bodies: comparison with progressive supranuclear palsy and Alzheimer's disease 
Background: The relation between dementia with Lewy bodies (DLB) and Parkinson's disease with dementia (PDD) is unknown.
Objectives: To compare the cognitive profiles of patients with DLB and PDD, and compare those with the performance of patients with a subcortical dementia (progressive supranuclear palsy) and a cortical dementia (Alzheimer's disease).
Design: Survey of cognitive features.
Setting: General community in Rogaland county, Norway, and a university dementia and movement disorder research centre in the USA.
Patients: 60 patients with DLB, 35 with PDD, 49 with progressive supranuclear palsy, and 29 with Alzheimer's disease, diagnosed by either standardised clinical procedures and criteria (all PDD and Alzheimer cases and 76% of cases of progressive supranuclear palsy), or necropsy (all DLB cases and 24% of cases of progressive supranuclear palsy). Level of dementia severity was matched using the total score on the dementia rating scale adjusted for age and education.
Main outcome measures: Dementia rating scale subscores corrected for age.
Results: No significant differences between the dementia rating scale subscores in the PDD and DLB groups were found in the severely demented patients; in patients with mild to moderate dementia the conceptualisation subscore was higher in PDD than in DLB (p = 0.03). Compared with Alzheimer's disease, PDD and DLB had higher memory subscores (p < 0.001) but lower initiation and perseveration (p = 0.008 and p=0.021) and construction subscores (p = 0.009 and p = 0.001). DLB patients had a lower conceptualisation subscore (p = 0.004). Compared with progressive supranuclear palsy, PDD and DLB patients had lower memory subscores (p < 0.001).
Conclusions: The cognitive profiles of patients with DLB and PDD were similar, but they differed from those of patients with Alzheimer's disease and progressive supranuclear palsy. The cognitive pattern in DLB and PDD probably reflects the superimposition of subcortical deficits upon deficits typically associated with Alzheimer's disease.
doi:10.1136/jnnp.74.9.1215
PMCID: PMC1738667  PMID: 12933921
8.  Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies 
Neurology  2013;81(23):2032-2038.
Objective:
To determine the rate of progression of mild cognitive impairment (MCI) to dementia with Lewy bodies (DLB).
Methods:
We followed 337 patients with MCI in the Mayo Alzheimer's Disease Research Center (range 2–12 years). Competing risks survival models were used to examine the rates of progression to clinically probable DLB and Alzheimer disease (AD). A subset of patients underwent neuropathologic examination.
Results:
In this clinical cohort, 116 remained as MCI, while 49 progressed to probable DLB, 162 progressed to clinically probable AD, and 10 progressed to other dementias. Among nonamnestic MCI, progression rate to probable DLB was 20 events per 100 person-years and to probable AD was 1.6 per 100 person-years. Among amnestic MCI, progression rate to probable AD was 17 events per 100 person-years, and to DLB was 1.5 events per 100 person-years. In 88% of those who developed probable DLB, the baseline MCI diagnosis included attention and/or visuospatial deficits. Those who developed probable DLB were more likely to have baseline daytime sleepiness and subtle parkinsonism. In 99% of the clinically probable AD group, the baseline MCI diagnosis included memory impairment. Neuropathologic confirmation was obtained in 24 of 30 of those with clinically probable AD, and in 14 of 18 of those with clinically probable DLB.
Conclusion:
In a clinical sample, patients with nonamnestic MCI were more likely to develop DLB, and those with amnestic MCI were more likely to develop probable AD.
doi:10.1212/01.wnl.0000436942.55281.47
PMCID: PMC3854825  PMID: 24212390
9.  Abnormal daytime sleepiness in dementia with Lewy bodies compared to Alzheimer’s disease using the Multiple Sleep Latency Test 
Introduction
Excessive daytime sleepiness is a commonly reported problem in dementia with Lewy bodies (DLB). We examined the relationship between nighttime sleep continuity and the propensity to fall asleep during the day in clinically probable DLB compared to Alzheimer’s disease (AD) dementia.
Methods
A full-night polysomnography was carried out in 61 participants with DLB and 26 with AD dementia. Among this group, 32 participants with DLB and 18 with AD dementia underwent a daytime Multiple Sleep Latency Test (MSLT). Neuropathologic examinations of 20 participants with DLB were carried out.
Results
Although nighttime sleep efficiency did not differentiate diagnostic groups, the mean MSLT initial sleep latency was significantly shorter in participants with DLB than in those with AD dementia (mean 6.4 ± 5 minutes vs 11 ± 5 minutes, P <0.01). In the DLB group, 81% fell asleep within 10 minutes compared to 39% of the AD dementia group (P <0.01), and 56% in the DLB group fell asleep within 5 minutes compared to 17% in the AD dementia group (P <0.01). Daytime sleepiness in AD dementia was associated with greater dementia severity, but mean MSLT latency in DLB was not related to dementia severity, sleep efficiency the night before, or to visual hallucinations, fluctuations, parkinsonism or rapid eye movement sleep behavior disorder. These data suggest that abnormal daytime sleepiness is a unique feature of DLB that does not depend on nighttime sleep fragmentation or the presence of the four cardinal DLB features. Of the 20 DLB participants who underwent autopsy, those with transitional Lewy body disease (brainstem and limbic) did not differ from those with added cortical pathology (diffuse Lewy body disease) in dementia severity, DLB core features or sleep variables.
Conclusions
Daytime sleepiness is more likely to occur in persons with DLB than in those with AD dementia. Daytime sleepiness in DLB may be attributed to disrupted brainstem and limbic sleep–wake physiology, and further work is needed to better understand the underlying mechanisms.
doi:10.1186/s13195-014-0076-z
PMCID: PMC4266572  PMID: 25512763
10.  Differentiating between visual hallucination-free dementia with Lewy bodies and corticobasal syndrome on the basis of neuropsychology and perfusion single-photon emission computed tomography 
Introduction
Dementia with Lewy bodies (DLB) and Corticobasal Syndrome (CBS) are atypical parkinsonian disorders with fronto-subcortical and posterior cognitive dysfunction as common features. While visual hallucinations are a good predictor of Lewy body pathology and are rare in CBS, they are not exhibited in all cases of DLB. Given the clinical overlap between these disorders, neuropsychological and imaging markers may aid in distinguishing these entities.
Methods
Prospectively recruited case–control cohorts of CBS (n =31) and visual hallucination-free DLB (n =30), completed neuropsychological and neuropsychiatric measures as well as brain perfusion single-photon emission computed tomography and structural magnetic resonance imaging (MRI). Perfusion data were available for forty-two controls. Behavioural, perfusion, and cortical volume and thickness measures were compared between the groups to identify features that serve to differentiate them.
Results
The Lewy body with no hallucinations group performed more poorly on measures of episodic memory compared to the corticobasal group, including the delayed and cued recall portions of the California Verbal Learning Test (F (1, 42) =23.1, P <0.001 and F (1, 42) =14.0, P =0.001 respectively) and the delayed visual reproduction of the Wechsler Memory Scale-Revised (F (1, 36) =9.7, P =0.004). The Lewy body group also demonstrated reduced perfusion in the left occipital pole compared to the corticobasal group (F (1,57) =7.4, P =0.009). At autopsy, the Lewy body cases all demonstrated mixed dementia with Lewy bodies, Alzheimer’s disease and small vessel arteriosclerosis, while the corticobasal cases demonstrated classical corticobasal degeneration in five, dementia with agyrophilic grains + corticobasal degeneration + cerebral amyloid angiopathy in one, Progressive Supranuclear Palsy in two, and Frontotemporal Lobar Degeneration-Ubiquitin/TAR DNA-binding protein 43 proteinopathy in one. MRI measures were not significantly different between the patient groups.
Conclusions
Reduced perfusion in the left occipital region and worse episodic memory performance may help to distinguish between DLB cases who have never manifested with visual hallucinations and CBS at earlier stages of the disease. Development of reliable neuropsychological and imaging markers that improve diagnostic accuracy will become increasingly important as disease modifying therapies become available.
doi:10.1186/s13195-014-0071-4
PMCID: PMC4256921  PMID: 25484929
11.  Visuospatial Deficits Predict Rate of Cognitive Decline in Autopsy-Verified Dementia with Lewy Bodies 
Neuropsychology  2008;22(6):729-737.
Dementia with Lewy Bodies (DLB) is often characterized by pronounced impairment in visuospatial skills, attention, and executive functions. However, the strength of the phenotypic expression of DLB varies and may be weaker in patients with extensive concomitant Alzheimer’s disease (AD). To determine whether strength of the DLB clinical phenotype impacts cognitive decline, visuospatial and language tests were retrospectively used to predict two-year rate of global cognitive decline in 22 autopsy-confirmed DLB patients (21 with concomitant AD) and 44 autopsy-confirmed “pure” AD patients. Generalized Estimating Equations (GEE) revealed a significant interaction such that poor baseline performances on tests of visuospatial skills were strongly associated with a rapid rate of cognitive decline in DLB but not AD (p < .001). No effect of confrontation naming was found. DLB patients with poor visuospatial skills had fewer neurofibrillary tangles and were more likely to experience visual hallucinations than those with better visuospatial skills. These results suggest that the severity of visuospatial deficits in DLB may identify those facing a particularly malignant disease course and may designate individuals whose clinical syndrome is impacted more by Lewy body formation than AD pathology.
doi:10.1037/a0012949
PMCID: PMC2587484  PMID: 18999346
Dementia with Lewy bodies; cognitive decline; visuospatial skills; Alzheimer’s disease
12.  Low sensitivity in clinical diagnoses of dementia with Lewy bodies 
Journal of neurology  2009;257(3):359-366.
The success of future neurodegenerative disease (ND) therapies depends partly on accurate antemortem diagnoses. Relatively few prior studies have been performed on large, multicenter-derived datasets to test the accuracy of final clinical ND diagnoses in relation to definitive neuropathological findings. Data were analyzed from the University of Kentucky Alzheimer's Disease Center autopsy series and from the National Alzheimer's Coordinating Center (NACC) registry. NACC data are derived from 31 different academic medical centers, each with strong clinical expertise and infrastructure pertaining to NDs. The final clinical diagnoses were compared systematically with subsequent neuropathology diagnoses. Among subjects meeting final inclusion criteria (N = 2,861 for NACC Registry data), the strength of the associations between clinical diagnoses and subsequent ND diagnoses was only moderate. This was particularly true in the case of dementia with Lewy bodies (DLB): the sensitivity of clinical diagnoses was quite low (32.1% for pure DLB and 12.1% for Alzheimer's disease (AD + DLB) although specificity was over 95%. AD clinical diagnoses were more accurate (85.0% sensitivity and 51.1% specificity). The accuracy of clinical DLB diagnoses became somewhat lower over the past decade, due apparently to increased “over-calling” the diagnosis in patients with severe cognitive impairment. Furthermore, using visual hallucinations, extrapyramidal signs, and/or fluctuating cognition as part of the clinical criteria for DLB diagnosis was of minimal utility in a group (N = 237) with high prevalence of severe dementia. Our data suggest that further work is needed to refine our ability to identify specific aging-related brain disease mechanisms, especially in DLB.
doi:10.1007/s00415-009-5324-y
PMCID: PMC2839040  PMID: 19795154
13.  Striatal and extrastriatal dopamine transporter levels relate to cognition in Lewy body diseases: an 11C altropane positron emission tomography study 
Introduction
The biological basis of cognitive impairment in parkinsonian diseases is believed to be multifactorial. We investigated the contribution of dopamine deficiency to cognition in Parkinson disease (PD) and dementia with Lewy bodies (DLB) with dopamine transporter (DAT) imaging.
Methods
We acquired 11C altropane PET, magnetic resonance imaging and cognitive testing in 19 nondemented subjects with PD, 10 DLB and 17 healthy control subjects (HCS). We analyzed DAT concentration in putamen, caudate, anterior cingulate (AC), orbitofrontal and prefrontal regions, using the Standardized Uptake Volume Ratio with partial volume correction, and we related DAT concentration and global cortical thickness to neuropsychological performance.
Results
DAT concentration in putamen and in caudate were similar in PD and DLB groups and significantly lower than in HCS. Reduced caudate DAT concentration was associated with worse Clinical Dementia Rating Scale–sum of boxes (CDR-SB) scores and visuospatial skills in DLB but not in PD or HCS groups. Adjusting for putamen DAT concentration, as a measure of severity of motor disease, caudate DAT concentration was lower in DLB than in PD. Higher AC DAT concentration was associated with lower putamen DAT concentration in DLB and with higher putamen DAT concentration in PD. Higher AC DAT concentration in DLB correlated with greater impairment in semantic memory and language.
Conclusions
Caudate and AC dopamine dysfunction contribute in opposing directions to cognitive impairment in DLB.
Electronic supplementary material
The online version of this article (doi:10.1186/s13195-014-0052-7) contains supplementary material, which is available to authorized users.
doi:10.1186/s13195-014-0052-7
PMCID: PMC4245149  PMID: 25429309
14.  Verbal Learning and Memory in Patients with Dementia with Lewy Bodies or Parkinson's Disease with Dementia 
This study compared verbal learning and memory in patients with autopsy-confirmed dementia with Lewy Bodies (DLB) and patients with Parkinson's disease with dementia (PDD). Twenty-four DLB patients, 24 PDD patients, and 24 normal comparison participants were administered the California Verbal Learning Test. The three groups were matched on demographic variables and the two patient groups were matched on the Mattis Dementia Rating Scale. The results indicated that DLB patients recalled less information than PDD patients on all but one recall measure and displayed a more rapid rate of forgetting. In contrast, the PDD patients committed a greater percent of perseveration errors than the DLB patients. The two groups did not differ in the percentage of recall intrusion errors or any measures of recognition. A discriminant function analysis (DFA) using short delay cued recall, percent perseveration errors, and list b recall, differentiated the DLB and PDD groups with 81.3% accuracy. The application of the DFA algorithm to another sample of 42 PDD patients resulted in a 78.6% correct classification rate. The results suggest that, despite equivalent levels of general cognitive impairment, patients with DLB or PDD exhibit a different pattern of verbal learning and memory deficits.
doi:10.1080/13803390802572401
PMCID: PMC2935683  PMID: 19221922
15.  Demography, diagnostics, and medication in dementia with Lewy bodies and Parkinson’s disease with dementia: data from the Swedish Dementia Quality Registry (SveDem) 
Introduction
Whether dementia with Lewy bodies (DLB) and Parkinson’s disease with dementia (PDD) should be considered as one entity or two distinct conditions is a matter of controversy. The aim of this study was to compare the characteristics of DLB and PDD patients using data from the Swedish Dementia Quality Registry (SveDem).
Methods
SveDem is a national Web-based quality registry initiated to improve the quality of diagnostic workup, treatment, and care of patients with dementia across Sweden. Patients with newly diagnosed dementia of various types were registered in SveDem during the years 2007–2011. The current cross-sectional report is based on DLB (n = 487) and PDD (n = 297) patients. Demographic characteristics, diagnostic workup, Mini-Mental State Examination (MMSE) score, and medications were compared between DLB and PDD groups.
Results
No gender differences were observed between the two study groups (P = 0.706). PDD patients were significantly younger than DLB patients at the time of diagnosis (74.8 versus 76.8 years, respectively; P < 0.001). A significantly higher prevalence of patients with MMSE score ≤24 were found in the PDD group (75.2% versus 67.6%; P = 0.030). The mean number of performed diagnostic modalities was significantly higher in the DLB group (4.9 ± 1.7) than in the PDD group (4.1 ± 1.6; P < 0.001). DLB patients were more likely than PDD patients to be treated with cholinesterase inhibitors (odds ratio = 2.5, 95% confidence interval = 1.8–3.5), whereas the use of memantine, antidepressants, and antipsychotics did not differ between the groups.
Conclusion
This study demonstrates several differences in the dementia work-up between DLB and PDD. The onset of dementia was significantly earlier in PDD, while treatment with cholinesterase inhibitors was more common in DLB patients. Severe cognitive impairment (MMSE score ≤24) was more frequent in the PDD group, whereas more diagnostic tests were used to confirm a DLB diagnosis. Some similarities also were found, such as gender distribution and use of memantine, antidepressants, and antipsychotics drugs. Further follow-up cost-effectiveness studies are needed to provide more evidence for workup and treatment guidelines of DLB and PDD.
doi:10.2147/NDT.S45840
PMCID: PMC3700781  PMID: 23847419
dementia with Lewy bodies; Parkinson’s disease with dementia; age; diagnostic approach; medication; Mini-Mental State Examination
16.  Focal atrophy in Dementia with Lewy Bodies on MRI: a distinct pattern from Alzheimer's disease 
Brain : a journal of neurology  2007;130(Pt 3):708-719.
SUMMARY
Dementia with Lewy Bodies (DLB) is the second most common cause of degenerative dementia after Alzheimer's disease (AD). However, unlike in AD the patterns of cerebral atrophy associated with DLB have not been well established. The aim of this study was to identify a signature pattern of cerebral atrophy in DLB and to compare it to the pattern found in AD. Seventy-two patients that fulfilled clinical criteria for probable DLB were age and gender-matched to 72 patients with probable AD and 72 controls. Voxel-based morphometry (VBM) was used to assess patterns of grey matter atrophy in the DLB and AD groups, relative to controls, after correction for multiple comparisons (p<0.05). Study specific templates and prior probability maps were used to avoid normalization and segmentation bias. Region-of-interest (ROI) analyses were also performed comparing loss of the midbrain, substantia innominata (SI), temporoparietal cortex and hippocampus between the groups. The DLB group showed very little cortical involvement on VBM with regional grey matter loss observed primarily in the dorsal midbrain, SI and hypothalamus. In comparison, the AD group showed a widespread pattern of grey matter loss involving the temporoparietal association cortices and the medial temporal lobes. The SI and dorsal midbrain were involved in AD however they were not identified as a cluster of loss discrete from uninvolved surrounding areas, as observed in the DLB group. On direct comparison between the two groups, the AD group showed greater loss in the medial temporal lobe and inferior temporal regions than the DLB group. The ROI analysis showed reduced SI and midbrain grey matter in both the AD and DLB groups. The SI grey matter was reduced more in AD than DLB, yet the midbrain was reduced more in DLB than AD. The hippocampus and temporoparietal cortex showed significantly greater loss in the AD group compared to the DLB group. A pattern of relatively focused atrophy of the midbrain, hypothalamus and SI, with a relative sparing of the hippocampus and temporoparietal cortex, is therefore suggestive of DLB and may aid in the differentiation of DLB from AD. These findings support recent pathological studies showing an ascending pattern of Lewy Body progression from brainstem to basal areas of the brain. Damage to this network of structures in DLB may affect a number of different neurotransmitter systems which in turn may contribute to a number of the core clinical features of DLB.
doi:10.1093/brain/awl388
PMCID: PMC2730778  PMID: 17267521
Dementia with Lewy Bodies; Alzheimer's disease; voxel-based morphometry; magnetic resonance imaging; neurotransmitter systems
17.  Visual recognition memory differentiates dementia with Lewy bodies and Parkinson's disease dementia 
Objective
To compare cognitive impairments in dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD), to discriminate between the two entities.
Methods
10 DLB and 12 PDD consecutive patients performed a neuropsychological battery designed to assess several cognitive domains: verbal and visual memory (Delayed Matching to Sample (DMS)‐48), language, gnosia, praxia and executive functions.
Results
DLB patients had poorer performances in orientation (p<0.05), Trail Making Test A (p<0.05) and reading of names of colours in the Stroop Test (p<0.05). Their scores were also lower in the visual object recognition memory test (DMS‐48), in both immediate (p<0.05) and delayed recognition (p<0.05). No differences were observed in the other tests.
Conclusion
Despite global similarities in cognitive performances between DLB and PDD patients, we observed important differences: in particular, DMS‐48, a test of visual object recognition memory and visual storage capacity, was poorer in DLB patients.
doi:10.1136/jnnp.2006.104257
PMCID: PMC2117680  PMID: 17287240
18.  fMRI resting state networks and their association with cognitive fluctuations in dementia with Lewy bodies 
NeuroImage : Clinical  2014;4:558-565.
Cognitive fluctuations are a core symptom in dementia with Lewy bodies (DLB) and may relate to pathological alterations in distributed brain networks. To test this we analysed resting state fMRI changes in a cohort of fluctuating DLB patients (n = 16) compared with age matched controls (n = 17) with the aim of finding functional connectivity (FC) differences between these two groups and whether these associate with cognitive fluctuations in DLB. Resting state networks (RSNs) were estimated using independent component analysis and FC between the RSN maps and the entirety of the brain was assessed using dual regression. The default mode network (DMN) appeared unaffected in DLB compared to controls but significant cluster differences between DLB and controls were found for the left fronto-parietal, temporal, and sensory–motor networks. Desynchronization of a number of cortical and subcortical areas related to the left fronto-parietal network was associated with the severity and frequency of cognitive fluctuations. Our findings provide empirical evidence for the potential role of attention–executive networks in the aetiology of this core symptom in DLB.
Highlights
•We report resting state network (RSN) alterations in dementia with Lewy bodies (DLB).•The default mode network was intact in DLB compared to healthy controls (HC).•Fronto-parietal, temporal, and sensory–motor RSNs showed differences (DLB < HC).•The left fronto-parietal network (FPN) correlated with cognitive fluctuations in DLB.•The FPN therefore may be a potential marker for cognitive fluctuations in DLB.
doi:10.1016/j.nicl.2014.03.013
PMCID: PMC3984441  PMID: 24818081
Cognitive fluctuations; Visual hallucinations; Resting state network; Lewy bodies; Dementia
19.  Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease 
Neurology  2011;76(21):1797-1803.
Objective:
Clinicopathologic phenotypes of dementia with Lewy bodies (DLB) and Alzheimer disease (AD) often overlap, making discrimination difficult. We performed resting state blood oxygen level–dependent (BOLD) functional connectivity MRI (fcMRI) to determine whether there were differences between AD and DLB.
Methods:
Participants (n = 88) enrolled in a longitudinal study of memory and aging underwent 3-T fcMRI. Clinical diagnoses of probable DLB (n = 15) were made according to published criteria. Cognitively normal control participants (n = 38) were selected for the absence of cerebral amyloid burden as imaged with Pittsburgh compound B (PiB). Probable AD cases (n = 35) met published criteria and had appreciable amyloid deposits with PiB imaging. Functional images were collected using a gradient spin-echo sequence sensitive to BOLD contrast (T2* weighting). Correlation maps selected a seed region in the combined bilateral precuneus.
Results:
Participants with DLB had a functional connectivity pattern for the precuneus seed region that was distinct from AD; both the DLB and AD groups had functional connectivity patterns that differed from the cognitively normal group. In the DLB group, we found increased connectivity between the precuneus and regions in the dorsal attention network and the putamen. In contrast, we found decreased connectivity between the precuneus and other task-negative default regions and visual cortices. There was also a reversal of connectivity in the right hippocampus.
Conclusions:
Changes in functional connectivity in DLB indicate patterns of activation that are distinct from those seen in AD and may improve discrimination of DLB from AD and cognitively normal individuals. Since patterns of connectivity differ between AD and DLB groups, measurements of BOLD functional connectivity can shed further light on neuroanatomic connections that distinguish DLB from AD.
doi:10.1212/WNL.0b013e31821ccc83
PMCID: PMC3100121  PMID: 21525427
20.  Qualitative performance characteristics differentiate dementia with Lewy bodies and Alzheimer's disease 
Objectives: To determine whether dementia with Lewy bodies (DLB) and Alzheimer's disease (AD) can be differentiated on the basis of qualitative performance characteristics during neuropsychological evaluation.
Methods: Forty one patients with clinically defined DLB were matched with 26 patients with AD for age, illness duration, nature and severity of cognitive deficits, and regional blood flow distribution on SPECT. The presence or absence of a set of qualitative performance characteristics, observed and recorded during the patients' initial cognitive evaluation, was identified by retrospective analysis of patients' records and the groups compared.
Results: Inattention, visual distractibility, impairments in establishing and shifting mental set, incoherence, confabulatory responses, perseveration, and intrusions were significantly more common in DLB than AD. Intrusions were particularly common in DLB, occurring in 78% of the group. They included externally cued intrusions arising from the visual environment, a feature never seen in AD. In a stepwise logistic regression analysis impaired mental set shifting, perseveration, and the presence of intrusions correctly classified 79% of patients.
Conclusion: It is possible to differentiate DLB and AD on the basis of qualitative features of performance. As many features are amenable to detection at clinical interview, they ought to contribute to clinicians' diagnostic armoury, leading to improved clinical recognition of DLB.
doi:10.1136/jnnp.72.5.602
PMCID: PMC1737879  PMID: 11971046
21.  Cognitive and Neuropsychiatric Profile of the Synucleinopathies: Parkinson's Disease, Dementia with Lewy Bodies and Multiple System Atrophy 
Parkinson's Disease (PD), multiple system atrophy (MSA) and dementia with Lewy Bodies (DLB) share α-synuclein immunoreactivity 1. These “synucleinopathies” have overlapping signs and symptoms, but less is known about similarities and differences in their cognitive and neuropsychiatric profiles. We compared the cognitive and neuropsychiatric profiles of individuals with PD, MSA and DLB. Overall, the DLB group showed the most cognitive impairment, the MSA group demonstrated milder impairment and the PD group was the least cognitively impaired. The DLB and MSA groups showed worse executive function and visuospatial skills than PD, while DLB showed impaired memory relative to both PD and MSA. On the neuropsychiatric screening, all groups endorsed depression and anxiety; the DLB group alone endorsed delusions and disinhibition. Consistent with their greater level of cognitive and neuropsychiatric impairment, the DLB group showed the greatest amount of functional impairment on a measure of instrumental ADLs (FAQ). We found that MSA subjects had cognitive difficulties that fell between the mild deficits of the PD group and the more severe deficits of the DLB group. PD, MSA and DLB groups have similar neuropsychiatric profiles of increased depression and anxiety. Similar underlying α-synuclein pathology may contribute to these shared features.
doi:10.1097/WAD.0b013e3181b5065d
PMCID: PMC2886667  PMID: 19935145
Parkinson's Disease; Dementia with Lewy Bodies; multiple system atrophy; dementia; alpha-synuclein
22.  Characterizing dementia with Lewy bodies by means of diffusion tensor imaging 
Neurology  2012;79(9):906-914.
Objective:
To investigate patterns of in vivo white matter tract change using diffusion tensor imaging (DTI), we conducted a cross-sectional study of dementia with Lewy bodies (DLB) in comparison with Alzheimer disease (AD) and normal aging.
Methods:
The study included 106 subjects (35 with DLB, 36 with AD, and 35 elderly controls) who underwent clinical and neuropsychological assessment and diffusion tensor MRI. We used tract-based spatial statistics to investigate patterns of reduced fractional anisotropy (FA) and increased mean diffusivity (MD) across the entire white matter tract skeleton and also investigated correlations with clinical features.
Results:
Areas of reduced FA in subjects with DLB vs controls were found primarily in parieto-occipital white matter tracts; in AD, the changes were much more diffuse. DLB was also associated with reduced FA in the pons and left thalamus, in comparison with AD. The pattern of MD increase was diffuse in AD and DLB. We found an association between DTI parameters and impaired episodic memory, letter fluency, and severity of motor parkinsonism in DLB.
Conclusions:
Despite a similar level of dementia severity, patterns of DTI changes in AD and DLB differed significantly. The selective involvement of the visual association areas and subcortical structures and the significant clinical correlations highlight the potential importance of white matter tract change in the pathogenesis of DLB. DTI may be a useful technique to investigate early and possible preclinical changes in DLB and warrants further investigation.
doi:10.1212/WNL.0b013e318266fc51
PMCID: PMC3425843  PMID: 22895591
23.  Covariant perfusion patterns provide clues to the origin of cognitive fluctuations and attentional dysfunction in Dementia with Lewy bodies 
International Psychogeriatrics / Ipa  2013;25(12):1917-1928.
Background:
Fluctuating cognition (FC), particularly in attention, is a core and defining symptom in dementia with Lewy bodies (DLB) but is seen much less frequently in Alzheimer's dementia (AD). However, its neurobiological origin is poorly understood. The aim of our study was therefore to characterize perfusion patterns in DLB patients that are associated with the severity and frequency of FC as measured both clinically and using objective neuropsychological assessments.
Methods:
Spatial covariance analyses were applied to data derived from single photon emission computed tomography (SPECT) HMPAO brain imaging in 19 DLB and 23 AD patients. Patients underwent clinical assessment of their FC and cognitive function as well as objective testing of their attention.
Results:
Covariant perfusion principal components (PCs) were not associated with either FC or cognitive or attentional measures in AD. However, in DLB patients, the second PC (defined as DLB-cognitive motor pattern, DLB-PCI2) which was characterized by bilateral relative increases in cerebellum, basal ganglia, and supplementary motor areas and widespread bilateral decreases in parietal regions, positively correlated with poorer cognitive function, increased FC and worse attentional function measured both clinically and neurophysiologically (p < 0.05) as well as with the severity of bradykinesia (p = 0.04).
Conclusions:
FC in DLB appears distinct from those seen in AD, and likely to be driven by internal neurobiological perturbations in brain circuitry as evidenced using spatial covariance analyses of cerebral perfusion. FC and certain aspects of attentional dysfunction in DLB may, in part, depend upon both distributed motor and non-motor networks.
doi:10.1017/S1041610213001488
PMCID: PMC3819183  PMID: 24148774
attention; Alzheimer’s disease; single photon emission computed tomography; SPECT; imaging
24.  Fluctuating cognition in dementia with Lewy bodies and Alzheimer's disease is qualitatively distinct 
Objectives: To document and illustrate qualitative features of fluctuating cognition as described by care givers of patients with probable dementia with Lewy bodies (DLB) and Alzheimer's disease (AD). To determine whether the quality of the fluctuations differs between DLB and AD. To examine the clinical utility of two recently developed rating scales.
Methods: Care givers of 13 patients with early probable DLB and 12 patients with early probable AD were interviewed using the Clinician Assessment of Fluctuation and the One Day Fluctuation Assessment Scale, both developed recently. Descriptions of fluctuating cognition were recorded verbatim, analysed, and rated.
Results: Descriptions of fluctuating cognition in DLB had a spontaneous, periodic, transient quality, which appeared to reflect an interruption in the ongoing flow of awareness or attention that impacted on functional abilities. Descriptions of fluctuations in AD frequently highlighted episodes of memory failure, or a more enduring state shift in the form of "good" and "bad" days, typically occurring in response to the cognitive demands of the immediate environment. These qualitative differences could be detected reliably by independent raters, but were not always captured in standard severity scores.
Conclusion: Fluctuations occuring in DLB have particular characteristics that are distinguishable from fluctuations occurring in AD. Interpretation and application of the fluctuation criterion continues to limit the diagnostic sensitivity of the consensus criteria for DLB. Findings suggest that explicit documentation and a wider appreciation of these distinctions could improve the reliability with which less experienced clinicians identify this core diagnostic feature in the clinical setting.
doi:10.1136/jnnp.2002.002576
PMCID: PMC1738966  PMID: 14966152
25.  Detection of visuoperceptual deficits in preclinical and mild Alzheimer’s disease 
Exhaustive neuropsychological assessment of mild cognitive impairment (MCI) subjects frequently identifies cognitive deficits other than memory. However, visuoperception has rarely been investigated in MCI. The 15-Objects Test (15-OT), a visual discrimination task based on the Poppelreuter Test, consists of 15 overlapping objects. Poppelreuter-type tests are frequently used to detect visual agnosia. However, more complex tests, such as the 15-OT, are required to detect visuoperceptual signs in those patients who perform correctly on simple tests. The aim of the present study was to investigate visuoperceptual deficits in MCI patients and to assess the usefulness of the 15-OT to discriminate Alzheimer’s disease (AD) and MCI patients from controls. The 15-OT, and a neuropsychological battery included in the diagnostic assessment, was administered to 44 healthy controls, 44 MCI patients, and 44 mild AD patients. Performance on the 15-OT was significantly different between groups. MCI scored between AD and controls. When MCI and AD patients had relatively normal performance on simple tests (Poppelreuter), increased significant abnormalities were found by a more difficult visuoperceptual test (15-OT). Regression analyses showed that the 15-OT was a significant predictor of group membership, but the Poppelreuter Test did not significantly contribute to the models. Visuoperceptual processing is impaired early in the clinical course of AD. The 15-OT allows detection of visuoperceptual deficits in the preclinical and mild AD stages, when classical tests are still unable to detect subtle deficits. So, its inclusion in neuropsychological batteries that are nowadays used in the clinical practice would allow increasing their diagnostic potential.
doi:10.1080/13803390802595568
PMCID: PMC2834652  PMID: 19142775
Visual discrimination; Visuoperceptual; Mild cognitive impairment; Alzheimer’s disease

Results 1-25 (1079933)