PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1207282)

Clipboard (0)
None

Related Articles

1.  BtpB, a novel Brucella TIR-containing effector protein with immune modulatory functions 
Several bacterial pathogens have TIR domain-containing proteins that contribute to their pathogenesis. We identified a second TIR-containing protein in Brucella spp. that we have designated BtpB. We show it is a potent inhibitor of TLR signaling, probably via MyD88. BtpB is a novel Brucella effector that is translocated into host cells and interferes with activation of dendritic cells. In vivo mouse studies revealed that BtpB is contributing to virulence and control of local inflammatory responses with relevance in the establishment of chronic brucellosis. Together, our results show that BtpB is a novel Brucella effector that plays a major role in the modulation of host innate immune response during infection.
doi:10.3389/fcimb.2013.00028
PMCID: PMC3703528  PMID: 23847770
Brucella; TIR domain; Btp1/BtpA; TLR; DC; NF-κB
2.  The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition 
PLoS Pathogens  2012;8(5):e1002675.
Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines.
Author Summary
Brucellosis is one of the most extended bacterial zoonosis in the world and an important cause of economic losses and human suffering. The causative agents belong to the genus Brucella, a group of highly infectious gram-negative bacteria characterized by their ability to escape early detection by innate immunity. This stealthy behavior effectively delays the development of immunity, creating a gap that is used by the bacterium to penetrate into a variety of cells and to activate complementary virulence mechanisms such as the type IV secretion system. By this manner, the brucellae divert intracellular trafficking to reach a safe multiplication niche and establish chronic infections. Our results show that an inner section of the Brucella LPS (a molecule that in most bacteria is detected by innate immunity), effectively contributes to block recognition by soluble molecules and cellular receptors of the host innate immune system. Accordingly, a mutation disrupting the inner but no other lipopolysaccharide sections generates attenuation by impairing the stealthiness characteristics of this pathogen. This is the first Brucella mutant in which attenuation is specifically linked to the bolstering of immunity against this pathogen. Therefore, this new virulence mechanism opens the way for the development of improved bacterial vaccines.
doi:10.1371/journal.ppat.1002675
PMCID: PMC3349745  PMID: 22589715
3.  Brucella Induces an Unfolded Protein Response via TcpB That Supports Intracellular Replication in Macrophages 
PLoS Pathogens  2013;9(12):e1003785.
Brucella melitensis is a facultative intracellular bacterium that causes brucellosis, the most prevalent zoonosis worldwide. The Brucella intracellular replicative niche in macrophages and dendritic cells thwarts immune surveillance and complicates both therapy and vaccine development. Currently, host-pathogen interactions supporting Brucella replication are poorly understood. Brucella fuses with the endoplasmic reticulum (ER) to replicate, resulting in dramatic restructuring of the ER. This ER disruption raises the possibility that Brucella provokes an ER stress response called the Unfolded Protein Response (UPR). In this study, B. melitensis infection up regulated expression of the UPR target genes BiP, CHOP, and ERdj4, and induced XBP1 mRNA splicing in murine macrophages. These data implicate activation of all 3 major signaling pathways of the UPR. Consistent with previous reports, XBP1 mRNA splicing was largely MyD88-dependent. However, up regulation of CHOP, and ERdj4 was completely MyD88 independent. Heat killed Brucella stimulated significantly less BiP, CHOP, and ERdj4 expression, but induced XBP1 splicing. Although a Brucella VirB mutant showed relatively intact UPR induction, a TcpB mutant had significantly compromised BiP, CHOP and ERdj4 expression. Purified TcpB, a protein recently identified to modulate microtubules in a manner similar to paclitaxel, also induced UPR target gene expression and resulted in dramatic restructuring of the ER. In contrast, infection with the TcpB mutant resulted in much less ER structural disruption. Finally, tauroursodeoxycholic acid, a pharmacologic chaperone that ameliorates the UPR, significantly impaired Brucella replication in macrophages. Together, these results suggest Brucella induces a UPR, via TcpB and potentially other factors, that enables its intracellular replication. Thus, the UPR may provide a novel therapeutic target for the treatment of brucellosis. These results also have implications for other intracellular bacteria that rely on host physiologic stress responses for replication.
Author Summary
Brucella melitensis is an intracellular bacterium that invades and replicates within macrophages and dendritic cells. With over 500,000 new infections per year, brucellosis is the most prevalent zoonosis worldwide and incurs significant human morbidity and economic loss. The intracellular location of Brucella renders the organism resistant to antibiotics. A safe and effective human vaccine does not exist. Thus, better understanding of the host-pathogen interactions supporting establishment of the intracellular replicative niche is critical. In this study, we found that infection of macrophages with Brucella induces a host stress response called the Unfolded Protein Response (UPR), a conserved stress response originating in the endoplasmic reticulum (ER). Full induction of the UPR requires live bacteria and expression of a microtubule modulating protein, TcpB. Inhibition of the UPR with the drug tauroursodeoxycholic acid significantly diminished Brucella replication. Together these results suggest Brucella induces the UPR to enable its own replication within host macrophages. Thus the UPR may represent a novel therapeutic target for the treatment of brucellosis.
doi:10.1371/journal.ppat.1003785
PMCID: PMC3855547  PMID: 24339776
4.  Brucella Modulates Secretory Trafficking via Multiple Type IV Secretion Effector Proteins 
PLoS Pathogens  2013;9(8):e1003556.
The intracellular pathogenic bacterium Brucella generates a replicative vacuole (rBCV) derived from the endoplasmic reticulum via subversion of the host cell secretory pathway. rBCV biogenesis requires the expression of the Type IV secretion system (T4SS) VirB, which is thought to translocate effector proteins that modulate membrane trafficking along the endocytic and secretory pathways. To date, only a few T4SS substrates have been identified, whose molecular functions remain unknown. Here, we used an in silico screen to identify putative T4SS effector candidate proteins using criteria such as limited homology in other bacterial genera, the presence of features similar to known VirB T4SS effectors, GC content and presence of eukaryotic-like motifs. Using β-lactamase and CyaA adenylate cyclase reporter assays, we identified eleven proteins translocated into host cells by Brucella, five in a VirB T4SS-dependent manner, namely BAB1_0678 (BspA), BAB1_0712 (BspB), BAB1_0847 (BspC), BAB1_1671 (BspE) and BAB1_1948 (BspF). A subset of the translocated proteins targeted secretory pathway compartments when ectopically expressed in HeLa cells, and the VirB effectors BspA, BspB and BspF inhibited protein secretion. Brucella infection also impaired host protein secretion in a process requiring BspA, BspB and BspF. Single or combined deletions of bspA, bspB and bspF affected Brucella ability to replicate in macrophages and persist in the liver of infected mice. Taken together, these findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins that likely act coordinately to promote Brucella pathogenesis.
Author Summary
Many intracellular parasites ensure their survival and proliferation within host cells by secreting an array of effector molecules that modulate various cellular functions. Among these, Brucella abortus, the causative agent of the worldwide zoonosis brucellosis, controls the intracellular trafficking of its vacuole, the Brucella-containing vacuole (BCV), towards compartments of the secretory pathway via the expression of a Type IV secretion system (T4SS), VirB, which is thought to translocate effector proteins. Here, we have used bioinformatic algorithms and protein translocation reporter assays to identify novel Brucella proteins translocated into host cells, some of which are VirB T4SS substrates and targeted secretory pathway compartments when ectopically expressed in mammalian cells. Three VirB effectors, BspA, BspB and BspF, inhibited protein secretion and contributed to varying degrees to bacterial inhibition of host protein secretion, pathogen intracellular growth and persistence in the liver of infected mice. These findings demonstrate that Brucella modulates secretory trafficking via multiple T4SS effector proteins to promote Brucella pathogenesis.
doi:10.1371/journal.ppat.1003556
PMCID: PMC3738490  PMID: 23950720
5.  RNAi Screen of Endoplasmic Reticulum–Associated Host Factors Reveals a Role for IRE1α in Supporting Brucella Replication 
PLoS Pathogens  2008;4(7):e1000110.
Brucella species are facultative intracellular bacterial pathogens that cause brucellosis, a global zoonosis of profound importance. Although recent studies have demonstrated that Brucella spp. replicate within an intracellular compartment that contains endoplasmic reticulum (ER) resident proteins, the molecular mechanisms by which the pathogen secures this replicative niche remain obscure. Here, we address this issue by exploiting Drosophila S2 cells and RNA interference (RNAi) technology to develop a genetically tractable system that recapitulates critical aspects of mammalian cell infection. After validating this system by demonstrating a shared requirement for phosphoinositide 3-kinase (PI3K) activities in supporting Brucella infection in both host cell systems, we performed an RNAi screen of 240 genes, including 110 ER-associated genes, for molecules that mediate bacterial interactions with the ER. We uncovered 52 evolutionarily conserved host factors that, when depleted, inhibited or increased Brucella infection. Strikingly, 29 of these factors had not been previously suggested to support bacterial infection of host cells. The most intriguing of these was inositol-requiring enzyme 1 (IRE1), a transmembrane kinase that regulates the eukaryotic unfolded protein response (UPR). We employed IRE1α−/− murine embryonic fibroblasts (MEFs) to demonstrate a role for this protein in supporting Brucella infection of mammalian cells, and thereby, validated the utility of the Drosophila S2 cell system for uncovering novel Brucella host factors. Finally, we propose a model in which IRE1α, and other ER-associated genes uncovered in our screen, mediate Brucella replication by promoting autophagosome biogenesis.
Author Summary
Brucella spp. are facultative intracellular pathogens that cause brucellosis in a broad range of hosts, including humans. Brucella melitensis, B. abortus, and B. suis are highly infectious and can be readily transmitted in aerosolized form, and a human vaccine against brucellosis is unavailable. Therefore, these pathogens are recognized as potential bioterror agents. Because genetic systems for studying host–Brucella interactions have been unavailable, little is known about the host factors that mediate infection. Here, we demonstrate that a Drosophila S2 cell system and RNA interference can be exploited to study the role that evolutionarily conserved Brucella host proteins play in these processes. We also show that this system provides for the identification and characterization of host factors that mediate Brucella interactions with the host cell endoplasmic reticulum. In fact, we identified 52 host factors that, when depleted, inhibited or increased Brucella infection. Among the identified Brucella host factors, 29 have not been previously shown to support bacterial infection. Finally, we demonstrate that the novel host factor inositol-requiring enzyme 1 (IRE1) and its mammalian ortholog (IRE1α) are required for Brucella infection of Drosophila S2 and mammalian cells, respectively. Therefore, this work contributes to our understanding of host factors mediating Brucella infection.
doi:10.1371/journal.ppat.1000110
PMCID: PMC2453327  PMID: 18654626
6.  Brucella suis Prevents Human Dendritic Cell Maturation and Antigen Presentation through Regulation of Tumor Necrosis Factor Alpha Secretion▿  
Infection and Immunity  2007;75(10):4980-4989.
Brucella is a facultative intracellular pathogen and the etiological agent of brucellosis. In some cases, human brucellosis results in a persistent infection that may reactivate years after the initial exposure. The mechanisms by which the parasite evades clearance by the immune response to chronically infect its host are unknown. We recently demonstrated that dendritic cells (DCs), which are critical components of adaptive immunity, are highly susceptible to Brucella infection and are a preferential niche for the development of the bacteria. Here, we report that in contrast to several intracellular bacteria, Brucella prevented the infected DCs from engaging in their maturation process and impaired their capacities to present antigen to naïve T cells and to secrete interleukin-12. Moreover, Brucella-infected DCs failed to release tumor necrosis factor alpha (TNF-α), a defect involving the bacterial protein Omp25. Exogenous TNF-α addition to Brucella-infected DCs restored cell maturation and allowed them to present antigens. Two avirulent mutants of B. suis, B. suis bvrR and B. suis omp25 mutants, which do not express the Omp25 protein, triggered TNF-α production upon DC invasion. Cells infected with these mutants subsequently matured and acquired the ability to present antigens, two properties which were dramatically impaired by addition of anti-TNF-α antibodies. In light of these data, we propose a model in which virulent Brucella alters the maturation and functions of DCs through Omp25-dependent control of TNF-α production. This model defines a specific evasion strategy of the bacteria by which they can escape the immune response to chronically infect their host.
doi:10.1128/IAI.00637-07
PMCID: PMC2044515  PMID: 17635859
7.  In Situ Microscopy Analysis Reveals Local Innate Immune Response Developed around Brucella Infected Cells in Resistant and Susceptible Mice 
PLoS Pathogens  2012;8(3):e1002575.
Brucella are facultative intracellular bacteria that chronically infect humans and animals causing brucellosis. Brucella are able to invade and replicate in a broad range of cell lines in vitro, however the cells supporting bacterial growth in vivo are largely unknown. In order to identify these, we used a Brucella melitensis strain stably expressing mCherry fluorescent protein to determine the phenotype of infected cells in spleen and liver, two major sites of B. melitensis growth in mice. In both tissues, the majority of primary infected cells expressed the F4/80 myeloid marker. The peak of infection correlated with granuloma development. These structures were mainly composed of CD11b+ F4/80+ MHC-II+ cells expressing iNOS/NOS2 enzyme. A fraction of these cells also expressed CD11c marker and appeared similar to inflammatory dendritic cells (DCs). Analysis of genetically deficient mice revealed that differentiation of iNOS+ inflammatory DC, granuloma formation and control of bacterial growth were deeply affected by the absence of MyD88, IL-12p35 and IFN-γ molecules. During chronic phase of infection in susceptible mice, we identified a particular subset of DC expressing both CD11c and CD205, serving as a reservoir for the bacteria. Taken together, our results describe the cellular nature of immune effectors involved during Brucella infection and reveal a previously unappreciated role for DC subsets, both as effectors and reservoir cells, in the pathogenesis of brucellosis.
Author Summary
Brucella are facultative intracellular bacteria chronically infecting humans and animals causing brucellosis, one of the most common zoonotic disease worldwide which can result in infertility and chronic debilitating disease. The cells supporting Brucella growth in vivo remain largely unknown. In order to identify these, we constructed a Brucella melitensis strain expressing a fluorescent protein that allowed us to characterize infected cells by microscopy of the spleen and liver from infected mice. In both tissues, the majority of primary infected cells were cells from the macrophage lineage. The peak of infection correlated with granuloma development. These structures contained the majority of bacteria and were mainly composed of cells expressing CD11b, F4/80, MHC-II, which are specific of activated monocytes/macrophages. A fraction of granuloma cells also expressed CD11c and were similar to inflammatory dendritic cells (DCs). During the chronic phase of infection in susceptible mice, we identified a particular subset of DC expressing CD205 and serving as a reservoir for the bacteria. Overall, our results describe the nature of immune cells infected by Brucella in vivo and reveal an unappreciated role for DC subsets, both as effectors and reservoir cells. These results could help develop new therapeutic strategies to control Brucella infection.
doi:10.1371/journal.ppat.1002575
PMCID: PMC3315488  PMID: 22479178
8.  Analyses of Brucella Pathogenesis, Host Immunity, and Vaccine Targets using Systems Biology and Bioinformatics 
Brucella is a Gram-negative, facultative intracellular bacterium that causes zoonotic brucellosis in humans and various animals. Out of 10 classified Brucella species, B. melitensis, B. abortus, B. suis, and B. canis are pathogenic to humans. In the past decade, the mechanisms of Brucella pathogenesis and host immunity have been extensively investigated using the cutting edge systems biology and bioinformatics approaches. This article provides a comprehensive review of the applications of Omics (including genomics, transcriptomics, and proteomics) and bioinformatics technologies for the analysis of Brucella pathogenesis, host immune responses, and vaccine targets. Based on more than 30 sequenced Brucella genomes, comparative genomics is able to identify gene variations among Brucella strains that help to explain host specificity and virulence differences among Brucella species. Diverse transcriptomics and proteomics gene expression studies have been conducted to analyze gene expression profiles of wild type Brucella strains and mutants under different laboratory conditions. High throughput Omics analyses of host responses to infections with virulent or attenuated Brucella strains have been focused on responses by mouse and cattle macrophages, bovine trophoblastic cells, mouse and boar splenocytes, and ram buffy coat. Differential serum responses in humans and rams to Brucella infections have been analyzed using high throughput serum antibody screening technology. The Vaxign reverse vaccinology has been used to predict many Brucella vaccine targets. More than 180 Brucella virulence factors and their gene interaction networks have been identified using advanced literature mining methods. The recent development of community-based Vaccine Ontology and Brucellosis Ontology provides an efficient way for Brucella data integration, exchange, and computer-assisted automated reasoning.
doi:10.3389/fcimb.2012.00002
PMCID: PMC3417401  PMID: 22919594
Brucella; pathogenesis; host immunity; vaccine; systems biology; bioinformatics
9.  Evaluation of recombinant invasive, non-pathogenic Eschericia coli as a vaccine vector against the intracellular pathogen, Brucella 
Background
There is no safe, effective human vaccine against brucellosis. Live attenuated Brucella strains are widely used to vaccinate animals. However these live Brucella vaccines can cause disease and are unsafe for humans. Killed Brucella or subunit vaccines are not effective in eliciting long term protection. In this study, we evaluate an approach using a live, non-pathogenic bacteria (E. coli) genetically engineered to mimic the brucellae pathway of infection and present antigens for an appropriate cytolitic T cell response.
Methods
E. coli was modified to express invasin of Yersinia and listerialysin O (LLO) of Listeria to impart the necessary infectivity and antigen releasing traits of the intracellular pathogen, Brucella. This modified E. coli was considered our vaccine delivery system and was engineered to express Green Fluorescent Protein (GFP) or Brucella antigens for in vitro and in vivo immunological studies including cytokine profiling and cytotoxicity assays.
Results
The E. coli vaccine vector was able to infect all cells tested and efficiently deliver therapeutics to the host cell. Using GFP as antigen, we demonstrate that the E. coli vaccine vector elicits a Th1 cytokine profile in both primary and secondary immune responses. Additionally, using this vector to deliver a Brucella antigen, we demonstrate the ability of the E. coli vaccine vector to induce specific Cytotoxic T Lymphocytes (CTLs).
Conclusion
Protection against most intracellular bacterial pathogens can be obtained mostly through cell mediated immunity. Data presented here suggest modified E. coli can be used as a vaccine vector for delivery of antigens and therapeutics mimicking the infection of the pathogen and inducing cell mediated immunity to that pathogen.
doi:10.1186/1476-8518-7-1
PMCID: PMC2633335  PMID: 19126207
10.  Global Analysis of Quorum Sensing Targets in the Intracellular Pathogen Brucella melitensis 16 M 
Journal of Proteome Research  2010;9(6):3200-3217.
Many pathogenic bacteria use a regulatory process termed quorum sensing (QS) to produce and detect small diffusible molecules to synchronize gene expression within a population. In Gram-negative bacteria, the detection of, and response to, these molecules depends on transcriptional regulators belonging to the LuxR family. Such a system has been discovered in the intracellular pathogen Brucella melitensis, a Gram-negative bacterium responsible for brucellosis, a worldwide zoonosis that remains a serious public health concern in countries were the disease is endemic. Genes encoding two LuxR-type regulators, VjbR and BabR, have been identified in the genome of B. melitensis 16 M. A ΔvjbR mutant is highly attenuated in all experimental models of infection tested, suggesting a crucial role for QS in the virulence of Brucella. At present, no function has been attributed to BabR. The experiments described in this report indicate that 5% of the genes in the B. melitensis 16 M genome are regulated by VjbR and/or BabR, suggesting that QS is a global regulatory system in this bacterium. The overlap between BabR and VjbR targets suggest a cross-talk between these two regulators. Our results also demonstrate that VjbR and BabR regulate many genes and/or proteins involved in stress response, metabolism, and virulence, including those potentially involved in the adaptation of Brucella to the oxidative, pH, and nutritional stresses encountered within the host. These findings highlight the involvement of QS as a major regulatory system in Brucella and lead us to suggest that this regulatory system could participate in the spatial and sequential adaptation of Brucella strains to the host environment.
Some pathogens use the regulatory process termed Quorum Sensing (QS) to synchronize gene expression within bacterial population. We report here the first genome scale study of the Quorum Sensing system of the intracellular pathogen Brucella melitensis. Our combined proteomic and transcriptomic data suggest that Quorum Sensing is involved in the spatial and sequential adaptation of B. melitensis to the host environment.
doi:10.1021/pr100068p
PMCID: PMC2880877  PMID: 20387905
Brucella; intracellular pathogen; Quorum sensing; LuxR-type regulator; adaptation; proteome; transcriptome; ChIP
11.  Bioinformatics analysis of Brucella vaccines and vaccine targets using VIOLIN 
Immunome Research  2010;6(Suppl 1):S5.
Background
Brucella spp. are Gram-negative, facultative intracellular bacteria that cause brucellosis, one of the commonest zoonotic diseases found worldwide in humans and a variety of animal species. While several animal vaccines are available, there is no effective and safe vaccine for prevention of brucellosis in humans. VIOLIN (http://www.violinet.org) is a web-based vaccine database and analysis system that curates, stores, and analyzes published data of commercialized vaccines, and vaccines in clinical trials or in research. VIOLIN contains information for 454 vaccines or vaccine candidates for 73 pathogens. VIOLIN also contains many bioinformatics tools for vaccine data analysis, data integration, and vaccine target prediction. To demonstrate the applicability of VIOLIN for vaccine research, VIOLIN was used for bioinformatics analysis of existing Brucella vaccines and prediction of new Brucella vaccine targets.
Results
VIOLIN contains many literature mining programs (e.g., Vaxmesh) that provide in-depth analysis of Brucella vaccine literature. As a result of manual literature curation, VIOLIN contains information for 38 Brucella vaccines or vaccine candidates, 14 protective Brucella antigens, and 68 host response studies to Brucella vaccines from 97 peer-reviewed articles. These Brucella vaccines are classified in the Vaccine Ontology (VO) system and used for different ontological applications. The web-based VIOLIN vaccine target prediction program Vaxign was used to predict new Brucella vaccine targets. Vaxign identified 14 outer membrane proteins that are conserved in six virulent strains from B. abortus, B. melitensis, and B. suis that are pathogenic in humans. Of the 14 membrane proteins, two proteins (Omp2b and Omp31-1) are not present in B. ovis, a Brucella species that is not pathogenic in humans. Brucella vaccine data stored in VIOLIN were compared and analyzed using the VIOLIN query system.
Conclusions
Bioinformatics curation and ontological representation of Brucella vaccines promotes classification and analysis of existing Brucella vaccines and vaccine candidates. Computational prediction of Brucella vaccine targets provides more candidates for rational vaccine development. The use of VIOLIN provides a general approach that can be applied for analyses of vaccines against other pathogens and infection diseases.
doi:10.1186/1745-7580-6-S1-S5
PMCID: PMC2946783  PMID: 20875156
12.  Biochemical and functional analysis of TIR domain containing protein from Brucella melitensis 
Toll/Interleukin-1 like receptors are evolutionarily conserved proteins in eukaryotes that play crucial role in pathogen recognition and innate immune responses. Brucella are facultative intracellular bacterial pathogens causing brucellosis in animal and human hosts. Brucella behaves as a stealthy pathogen by evading the immune recognition or suppressing the TLR signaling cascades. Brucella encode a TIR domain containing protein, TcpB, which suppresses NF-κB activation as well as proinflammatory cytokine secretion mediated by TLR2 and TLR4 receptors. TcpB targets the TIRAP mediated pathway to suppress TLR signaling. With the objective of detailed characterization, we have over expressed and purified TcpB from Brucella melitensis in native condition. The purified protein exhibited lipid binding properties and cell permeability. NF-κB inhibition property of endogenous TcpB has also been demonstrated. The data provide insight into the mechanism of action of TcpB in the intracellular niche of Brucella.
doi:10.1016/j.bbrc.2010.05.056
PMCID: PMC2900483  PMID: 20471373
Brucella; TcpB; TIR domain; NF-κB; Phosphoinositide; Inflammation
13.  Importance of Lipopolysaccharide and Cyclic β-1,2-Glucans in Brucella-Mammalian Infections 
Brucella species are the causative agents of one of the most prevalent zoonotic diseases: brucellosis. Infections by Brucella species cause major economic losses in agriculture, leading to abortions in infected animals and resulting in a severe, although rarely lethal, debilitating disease in humans. Brucella species persist as intracellular pathogens that manage to effectively evade recognition by the host's immune system. Sugar-modified components in the Brucella cell envelope play an important role in their host interaction. Brucella lipopolysaccharide (LPS), unlike Escherichia coli LPS, does not trigger the host's innate immune system. Brucella produces cyclic β-1,2-glucans, which are important for targeting them to their replicative niche in the endoplasmic reticulum within the host cell. This paper will focus on the role of LPS and cyclic β-1,2-glucans in Brucella-mammalian infections and discuss the use of mutants, within the biosynthesis pathway of these cell envelope structures, in vaccine development.
doi:10.1155/2010/124509
PMCID: PMC2995898  PMID: 21151694
14.  Antigen-Specific Acquired Immunity in Human Brucellosis: Implications for Diagnosis, Prognosis, and Vaccine Development 
Brucella spp., are Gram negative bacteria that cause disease by growing within monocyte/macrophage lineage cells. Clinical manifestations of brucellosis are immune mediated, not due to bacterial virulence factors. Acquired immunity to brucellosis has been studied through observations of naturally infected hosts (cattle, goats), mouse models (mice), and human infection. Even though Brucella spp. are known for producing mechanisms that evade the immune system, cell-mediated immune responses drive the clinical manifestations of human disease after exposure to Brucella species, as high antibody responses are not associated with protective immunity. The precise mechanisms by which cell-mediated immune responses confer protection or lead to disease manifestations remain undefined. Descriptive studies of immune responses in human brucellosis show that TH1 (interferon-γ-producing T cells) are associated with dominant immune responses, findings consistent with animal studies. Whether these T cell responses are protective, or determine the different clinical responses associated with brucellosis is unknown, especially with regard to undulant fever manifestations, relapsing disease, or are associated with responses to distinct sets of Brucella spp. antigens are unknown. Few data regarding T cell responses in terms of specific recognition of Brucella spp. protein antigens and peptidic epitopes, either by CD4+ or CD8+ T cells, have been identified in human brucellosis patients. Additionally because current attenuated Brucella vaccines used in animals cause human disease, there is a true need for a recombinant protein subunit vaccine for human brucellosis, as well as for improved diagnostics in terms of prognosis and identification of unusual forms of brucellosis. This review will focus on current understandings of antigen-specific immune responses induced Brucella peptidic epitopes that has promise for yielding new insights into vaccine and diagnostics development, and for understanding pathogenetic mechanisms of human brucellosis.
doi:10.3389/fcimb.2012.00001
PMCID: PMC3417515  PMID: 22919593
T cell epitope; immunology; Brucella; zoonotic diseases; systems biology
15.  Interaction of Brucella suis and Brucella abortus Rough Strains with Human Dendritic Cells▿  
Infection and Immunity  2007;75(12):5916-5923.
Brucella is a facultative intracellular pathogen of various mammals and the etiological agent of brucellosis. We recently demonstrated that dendritic cells (DCs), which are critical components of adaptive immunity, are highly susceptible to Brucella infection. Furthermore, Brucella prevented the infected DCs from engaging in maturation processes and impaired their capacity to present antigen to naive T cells and to secrete interleukin-12 (IL-12). The lipopolysaccharide (LPS) phenotype is largely associated with the virulence of Brucella. Depending on whether they express the O-side chain of LPS or not, the bacteria display a smooth or rough phenotype. Rough Brucella mutants are attenuated and induce a potent protective T-cell-dependent immune response. Due to the essential role of DCs in the initiation of T-cell-dependent adaptive immune responses, it seemed pertinent to study the interaction between rough Brucella strains and human DCs. In the present paper, we report that, in contrast to smooth bacteria, infection of DCs with rough mutants of Brucella suis or Brucella abortus leads to both phenotypic and functional maturation of infected cells. Rough mutant-infected DCs then acquire the capacity to produce IL-12 and to stimulate naive CD4+ T lymphocytes. Experiments with rough and smooth purified LPS of Brucella supported the hypothesis of an indirect involvement of the O-side chain. These results provide new data concerning the role of LPS in Brucella virulence strategy and illuminate phenomena contributing to immune protection conferred by rough vaccine strains.
doi:10.1128/IAI.00931-07
PMCID: PMC2168365  PMID: 17938225
16.  Neutrophils Exert a Suppressive Effect on Th1 Responses to Intracellular Pathogen Brucella abortus 
PLoS Pathogens  2013;9(2):e1003167.
Polymorphonuclear neutrophils (PMNs) are the first line of defense against microbial pathogens. In addition to their role in innate immunity, PMNs may also regulate events related to adaptive immunity. To investigate the influence of PMNs in the immune response during chronic bacterial infections, we explored the course of brucellosis in antibody PMN-depleted C57BL/6 mice and in neutropenic mutant Genista mouse model. We demonstrate that at later times of infection, Brucella abortus is killed more efficiently in the absence of PMNs than in their presence. The higher bacterial removal was concomitant to the: i) comparatively reduced spleen swelling; ii) augmented infiltration of epithelioid histiocytes corresponding to macrophages/dendritic cells (DCs); iii) higher recruitment of monocytes and monocyte/DCs phenotype; iv) significant activation of B and T lymphocytes, and v) increased levels of INF-γ and negligible levels of IL4 indicating a balance of Th1 over Th2 response. These results reveal that PMNs have an unexpected influence in dampening the immune response against intracellular Brucella infection and strengthen the notion that PMNs actively participate in regulatory circuits shaping both innate and adaptive immunity.
Author Summary
In some diseases the predominant cells recruited are PMNs while in others are mononuclear leukocytes. Traditionally, this marked the difference between acute and chronic infections, a perspective reinforced by in vivo models in which immune cells are depleted by means of antibodies. However, these models have several drawbacks and knock-out mice were generated to dissect the functionality of immune cells. Despite this, the study of PMNs in infections in which adaptive immunity plays a role has been precluded by the absence of long-lasting neutropenic models. A mouse strain named Genista, in which the defect is the absence of PMNs has been developed; thus, making possible to explore the role of PMNs during adaptive immunity in chronic infections. We have used Brucella, an intracellular pathogen that avoids degranulation and stands the killing action of PMNs. Instead, Brucella causes chronicity, inducing granulomas, recruitment of macrophages/DCs and a robust adaptive immune response. We found that the absence PMNs is non-lethal and favors Brucella elimination at later times of infection, a phenomenon that correlates with the balance of Th1 over Th2 response. We propose that beside their role in primary bacterial elimination, PMNs can dampen and participate in regulatory circuits of adaptive immune response.
doi:10.1371/journal.ppat.1003167
PMCID: PMC3573106  PMID: 23458832
17.  Crucial Role of Gamma Interferon-Producing CD4+ Th1 Cells but Dispensable Function of CD8+ T Cell, B Cell, Th2, and Th17 Responses in the Control of Brucella melitensis Infection in Mice 
Infection and Immunity  2012;80(12):4271-4280.
Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4+ T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8+ T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis.
doi:10.1128/IAI.00761-12
PMCID: PMC3497404  PMID: 23006848
18.  Brucella abortus Uses a Stealthy Strategy to Avoid Activation of the Innate Immune System during the Onset of Infection 
PLoS ONE  2007;2(7):e631.
Background
To unravel the strategy by which Brucella abortus establishes chronic infections, we explored its early interaction with innate immunity.
Methodology/Principal Findings
Brucella did not induce proinflammatory responses as demonstrated by the absence of leukocyte recruitment, humoral or cellular blood changes in mice. Brucella hampered neutrophil (PMN) function and PMN depletion did not influence the course of infection. Brucella barely induced proinflammatory cytokines and consumed complement, and was strongly resistant to bactericidal peptides, PMN extracts and serum. Brucella LPS (BrLPS), NH-polysaccharides, cyclic glucans, outer membrane fragments or disrupted bacterial cells displayed low biological activity in mice and cells. The lack of proinflammatory responses was not due to conspicuous inhibitory mechanisms mediated by the invading Brucella or its products. When activated 24 h post-infection macrophages did not kill Brucella, indicating that the replication niche was not fusiogenic with lysosomes. Brucella intracellular replication did not interrupt the cell cycle or caused cytotoxicity in WT, TLR4 and TLR2 knockout cells. TNF-α-induction was TLR4- and TLR2-dependent for live but not for killed B. abortus. However, intracellular replication in TLR4, TLR2 and TLR4/2 knockout cells was not altered and the infection course and anti-Brucella immunity development upon BrLPS injection was unaffected in TLR4 mutant mice.
Conclusion/Significance
We propose that Brucella has developed a stealth strategy through PAMPs reduction, modification and hiding, ensuring by this manner low stimulatory activity and toxicity for cells. This strategy allows Brucella to reach its replication niche before activation of antimicrobial mechanisms by adaptive immunity. This model is consistent with clinical profiles observed in humans and natural hosts at the onset of infection and could be valid for those intracellular pathogens phylogenetically related to Brucella that also cause long lasting infections.
doi:10.1371/journal.pone.0000631
PMCID: PMC1910614  PMID: 17637846
19.  CD4+ T Cell-derived IL-10 Promotes Brucella abortus Persistence via Modulation of Macrophage Function 
PLoS Pathogens  2013;9(6):e1003454.
Evasion of host immune responses is a prerequisite for chronic bacterial diseases; however, the underlying mechanisms are not fully understood. Here, we show that the persistent intracellular pathogen Brucella abortus prevents immune activation of macrophages by inducing CD4+CD25+ T cells to produce the anti-inflammatory cytokine interleukin-10 (IL-10) early during infection. IL-10 receptor (IL-10R) blockage in macrophages resulted in significantly higher NF-kB activation as well as decreased bacterial intracellular survival associated with an inability of B. abortus to escape the late endosome compartment in vitro. Moreover, either a lack of IL-10 production by T cells or a lack of macrophage responsiveness to this cytokine resulted in an increased ability of mice to control B. abortus infection, while inducing elevated production of pro-inflammatory cytokines, which led to severe pathology in liver and spleen of infected mice. Collectively, our results suggest that early IL-10 production by CD25+CD4+ T cells modulates macrophage function and contributes to an initial balance between pro-inflammatory and anti-inflammatory cytokines that is beneficial to the pathogen, thereby promoting enhanced bacterial survival and persistent infection.
Author Summary
Brucella spp. are pathogens causing chronic intracellular infections that evade detection by pattern recognition receptors of the innate immune system. In this work, we tested the hypothesis that, in addition to eliciting a weak proinflammatory response during infection, induction of an immunoregulatory environment early during infection could promote persistent infection. Our results show that IL-10 produced at early time points is important for blunting inflammatory responses to B. abortus in infected tissues. CD4+ T cells are an important source of this cytokine, since mice lacking T cell-derived IL-10 exhibited increased inflammatory pathology and also were better able to control B. abortus infection. A target of this CD4 T cell-derived IL-10 is macrophages, since treatment of these cells with IL-10 in vitro supported intracellular replication of B. abortus, while blocking IL-10 restricted the ability of B. abortus to exit the phagolysosomal compartment and replicate intracellularly. Further, mice conditionally deficient for IL-10 receptor on macrophages were better able to control infection with B. abortus. Taken together, our results support a model in which IL-10 production by T cells promotes chronic infection by rendering macrophages more permissive for intracellular replication of B. abortus.
doi:10.1371/journal.ppat.1003454
PMCID: PMC3688575  PMID: 23818855
20.  Identification of Brucella abortus virulence proteins that modulate the host immune response 
Bioengineered  2012;3(5):303-305.
Brucellosis is an important zoonotic disease of almost worldwide distribution. One significant immune phenomenon of this disease is the ability of the pathogen to hide and survive in the host, establishing long lasting chronic infections. Brucella was found to have the ability to actively modulate the host immune response in order to establish chronic infections, but the mechanism by which the pathogen achieves this remains largely unknown. In our screening for protective antigens of Brucella abortus, 3 proteins (BAB1_0597, BAB1_0917, and BAB2_0431) were found to induce significantly higher levels of gamma interferon (IFNγ) in splenocytes of PBS immunized mice than those immunized with S19. This finding strongly implied that these three proteins inhibit the production of IFNγ. Previous studies have shown that LPS, PrpA, and Btp1/TcpB are three important immunomodulatory molecules with the capacity to interfere with host immune response. They have been shown to have the ability to inhibit the secretion of IFNγ, or to increase the production of IL-10. Due to the role of these proteins in virulence and immunomodulation, they likely offer significant potential as live, attenuated Brucella vaccine candidates. Understanding the mechanisms by which these proteins modulate the host immune responses will deepen our knowledge of Brucella virulence and provide important information on the development of new vaccines against Brucellosis.
doi:10.4161/bioe.21005
PMCID: PMC3477700  PMID: 22743689
Brucella; chronic infection; immune response; live attenuated vaccine; virulence proteins
21.  Laboratory Animal Models for Brucellosis Research 
Brucellosis is a chronic infectious disease caused by Brucella spp., a Gram-negative facultative intracellular pathogen that affects humans and animals, leading to significant impact on public health and animal industry. Human brucellosis is considered the most prevalent bacterial zoonosis in the world and is characterized by fever, weight loss, depression, hepato/splenomegaly, osteoarticular, and genital infections. Relevant aspects of Brucella pathogenesis have been intensively investigated in culture cells and animal models. The mouse is the animal model more commonly used to study chronic infection caused by Brucella. This model is most frequently used to investigate specific pathogenic factors of Brucella spp., to characterize the host immune response, and to evaluate therapeutics and vaccines. Other animal species have been used as models for brucellosis including rats, guinea pigs, and monkeys. This paper discusses the murine and other laboratory animal models for human and animal brucellosis.
doi:10.1155/2011/518323
PMCID: PMC3043301  PMID: 21403904
22.  Interleukin-1 Receptor-Associated Kinase 4 Is Essential for Initial Host Control of Brucella abortus Infection ▿  
Infection and Immunity  2011;79(11):4688-4695.
Brucella abortus is a facultative intracellular bacterial pathogen that causes abortion in domestic animals and undulant fever in humans. Recent studies have revealed that Toll-like receptor (TLR)-initiated immune response to Brucella spp. depends on myeloid differentiation factor 88 (MyD88) signaling. Therefore, we decided to study the role of the interleukin-1 receptor-associated kinase 4 (IRAK-4) in host innate immune response against B. abortus. After Brucella infection, it was shown that the number of CFU in IRAK-4−/− mice was high compared to that in IRAK-4+/− animals only at 1 week postinfection. At 3 and 6 weeks postinfection, IRAK-4−/− mice were able to control the infection similarly to heterozygous animals. Furthermore, the type 1 cytokine profile was evaluated. IRAK-4−/− mice showed lower production of systemic interleukin-12 (IL-12) and gamma interferon (IFN-γ). Additionally, a reduced percentage of CD4+ and CD8+ T cells expressing IFN-γ was observed compared to IRAK-4+/−. Further, the production of IL-12 and tumor necrosis factor alpha (TNF-α) by macrophages and dendritic cells from IRAK-4−/− mice was abolished at 24 h after stimulation with B. abortus. To investigate the role of IRAK-4 in mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways, macrophages were stimulated with B. abortus, and the signaling components were analyzed by protein phosphorylation. Extracellular signal-regulated kinase 1 (ERK1) and ERK2 and p38 as well as p65 NF-κB phosphorylation was profoundly impaired in IRAK-4−/− and MyD88−/− macrophages activated by Brucella. In summary, the results shown in this study demonstrated that IRAK-4 is critical to trigger the initial immune response against B. abortus but not at later phases of infection.
doi:10.1128/IAI.05289-11
PMCID: PMC3257947  PMID: 21844234
23.  What have we learned from brucellosis in the mouse model? 
Veterinary Research  2012;43(1):29.
Brucellosis is a zoonosis caused by Brucella species. Brucellosis research in natural hosts is often precluded by practical, economical and ethical reasons and mice are widely used. However, mice are not natural Brucella hosts and the course of murine brucellosis depends on bacterial strain virulence, dose and inoculation route as well as breed, genetic background, age, sex and physiological statu of mice. Therefore, meaningful experiments require a definition of these variables. Brucella spleen replication profiles are highly reproducible and course in four phases: i), onset or spleen colonization (first 48 h); ii), acute phase, from the third day to the time when bacteria reach maximal numbers; iii), chronic steady phase, where bacterial numbers plateaus; and iv), chronic declining phase, during which brucellae are eliminated. This pattern displays clear physiopathological signs and is sensitive to small virulence variations, making possible to assess attenuation when fully virulent bacteria are used as controls. Similarly, immunity studies using mice with known defects are possible. Mutations affecting INF-γ, TLR9, Myd88, Tγδ and TNF-β favor Brucella replication; whereas IL-1β, IL-18, TLR4, TLR5, TLR2, NOD1, NOD2, GM-CSF, IL/17r, Rip2, TRIF, NK or Nramp1 deficiencies have no noticeable effects. Splenomegaly development is also useful: it correlates with IFN-γ and IL-12 levels and with Brucella strain virulence. The genetic background is also important: Brucella-resistant mice (C57BL) yield lower splenic bacterial replication and less splenomegaly than susceptible breeds. When inoculum is increased, a saturating dose above which bacterial numbers per organ do not augment, is reached. Unlike many gram-negative bacteria, lethal doses are large (≥ 108 bacteria/mouse) and normally higher than the saturating dose. Persistence is a useful virulence/attenuation index and is used in vaccine (Residual Virulence) quality control. Vaccine candidates are also often tested in mice by determining splenic Brucella numbers after challenging with appropriate virulent brucellae doses at precise post-vaccination times. Since most live or killed Brucella vaccines provide some protection in mice, controls immunized with reference vaccines (S19 or Rev1) are critical. Finally, mice have been successfully used to evaluate brucellosis therapies. It is concluded that, when used properly, the mouse is a valuable brucellosis model.
doi:10.1186/1297-9716-43-29
PMCID: PMC3410789  PMID: 22500859
24.  Intracellular Bacteria Interfere with Dendritic Cell Functions: Role of the Type I Interferon Pathway 
PLoS ONE  2014;9(6):e99420.
Dendritic cells (DCs) orchestrate host defenses against microorganisms. In infectious diseases due to intracellular bacteria, the inefficiency of the immune system to eradicate microorganisms has been attributed to the hijacking of DC functions. In this study, we selected intracellular bacterial pathogens with distinct lifestyles and explored the responses of monocyte-derived DCs (moDCs). Using lipopolysaccharide as a control, we found that Orientia tsutsugamushi, the causative agent of scrub typhus that survives in the cytosol of target cells, induced moDC maturation, as assessed by decreased endocytosis activity, the ability to induce lymphocyte proliferation and the membrane expression of phenotypic markers. In contrast, Coxiella burnetii, the agent of Q fever, and Brucella abortus, the agent of brucellosis, both of which reside in vacuolar compartments, only partly induced the maturation of moDCs, as demonstrated by a phenotypic analysis. To analyze the mechanisms used by C. burnetii and B. abortus to alter moDC activation, we performed microarray and found that C. burnetii and B. abortus induced a specific signature consisting of TLR4, TLR3, STAT1 and interferon response genes. These genes were down-modulated in response to C. burnetii and B. abortus but up-modulated in moDCs activated by lipopolysaccharide and O. tsutsugamushi. This transcriptional alteration was associated with the defective interferon-β production. This study demonstrates that intracellular bacteria specifically affect moDC responses and emphasizes how C. burnetii and B. abortus interfere with moDC activation and the antimicrobial immune response. We believe that comparing infection by several bacterial species may be useful for defining new pathways and biomarkers and for developing new treatment strategies.
doi:10.1371/journal.pone.0099420
PMCID: PMC4051653  PMID: 24915541
25.  Intracellularly Induced Cyclophilins Play an Important Role in Stress Adaptation and Virulence of Brucella abortus 
Infection and Immunity  2013;81(2):521-530.
Brucella is an intracellular bacterial pathogen that causes the worldwide zoonotic disease brucellosis. Brucella virulence relies on its ability to transition to an intracellular lifestyle within host cells. Thus, this pathogen must sense its intracellular localization and then reprogram gene expression for survival within the host cell. A comparative proteomic investigation was performed to identify differentially expressed proteins potentially relevant for Brucella intracellular adaptation. Two proteins identified as cyclophilins (CypA and CypB) were overexpressed in the intracellular environment of the host cell in comparison to laboratory-grown Brucella. To define the potential role of cyclophilins in Brucella virulence, a double-deletion mutant was constructed and its resulting phenotype was characterized. The Brucella abortus ΔcypAB mutant displayed increased sensitivity to environmental stressors, such as oxidative stress, pH, and detergents. In addition, the B. abortus ΔcypAB mutant strain had a reduced growth rate at lower temperature, a phenotype associated with defective expression of cyclophilins in other microorganisms. The B. abortus ΔcypAB mutant also displays reduced virulence in BALB/c mice and defective intracellular survival in HeLa cells. These findings suggest that cyclophilins are important for Brucella virulence and survival in the host cells.
doi:10.1128/IAI.01125-12
PMCID: PMC3553818  PMID: 23230297

Results 1-25 (1207282)