Search tips
Search criteria

Results 1-25 (878646)

Clipboard (0)

Related Articles

1.  Adaptation of heart to training: A comparative study using echocardiography & impedance cardiography in male & female athletes 
The Indian Journal of Medical Research  2013;137(6):1111-1120.
Background & objectives:
Intensive regular physical exercise training is associated with a physiological changes in left ventricular (LV) morphology and functions. This cardiac remodeling observed in the athletes is associated with the specific haemodynamic requirements of the exercise undertaken. The main objective of this study is to evaluate the effect of endurance training on cardiac morphology, systolic and diastolic LV functions and haemodynamic parameters both in male and female athletes.
Seventy nine healthy athletes (age 20.0 ± 2.6 yr; 49% male) and 82 healthy sedentary adolescent (age 20.8 ± 2.2 yr, 49% male) volunteered to participate in this study. All subjects underwent transthoracic echocardiography and impedance cardiography.
Both female and male athletes had greater LV end-diastolic cavity sizes, LV mass and stroke volume (SV) values when compared with controls. Also, in male athletes, LV mass index was higher than in female athletes. While male athletes had lower resting heart rate compared to female athletes, they had higher mean arterial blood pressure. In male athletes, basal septal and mid septal strain values were higher compared to controls. There were no significant differences in strain and peak systolic strain rate values between female athletes and controls. In male athletes, there was a weak positive correlation between SV and LV mass, basal lateral and septal strain values. In female athletes, only a weak positive correlation was found between SV and basal septal strain values.
Interpretation & conclusions:
Endurance-trained male and female athletes had higher LV mass, LV cavity dimensions and SV compared to sedentary controls. Although there was no difference in diastolic cardiac functions between athletes and controls, local enhanced systolic function was found with increase of SV. Both morphologic and haemodynamic differences were more evident in male athletes.
PMCID: PMC3734716  PMID: 23852292
Athlete's heart; endurance training; impedance cardiography; strain imaging; tissue Doppler
2.  The Role of Echocardiography in the Differential Diagnosis Between Training Induced Myocardial Hypertrophy Versus Cardiomyopathy 
Increased myocardial mass due to regular high-volume intense exercise training (so-called athlete’s heart) is not uncommon. Although directly correlated with the extent of training loads, myocardial hypertrophy is not present exclusively in well-trained or elite athletes. Athlete’s heart is considered a physiological phenomenon with no known harmful consequences. However, extreme forms of myocardial hypertrophy due to endurance training resemble a structural heart disease such as hypertrophic cardiomyopathy, a condition associated with substantially increased risk of cardiac event. Endurance sports such as rowing and road cycling, rather than strength/power training, are most commonly associated with left ventricular (LV) wall thickness compatible with hypertrophic cardiomyopathy. The differentiation between physiological and maladaptive cardiac hypertrophy in athletes is undoubtedly important, since untreated cardiac abnormality often possesses a real threat of premature death due to heart failure during intense physical exertion. Luckily, the distinction from pathological hypertrophy is usually straightforward using transthoracic echocardiography, as endurance athletes, in addition to moderately and proportionally thickened LV walls with normal acoustic density, tend to possess increased LV diameter. In more uncertain cases, a detailed evaluation of myocardial function using (tissue) Doppler and contrast echocardiography is effective. When a doubt still remains, knowledge of an athlete’s working capacity may be useful in evaluating whether the insidious cardiac pathology is absent. In such cases cardiopulmonary exercise testing typically resolves the dilemma: indices of aerobic capacity are markedly higher in healthy endurance athletes compared to patients. Other characteristics such as a decrease of LV mass due to training cessation are also discussed in the article.
Key pointsTransthoracic echocardiography is still the most common relevant differentiation technique applied to distinguish athlete’s heart from the cardiomyopathy.Conventional echocardiographic criteria such as left ventricular chamber size and diastolic function parameters are to be regarded first when making differential diagnosis between substantially increased wall thickness in athlete’s heart (i.e. physiological adaptation) versus a disease (usually hypertrophic cardiomyopathy).When conventional echocardiographic parameters fail to diagnose the nature of myocardial hypertrophy, other differentiation criteria such as aerobic fitness, cardiac performance in response to physical exertion, and changes in echocardiographic parameters due to detraining, must be taken into consideration.Tissue Doppler, contrast and three-dimensional imaging are state-of-the-art echocardiographic techniques which have recently appeared in the differential diagnostics.
PMCID: PMC3786236  PMID: 24149325
Left ventricle; physical exercises; physiological adaptation
3.  Is there a danger for myopia in anti-doping education? Comparative analysis of substance use and misuse in Olympic racket sports calls for a broader approach 
Racket sports are typically not associated with doping. Despite the common characteristics of being non-contact and mostly individual, racket sports differ in their physiological demands, which might be reflected in substance use and misuse (SUM). The aim of this study was to investigate SUM among Slovenian Olympic racket sport players in the context of educational, sociodemographic and sport-specific factors.
Elite athletes (N = 187; mean age = 22 ± 2.3; 64% male) representing one of the three racket sports, table tennis, badminton, and tennis, completed a paper-and-pencil questionnaire on substance use habits. Athletes in this sample had participated in at least one of the two most recent competitions at the highest national level and had no significant difference in competitive achievement or status within their sport.
A significant proportion of athletes (46% for both sexes) reported using nutritional supplements. Between 10% and 24% of the studied males would use doping if the practice would help them achieve better results in competition and if it had no negative health consequences; a further 5% to 10% indicated potential doping behaviour regardless of potential health hazards. Females were generally less oriented toward SUM than their male counterparts with no significant differences between sports, except for badminton players. Substances that have no direct effect on sport performance (if timed carefully to avoid detrimental effects) are more commonly consumed (20% binge drink at least once a week and 18% report using opioids), whereas athletes avoid substances that can impair and threaten athletic achievement by decreasing physical capacities (e.g. cigarettes), violating anti-doping codes or potentially transgressing substance control laws (e.g. opiates and cannabinoids). Regarding doping issues, athletes' trust in their coaches and physicians is low.
SUM in sports spreads beyond doping-prone sports and drugs that enhance athletic performance. Current anti-doping education, focusing exclusively on rules and fair play, creates an increasingly widening gap between sports and the athletes' lives outside of sports. To avoid myopia, anti-doping programmes should adopt a holistic approach to prevent substance use in sports for the sake of the athletes' health as much as for the integrity of sports.
PMCID: PMC3204239  PMID: 21988896
racket sport; anti-doping; drug; athlete; drinking; supplements
4.  Exercise-Induced Arterial Adaptations in Elite Judo Athletes 
The purpose of this study was to examine exercise-induced arterial adaptations in elite Judo male and female athletes. 27 male Judo athletes (age 24.06 ± 2 years), 11 female Judoka (age 24.27 ± 1 years), 27 sedentary healthy men (age 24.01 ± 2 years) and 11 women (age 24.21 ± 1 years) participated in the current study. The examined vessels included brachial, radial, ulnar, popliteal, anterior and posterior tibial arteries. The experimental parameters were recorded with the use of Duplex ultrasound at rest. Diastolic diameter and blood mean flow velocity of the examined arteries in Judo athletes were found to be both significantly increased (p < 0.05) compared to the findings of the control groups. In male Judo athletes the brachial (p < 0.001), radial (p < 0.001), and anterior tibial artery (p < 0.001) presented the highest difference on the diastolic diameter, compared with the control male group. In female Judo athletes, ulnar (p < 0.001), radial (p < 0.001), and brachial (p < 0.001) arteries illustrated the highest diastolic diameter. The highest blood mean flow velocity was recorded in ulnar (p < 0.001) and popliteal arteries (p < 0.001) of the Judo athletes groups. Recording differences between the two genders, male participants presented larger arteries than females. Conclusively, Judo has been found to be a highly demanding physical sport, involving upper and lower limbs leading to significant arterial adaptations. Obtaining vascular parameters provide a useful tool to the medical team, not only in the direction of enhancement of the efficacy of physical training, but in unknown so far parameters that may influence athletic performance of both male and female elite Judokas.
Key pointsJudo athletes demonstrated a general homogenous increase of the arterial functionality of the upper and lower limbs compared to the control groups.Diastolic diameter found to be significantly increased in male and female Judo athletes, highlighting the effects of exercise training on the vascular system.Judo athletes had had statistically significant increase of the blood mean flow velocity in all examined arteries, compared with the relevant control group.The current study underscores the impact of Judo training on the structure and the function of the arterial system.Clinically, the increased arterial parameters in elite Judo athletes may be essential elements for improved athletic performance.Sports medicine practitioners should give special concern to the vascular functionality for several physiological and medical tests.
PMCID: PMC3763289  PMID: 24150007
Diastolic diameter; blood mean flow velocity; duplex sonography; judo athletes
5.  Reduction in left ventricular wall thickness after deconditioning in highly trained Olympic athletes. 
British Heart Journal  1993;69(2):125-128.
BACKGROUND--Clinical distinction between athlete's heart and hypertrophic cardiomyopathy in a trained athlete is often difficult. In an effort to identify variables that may aid in this differential diagnosis, the effects of deconditioning on left ventricular wall thickness were assessed in six highly trained elite athletes who had competed in rowing or canoeing at the 1988 Seoul Olympic Games. Each of these athletes showed substantial ventricular septal thickening associated with training (13-15 mm) which resembled that of hypertrophic cardiomyopathy. METHODS--The athletes voluntarily reduced their training substantially for 6-34 weeks (mean 13) after the Olympic competition. Echocardiography was performed at peak training and also after deconditioning, and cardiac dimensions were assessed blindly. RESULTS--Maximum ventricular septal thickness was 13.8 (0.9) mm in the trained state and 10.5 (0.5) in the deconditioned state (p < 0.005) (change 15-33%). CONCLUSIONS--The finding that deconditioning may be associated with a considerable reduction in ventricular septal thickness in elite athletes over short periods strongly suggests that these athletes had a physiological form of left ventricular hypertrophy induced by training. Such a reduction in wall thickness with deconditioning may help to distinguish between the physiological hypertrophy of athlete's heart and primary pathological hypertrophy (for example, hypertrophic cardiomyopathy) in selected athletes with increased left ventricular wall thickness.
PMCID: PMC1024938  PMID: 8435237
6.  Physiological left ventricular hypertrophy. 
British Heart Journal  1984;52(2):130-135.
Echocardiograms were recorded in 154 active athletes (from various sports) and 21 ex-athletes and compared with those in 40 normal control subjects (non-athletes). Diastolic cavity dimension and posterior wall and septal thickness were measured and left ventricular mass and the ratio of posterior wall thickness to cavity radius and of septum to posterior wall thickness calculated. As a group athletes had a significantly increased diastolic cavity dimension, posterior wall and septal thickness, and left ventricular mass. The ratio of posterior wall thickness to cavity radius was distributed as a single continuous variable with a significantly increased mean, and there was no separate subgroup of shot putters or weight lifters with inappropriate hypertrophy. The mean ratio of septum to posterior wall thickness was normal, but there was a wide range of values up to 2.1:1. Ex-athletes had entirely normal left ventricular dimensions and wall thickness. When athletes are categorised by their standard of competition national standard competitors had a significantly increased posterior wall and septal thickness and left ventricular mass compared with university and non-competitive sportsmen. In conclusion, strenuous activity results in left ventricular hypertrophy which is appropriate to the body size of the athlete and the degree of activity but not to its type.
PMCID: PMC481601  PMID: 6743431
7.  Physiological upper limits of left ventricular dimensions in highly trained junior tennis players 
British Journal of Sports Medicine  2007;41(11):784-788.
The differentiation between physiological cardiac enlargement and cardiomyopathy is crucial, considering that most young non‐traumatic deaths in sport are due to cardiomyopathy. Currently, there are few data relating to cardiac dimensions in junior elite tennis players. The aim of this study was to define the upper limits of left ventricular dimensions in a large cohort of national adolescent tennis players.
Between 1996 and 2003, 259 adolescent tennis players (152 males), mean (SD) age 14.8 (1.4) years (range 13–19) and 86 healthy age, gender and body surface matched sedentary controls underwent 12‐lead ECG and 2D‐transthoracic echocardiography.
Inter‐ventricular septal end diastolic dimension (IVSd), left ventricular end diastolic dimension (LVEDd) and left ventricular end diastolic posterior wall dimension (LVPWd) in tennis players were significantly higher than in controls (8.9 mm vs 8.3 mm p<0.001, 48.9 mm vs 47.9 mm p<0.05 and 9 mm vs 8.3 mm p<0.001 respectively), however in absolute terms, the difference did not exceed 7%. None of the tennis players had a wall thickness exceeding 12 mm or a left ventricular cavity size exceeding 60 mm.
Tennis players exhibit modest increases in cardiac dimensions, which do not resemble those seen in individuals with cardiomyopathy affecting the left ventricle.
PMCID: PMC2465269  PMID: 17957014
8.  Myocardial Performance and Aortic Elastic Properties in Elite Basketball and Soccer Players: Relationship with Aerobic and Anaerobic Capacity 
The aims of the present study were to examine the myocardial performance index and aortic elastic properties of athletes engaged in ball sports and to determine their relationships with aerobic and anaerobic characteristics. Standard M-mode and Doppler echocardiography, maximal oxygen uptake and 30 sec Wingate tests were performed for 32 elite male athletes (12 basketball and 20 soccer players) and 12 healthy sedentary volunteers. Data were analyzed by ANOVA and partial correlation coefficient tests. Absolute values of left ventricular internal diameter, left ventricular posterior wall and interventricular septum thicknesses in diastole were significantly (p < 0.05-0.01) greater in athletes than in controls. The left ventricular internal diameter corrected by body surface area was also greater (p < 0.05-0.01) in the athletes compared with the controls. Absolute and body surface area corrected left ventricular mass were significantly greater (p < 0.05-0.001) in athletes than in controls. Isovolumetric relaxation time was higher (p < 0.01) in soccer players than in controls. There were no significant differences among the groups for myocardial performance index and aortic elastic properties. Left ventricular mass index was poorly correlated (p < 0.01) with VO2max (r = 0.410), peak power (r = 0.439) and average power (r = 0.464) in the athletes. Poor correlations (r = 0.333-0.350, p < 0.05) were also observed between aortic elastic properties and average power in athletes. Myocardial performance index and aortic elastic properties are not different in athletes involved in this study compared with sedentary subjects. Aerobic and anaerobic capacities of the athletes used in this study are poorly explained by these resting echocardiographic findings.
Key PointsLeft ventricular internal diameter, left ventricular posterior wall and interventricular septum thicknesses in diastole, and left ventricular mass were significantly greater in athletes than in controls.There were no remarkable differences in Doppler velocities and time intervals between athletes and controls.Myocardial performance index and aortic elastic properties are not different in athletes compared with sedentary subjects.Aerobic and anaerobic parameters of athletes are poorly explained by resting echocardiographic characteristics.VO2max and anaerobic power indices are variables that better determines left ventricular mass developed in ball sport specific training.
PMCID: PMC3880886  PMID: 24431975
Athletes’ heart; cardiac function; aortic elastic properties; oxygen uptake; power
9.  Cardiac remodelling: concentric versus eccentric hypertrophy in strength and endurance athletes 
Netherlands Heart Journal  2008;16(4):129-133.
Cardiac remodelling is commonly defined as a physiological or pathological state that may occur after conditions such as myocardial infarction, pressure overload, idiopathic dilated cardiomyopathy or volume overload. When training excessively, the heart develops several myocardial adaptations causing a physiological state of cardiac remodelling. These morphological changes depend on the kind of training and are clinically characterised by modifications in cardiac size and shape due to increased load. Several studies have investigated morphological differences in the athlete’s heart between athletes performing strength training and athletes performing endurance training. Endurance training is associated with an increased cardiac output and volume load on the left and right ventricles, causing the endurance-trained heart to generate a mild to moderate dilatation of the left ventricle combined with a mild to moderate increase in left ventricular wall thickness. Strength training is characterised by an elevation of both systolic and diastolic blood pressure. This pressure overload causes an increase in left ventricular wall thickness. This may or may not be accompanied by a slight raise in the left ventricular volume. However, the development of an endurancetrained heart and a strength-trained heart should not be considered an absolute concept. Both forms of training cause specific morphological changes in the heart, dependent on the type of sport. (Neth Heart J 2008;16:129-33.)
PMCID: PMC2300466  PMID: 18427637
ventricular remodelling; heart; sports; hypertrophy; Prinzmetal angina; acetylcholine; multifocal spasm
10.  Abnormal cardiopulmonary exercise variables in asymptomatic relatives of patients with dilated cardiomyopathy who have left ventricular enlargement 
Heart  2000;83(5):511-517.
BACKGROUND—Left ventricular enlargement with normal systolic function is common in asymptomatic relatives of patients with familial dilated cardiomyopathy, many of whom progress to overt dilated cardiomyopathy at follow up.
OBJECTIVE—To examine maximal and submaximal gas exchange variables of cardiopulmonary exercise testing in asymptomatic relatives with left ventricular enlargement.
DESIGN AND SETTING—Controlled evaluation of metabolic exercise performance of patients with dilated cardiomyopathy and asymptomatic relatives with left ventricular enlargement identified through prospective family screening in a cardiomyopathy outpatient clinic.
METHODS—23 relatives with left ventricular enlargement, 33 normal controls, 29 patients with dilated cardiomyopathy, and 10 elite athletes with echocardiographic criteria of left ventricular enlargement ("physiological" enlargement) underwent symptom limited upright cycle ergometry using a ramp protocol.
RESULTS—Peak oxygen consumption (pVO2; mean (SD)) was significantly reduced in relatives with left ventricular enlargement (78 (16.3)%) v normal controls (96%, p < 0.01) and athletes (152%, p < 0.001), but was higher than in patients with dilated cardiomyopathy (69%, p < 0.01). pVO2 was less than 80% of predicted in 75% of patients, 58% of relatives, 22% of controls, and none of the athletes. Oxygen pulse (pVO2/heart rate) was less than 80% of predicted in 69% of patients, 35% of relatives, 6% of controls, and none of the athletes. The slope of minute ventilation v CO2 production (ΔVE/ΔVCO2) was > 30 in 68% of patients, 50% of relatives, and in none of the controls or athletes. Anaerobic threshold, occurring in relatives at 37 (14)% of the predicted VO2, was higher than in the patients (32%, p < 0.01) and lower than in the controls (45%, p < 0.05) or in the athletes (55%, p < 0.001).
CONCLUSIONS—Maximal and submaximal cardiopulmonary exercise test variables are abnormal in asymptomatic relatives with left ventricular enlargement, in spite of normal systolic function. This provides further evidence that left ventricular enlargement represents subclinical disease in relatives of patients with dilated cardiomyopathy. Metabolic exercise testing can complement echocardiography in identifying relatives at risk for the development of dilated cardiomyopathy.

Keywords: cardiomyopathy; exercise; diagnosis
PMCID: PMC1760817  PMID: 10768898
11.  Usefulness of Doppler echocardiographic assessment of diastolic filling in distinguishing “athlete's heart” from hypertrophic cardiomyopathy 
British Heart Journal  1992;68(3):296-300.
Objective—In some athletes with a substantial increase in left ventricular wall thickness, it may be difficult to distinguish with certainty physiological hypertrophy due to athletic training from hypertrophic cardiomyopathy. The purpose of the present investigation was to determine whether assessment of left ventricular filling could differentiate between these two conditions.
Design—Doppler echocardiography was used to obtain transmitral flow velocity waveforms from which indices of left ventricular diastolic filling were measured. Normal values were from 35 previously studied control subjects.
Setting—Athletes were selected mostly from the Institute of Sports Science (Rome, Italy), and patients with hypertrophic cardiomyopathy were studied at the National Institutes of Health (Bethesda, Maryland).
Participants—The athlete group comprised 16 young competitive athletes with an increase in left ventricular wall thickness (range 13–16 mm; mean 14). For comparison, 12 symptom free patients with non-obstructive hypertrophic cardiomyopathy were selected because their ages and degree of hypertrophy were similar to those of the athletes.
Results—In the athlete group, values for deceleration of flow velocity in early diastole, peak early and late diastolic flow velocities, and their ratio were not significantly different from those obtained in untrained normal subjects; furthermore, Doppler diastolic indices were normal in each of the 16 athletes. Conversely, in patients with hypertrophic cardiomyopathy, mean values for Doppler diastolic indices were significantly different from both normal subjects and athletics (p = 0·01 to 0·003), and one or more indices were abnormal in 10 (83%) of the 12 patients.
Conclusions—Doppler echocardiographic indices of left ventricular filling may aid in distinguishing between pronounced physiological hypertrophy due to athletic training and pathological hypertrophy associated with hypertrophic cardiomyopathy.
PMCID: PMC1025074  PMID: 1389762
12.  Echocardiographic Parameters in Athletes of Different Sports 
Competitive athletics is often associated with moderate left ventricular (LV) hypertrophy, and it has been hypothesized that training mode and type of exercise modulates long-term cardiac adaptation. The purpose of the study was to compare cardiac structure and function among athletes of various sports and sedentary controls. Standard transthoracic two-dimensional M-mode and Doppler echocardiography was performed at rest in Caucasian male canoe/kayak paddlers (n = 9), long distance runners (LDR, n = 18), middle distance runners (MDR, n = 17), basketball players (BP, n = 31), road cyclists (n = 8), swimmers (n = 10), strength/power athletes (n = 9) of similar age (range, 15 to 31 yrs), training experience (4 to 9 years), and age-matched healthy male sedentary controls (n = 15). Absolute interventricular septum (IVS) thickness and LV wall thickness, but not LV diameter, were greater in athletes than sedentary controls. Left ventricular mass of all athletes but relative wall thickness of only BP, swimmers, cyclists, and strength/power athletes were higher as compared with controls (p < 0.05). Among athletes, smaller IVS thickness was observed in MDR than BP, cyclists, swimmers or strength/power athletes, while LDR had higher body size-adjusted LV diameter as compared to BP, cyclists and strength/power athletes. In conclusion, relative LV diameter was increased in long distance runners as compared with basketball players, cyclists, and strength/power athletes. Basketball, road cycling, strength/power, and swimming training were associated with increased LV concentricity as compared with paddling or distance running.
Key pointsThe type of cardiac hypertrophy seems to be only moderately exercise-specific.Long-distance runners develop larger left ventricular dilation as compared with basketball players, cyclists, and strength/power athletes.Myocardial wall thickening is triggered by different sporting activities that involve large muscle groups.
PMCID: PMC3763341  PMID: 24150148
Myocardial hypertrophy; left ventricle; echocardiography; athlete
13.  Echocardiographic Findings in Power Athletes Abusing Anabolic Androgenic Steroids 
Anabolic androgenic steroids (AAS) abuse for improving physical appearance and performance in body builders is common and has been considered responsible for serious cardiovascular effects. Due to disagreement about cardiovascular side effects of these drugs in published articles, this case control study was designed to evaluate the echocardiographic findings in body builder athletes who are current and chronic abusers of these drugs.
Body builder athletes with continuous practice for the preceding two years and were training at least twice weekly were selected and divided into AAS abuser and non user and compared with age and BMI matched non athletic healthy volunteers (15 cases in each group).
There was no significant difference in left ventricular size or function either systolic or diastolic in comparison to cases and control groups. The only difference was in diastolic size of septum and free wall but observed differences were only significant (P = 0.05) between first (athletic with AAS abuser) and third group (non athletic and nonuser). The difference between the above-mentioned indexes were not significant between two groups of athletes.
Observed differences in diastolic size of septum and free wall is in favor of that long term abuse of anabolic steroid results in accentuation of physiologic hypertrophy due to long term sport most probably due to higher rate pressure product. Furthermore long term abuse and supra pharmacologic doses do not have significant effect in size and left ventricular function.
PMCID: PMC3685154  PMID: 23785570
Androgenic Anabolic Agent; Body Builder; Left Ventricular Hypertrophy; Echocardiography
14.  Echocardiographic examination of cardiac structure and function in elite cross trained male and female Alpine skiers 
OBJECTIVE: To assess cardiac structure and function in elite cross- trained male and female athletes (Alpine skiers). METHODS: Sixteen athletes (10 male, six female) and 19 healthy sedentary control subjects (12 male, seven female) volunteered to take part in the study. Basic anthropometry determined height, body mass, body surface area, and fat free mass. Cardiac dimensions and function were determined by two dimensional, M mode, and Doppler echocardiography. Absolute data and data corrected for body size (allometrically determined) were compared by two way analysis of variance and post hoc Scheffe tests. RESULTS: Absolute left ventricular internal dimension in diastole (LVIDd), septal and posterior wall thickness and left ventricular mass were larger in athletes than controls (p < 0.05) and also increased in the men (p < 0.05) compared with women (except for septal thickness in controls). An increased LVIDd, septal thickness, posterior wall thickness, and left ventricular mass in athletes persisted after correction for body size except when LVIDd was scaled by fat free mass. Cardiac dimensions did not differ between the sexes after correction for body size. All functional indices were similar between groups. CONCLUSION: There is evidence of both left ventricular chamber dilatation and wall enlargement in cross trained athletes compared with controls. Differences in absolute cardiac dimensions between the sexes were primarily due to greater body dimensions in the men. 

PMCID: PMC1756155  PMID: 10205689
15.  Assessment of electrocardiography, echocardiography, and heart rate variability in dynamic and static type athletes 
Over the last two decades, morphological cardiac changes induced by athletic conditioning have been of great interest. Therefore, several studies have been orchestrated to delineate electrocardiography (ECG), echocardiography, and heart rate variability (HRV) findings in athletes.
To assess the ECG, echocardiography, and HRV in a group of dynamic and static type athletes.
Fifty professional athletes (20 static and 30 dynamic exercise athletes) and 50 healthy nonathletes (control group) were recruited. Standard 12-lead ECG and transthoracic echocardiography was performed on all athletes and the control group. Through echocardiography, variables including left ventricular (LV) end-diastolic/systolic diameter, LV mass, and left atrial volume index were measured. In addition, both the athletes and the control group underwent ECG Holter monitoring for 15 minutes and several parameters related to HRV (time and frequency domain) were recorded.
The most common ECG abnormalities among the athletes were sinus bradycardia and incomplete right bundle branch block. LV end-diastolic diameter and left atrial volume index were significantly greater in the dynamic athletes (P < 0.001). LV end-systolic diameter was significantly lower in the static group (P < 0.001). LV mass of the dynamic and static athletes was significantly greater than that of the controls (P < 0.001). Among the ECG Holter monitoring findings, the dynamic athletes had lower systolic blood pressure than the controls (P = 0.01). Heart rate was lowest in the control group (P < 0.001).
The most common ECG abnormalities among adolescent Iranian athletes were sinus bradycardia and incomplete right bundle branch block. Static exercise seemed to reduce LV end-systolic diameter, while dynamic exercise resulted in increased LV end-diastolic diameter and left atrial volume index. Additionally, Iranian athletes showed no differences in HRV parameters, excluding heart rate and systolic blood pressure, compared with the nonathletes.
PMCID: PMC3422899  PMID: 22924010
athlete’s heart; electrocardiography; echocardiography; heart rate variability
16.  Serum IGF-I and hormonal responses to incremental exercise in athletes with and without left ventricular hypertrophy 
We investigated the response of insulin-like growth factor (IGF- I), insulin-like growth factor binding protein-3 (IGFBP-3) and some hormones, i.e., testosterone (T), growth hormone (GH), cortisol (C), and insulin (I), to maximal exercise in road cyclists with and without diagnosed left ventricular hypertrophy. M-mode and two-dimensional Doppler echocardiography was performed in 30 professional male endurance athletes and a group of 14 healthy untrained subjects using a Hewlett-Packard Image Point HX ultrasound system with standard imaging transducers. Echocardiography and an incremental physical exercise test were performed during the competitive season. Venous blood samples were drawn before and immediately after the maximal cycling exercise test for determination of somatomedin and hormonal concentrations. The basal concentration of IGF-I was statistically higher (p < 0.05) in athletes with left ventricular muscle hypertrophy (LVH) when compared to athletes with a normal upper limit of the left ventricular wall (LVN) (p < 0.05) and to the control group (CG) (p < 0.01). The IGF-I level increased significantly at maximal intensity of incremental exercise in CG (p < 0.01), LVN (p < 0.05) and LVH (p < 0.05) compared to respective values at rest. Long-term endurance training induced an increase in resting (p < 0.01) and post-exercise (p < 0.05) IGF-I/IGFBP-3 ratio in athletes with LVH compared to LVN. The testosterone (T) level was lower in LVH at rest compared to LVN and CG groups (p < 0.05). These results indicate that resting serum IGF-I concentration were higher in trained subjects with LVH compared to athletes without LVH. Serum IGF- I/IGFBP-3 elevation at rest and after exercise might suggest that IGF-I act as a potent stimulant of left ventricular hypertrophy in chronically trained endurance athletes.
Key pointsIn sports training athletes engaged in the same training regimen acquired different stages of cardiac hypertrophy.Physical exercise had a significant effect on serum insulin-like growth factor - I concentration depending on maximal oxygen uptake during endurance exercise.Athletes with clinically diagnosed physiological left ventricular hypertrophy had higher resting serum insulin-like growth factor - I concentration compared to those without left ventricular hypertrophy and sedentary subjects.Increased insulin-like growth factor - I release during long-term training seems to significantly contribute to sports-specific functional adaptation of the left ventricle.
PMCID: PMC3737784  PMID: 24150558
Echocardiography; heart; somatomedins; anabolic hormones; endurance training.
17.  Echocardiographic characteristics of male athletes of different age 
Two dimensionally guided M mode and Doppler echocardiographic data for 578 male subjects (106 non-athletic and 472 athletes) were analysed from two aspects: (a) in the young adult category (19–30 years of age), competitors in different groups of sports were studied; (b) in the different age groups (children, 10–14 years; adolescent juniors, 15–18 years; young adults, 19–30 years; adults, 31–44 years; older adults 45–60 years), data for athletes and non-athletes were compared. Morphological variables were related to body size by indices in which the exponents of the numerator and denominator were matched. Morphological signs of athletic heart were most consistently evident in the left ventricular muscle mass: in the young adult group, the highest values were seen in the endurance athletes, followed by the ball game players, sprinters/jumpers, and power athletes. A thicker muscular wall was the main reason for this hypertrophy. Internal diameter was only increased in the endurance athletes, and this increase was more evident in the younger groups. The E/A quotient (ratio of peak velocity during early and late diastole) indicated more effective diastolic function in the endurance athletes. The values for E/A quotient also suggested that regular physical activity at an older age may protect against age dependent impairment of diastolic function.
Key Words: echocardiography; heart; athletic heart; age; male athletes
PMCID: PMC1724312  PMID: 11273969
18.  Electrocardiographic changes in 1000 highly trained junior elite athletes 
OBJECTIVES: To evaluate the spectrum of electrocardiographic (ECG) changes in 1000 junior (18 or under) elite athletes. METHODS: A total of 1000 (73% male) junior elite athletes (mean (SD) age 15.7 (1.4) years (range 14-18); mean (SD) body surface area 1.73 (0.17) m2 (range 1.09-2.25)) and 300 non-athletic controls matched for gender, age, and body surface area had a 12 lead ECG examination. RESULTS: Athletes had a significantly higher prevalence of sinus bradycardia (80% v 19%; p<0.0001) and sinus arrhythmia (52% v 9%; p<0.0001) than non-athletes. The PR interval, QRS, and QT duration were more prolonged in athletes than non-athletes (153 (20) v 140 (18) milliseconds (p<0.0001), 92 (12) v 89 (7) milliseconds (p<0.0001), and 391 (27) v 379 (29) milliseconds (p = 0.002) respectively). The Sokolow voltage criterion for left ventricular hypertrophy (LVH) and the Romhilt-Estes points score for LVH was more common in athletes (45% v 23% (p<0.0001) and 10% v 0% (p<0.0001) respectively), as were criteria for left and right atrial enlargement (14% v 1.2% and 16% v 2% respectively). None of the athletes with voltage criteria for LVH had left axis deviation, ST segment depression, deep T wave inversion, or pathological Q waves. ST segment elevation was more common in athletes than non-athletes (43% v 24%; p<0.0001). Minor T wave inversion (less than -0.2 mV) in V2 and V3 was present in 4% of athletes and non-athletes. Minor T wave inversion elsewhere was absent in non-athletes and present in 0.4% of athletes. CONCLUSIONS: ECG changes in junior elite athletes are not dissimilar to those in senior athletes. Isolated Sokolow voltage criterion for LVH is common; however, associated abnormalities that indicate pathological hypertrophy are absent. Minor T wave inversions in leads other than V2 and V3 may be present in athletes and non-athletes less than 16 but should be an indication for further investigation in older athletes. 

PMCID: PMC1756199  PMID: 10522633
19.  Left Ventricle Fibrosis Associated With Nonsustained Ventricular Tachycardia in an Elite Athlete: Is Exercise Responsible? A Case Report 
Journal of Athletic Training  2012;47(2):224-227.
To emphasize the potentially harmful effects of high-intensity exercise on cardiac health and the fine line between physiologic and pathologic adaptation to chronic exercise in the elite athlete. This case also highlights the crucial need for regular evaluation of symptoms that suggest cardiac abnormality in athletes.
Sudden cardiac death (SCD) of young athletes is always a tragedy because they epitomize health. However, chronic, high-intensity exercise sometimes has harmful effects on cardiac health, and pathologic changes, such as myocardial fibrosis, have been observed in endurance athletes. In this case, a highly trained 30-year-old cyclist reported brief palpitations followed by presyncope feeling while exercising. Immediate investigations revealed nonsustained ventricular tachycardia originating from the left ventricle on a stress test associated with myocardial fibrosis of the left ventricle as shown with magnetic resonance imaging. Despite complete cessation of exercise, life-threatening arrhythmia and fibrosis persisted, leading to complete restriction from competition.
Differential Diagnosis:
Hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, myocarditis, postmyocarditis, use of drugs and toxic agents, doping, and systemic disease.
The arrhythmia could not be treated with catheter ablation procedure or drug suppression. Therefore, the athlete was instructed to withdraw completely from sport participation and to have a medical follow-up twice each year.
To our knowledge, no other report of left ventricle exercise-induced fibrosis associated with life-threatening arrhythmia in a living young elite athlete exists. Only postmortem evidence supports such myocardial pathologic adaptation to exercise.
To prevent SCD in young athletes, careful attention must be paid to exercise-related symptoms that suggest a cardiac abnormality because they more often are linked to life-threatening cardiovascular disease.
PMCID: PMC3418136  PMID: 22488290
myocardial fibrosis; high-intensity exercise; sudden death
20.  Comparison of Brachial Artery Vasoreactivity in Elite Power Athletes and Age-Matched Controls 
PLoS ONE  2013;8(1):e54718.
Elite endurance athletes typically have larger arteries contributing to greater skeletal muscle blood flow, oxygen and nutrient delivery and improved physical performance. Few studies have examined structural and functional properties of arteries in power athletes.
To compare the size and vasoreactivity of the brachial artery of elite power athletes to age-matched controls. It was hypothesized brachial artery diameters of athletes would be larger, have less vasodilation in response to cuff occlusion, but more constriction after a cold pressor test than age-matched controls.
Eight elite power athletes (age = 23±2 years) and ten controls (age = 22±1 yrs) were studied. High-resolution ultrasonography was used to assess brachial artery diameters at rest and following 5 minutes of forearm occlusion (Brachial Artery Flow Mediated Dilation = BAFMD) and a cold pressor test (CPT). Basic fitness measures included a handgrip test and 3-minute step test.
Brachial arteries of athletes were larger (Athletes 5.39±1.51 vs. Controls: 3.73±0.71 mm, p<0.05), had greater vasodilatory (BAFMD%: Athletes: 8.21±1.78 vs. Controls: 5.69±1.56%) and constrictor (CPT %: Athletes: -2.95±1.07 vs. Controls: −1.20±0.48%) responses, compared to controls. Vascular operating range (VOR = Peak dilation+Peak Constriction) was also greater in athletes (VOR: Athletes: 0.55±0.15 vs. Controls: 0.25±0.18 mm, p<0.05). Athletes had superior handgrip strength (Athletes: 55.92±17.06 vs. Controls: 36.77±17.06 kg, p<0.05) but similar heart rate responses at peak (Athletes: 123±16 vs. Controls: 130±25 bpm, p>0.05) and 1 minute recovery (Athletes: 88±21 vs. Controls: 98±26 bpm, p>0.05) following the step test.
Elite power athletes have larger brachial arteries, and greater vasoreactivity (greater vasodilatory and constrictor responses) than age-matched controls, contributing to a significantly greater VOR. These data extend the existence of an ‘athlete’s artery’ as previously shown for elite endurance athletes to elite power athletes, and presents a hypothetical explanation for the functional significance of the ‘power athlete’s artery’.
PMCID: PMC3554649  PMID: 23359214
21.  Left ventricular hypertrophy. Relation of structure to diastolic function in hypertension. 
British Heart Journal  1984;51(6):637-642.
Digitised M mode echocardiography was used to determine the relation between the degree of left ventricular hypertrophy and abnormalities of isovolumic relaxation and diastolic function. Fifty six patients with varying severity of non-malignant systemic hypertension without evidence of ischaemic heart disease, left ventricular dilation, or clinical heart failure were studied. In addition, 10 athletes with hypertrophy and 20 normal subjects were studied. Athletes and patients with moderate (systolic blood pressure 175 to 200 mm Hg) and severe hypertension (greater than 200 mm Hg) had a significant increase in left ventricular mass. Cavity dimensions were normal in hypertensive patients and increased in athletes. Systolic function was normal in all groups. Regardless of the degree of hypertrophy patients with hypertension had a prolonged isovolumic relaxation period and delayed mitral valve opening. Patients with hypertrophy also had a reduced rate and prolonged duration of rapid early diastolic dimension increase and posterior wall thinning. Athletes, however, who had an equivalent degree of hypertrophy to patients with moderate or severe hypertension had entirely normal function. Measurements of diastolic function were significantly correlated with wall thickness and left ventricular mass. These indices of hypertrophy, particularly posterior wall thickness and the sum of posterior wall and septal thickness, were positively correlated with the duration of isovolumic relaxation and delay in mitral opening and negatively with the peak rate of early diastolic dimension increase and wall thinning. Thus in hypertensive patients with non-dilated left ventricular hypertrophy there appears to be a relation between the degree of wall thickening and abnormalities of diastolic function.
PMCID: PMC481565  PMID: 6234010
22.  Performance Level Affects the Dietary Supplement Intake of Both Individual and Team Sports Athletes 
Dietary supplement (DS) intake is high in elite level athletes, however few studies have investigated the impact that the performance level of the athletes has on supplementation intake in individual and team sports. The purpose of the study was to determine and compare the DS intake among individual and team sport athletes of various performance levels. A total of 2845 participants (athletes: 2783, controls: 62) between the ages of 11 and 44 years old participated in the study. A 3-page questionnaire was developed to assess the intake of DS. Athletes were categorized based on participation in individual (n = 775) and team sports (n = 2008). To assess the effect of performance level in supplementation intake, athletes were categorized based on training volume, participation in the national team, and winning at least one medal in provincial, national, international or Olympic games. Overall, 37% of all athletes of various performance levels reported taking at least one DS in the last month. A higher prevalence of DS intake was reported in individual (44%) compared to team sport athletes (35%) (p < 0.001). Athletes of high performance level reported greater DS intake compared to lower performance athletes. Males reported a significantly greater prevalence of DS intake compared to females. The most popular supplement reported was amino acid preparation with the main reason of supplementation being endurance improvements. In conclusion, performance level and type of sport appear to impact the DS practices of male and female athletes. These findings should be validated in other populations.
Key points37% of Mediterranean athletes of various sports and levels have reported taking dietary supplements.The performance level of the athletes affects the dietary supplementation intake.Athletes in individual sports appear to have a higher DS intake compared to team sport athletes.Male athletes appear to take more dietary supplements compared to female athletes.
PMCID: PMC3761777  PMID: 24149744
Nutritional aids; sports; team sports; performance
23.  Contrasting plasma free amino acid patterns in elite athletes: association with fatigue and infection 
AIM: There is little information on the plasma free amino acid patterns of elite athletes against which fatigue and nutrition can be considered. Therefore the aim was to include analysis of this pattern in the medical screening of elite athletes during both especially intense and light training periods. METHODS: Plasma amino acid analysis was undertaken in three situations. (1) A medical screening service was offered to elite athletes during an intense training period before the 1992 Olympics. Screening included a blood haematological/biochemical profile and a microbial screen in athletes who presented with infection. The athletes were divided into three groups who differed in training fatigue and were considered separately. Group A (21 track and field athletes) had no lasting fatigue; group B (12 judo competitors) reported heavy fatigue at night but recovered overnight to continue training; group C (18 track and field athletes, one rower) had chronic fatigue and had been unable to train normally for at least several weeks. (2) Athletes from each group were further screened during a post- Olympic light training period. (3) Athletes who still had low amino acid levels during the light training period were reanalysed after three weeks of additional protein intake. RESULTS: (1) The pre-Olympics amino acid patterns were as follows. Group A had a normal amino acid pattern (glutamine 554 (25.2) micromol/l, histidine 79 (6.1) micromol/l, total amino acids 2839 (92.1) micromol/l); all results are means (SEM). By comparison, both groups B and C had decreased plasma glutamine (average 33%; p<0.001) with, especially in group B, decreased histidine, glucogenic, ketogenic, and branched chain amino acids (p<0.05 to p<0.001). None in group A, one in group B, but ten athletes in group C presented with infection: all 11 athletes had plasma glutamine levels of less than 450 micromol/l. No intergroup differences in haematological or other blood biochemical parameters, apart from a lower plasma creatine kinase activity in group C than in group B (p<0.05) and a low neutrophil to lymphocyte ratio in the athletes with viral infections (1.2 (0.17)), were found. (2) During post-Olympic light training, group A showed no significant amino acid changes. In contrast, group B recovered normal amino acid levels (glutamine 528 (41.4) micromol/l, histidine 76 (5.3) micromol/l, and total amino acids 2772 (165) micromol/l) (p<0.05 to p<0.001) to give a pattern comparable with that of group A, whereas, in group C, valine and threonine had increased (p<0.05), but glutamine (441 (24.5) micromol/l) and histidine (58 (5.3) micromol/l) remained low. Thus none in group A, two in group B, but ten (53%) in group C still had plasma glutamine levels below 450 micromol/l, including eight of the 11 athletes who had presented with infection. (3) With the additional protein intake, virtually all persisting low glutamine levels increased to above 500 micromol/l. Plasma glutamine rose to 592 (35.1) micromol/l and histidine to 86 (6.0) micromol/l. Total amino acids increased to 2761 (128) micromol/l (p<0.05 to p<0.001) and the amino acid pattern normalised. Six of the ten athletes on this protein intake returned to increased training within the three weeks. CONCLUSION: Analysis of these results provided contrasting plasma amino acid patterns: (a) a normal pattern in those without lasting fatigue; (b) marked but temporary changes in those with acute fatigue; (c) a persistent decrease in plasma amino acids, mainly glutamine, in those with chronic fatigue and infection, for which an inadequate protein intake appeared to be a factor. 

PMCID: PMC1756055  PMID: 9562160
24.  Biochemical evidence of myocardial fibrosis in veteran endurance athletes 
Studies on exercise‐induced left ventricular hypertrophy (LVH) in veteran athletes suggest the presence of abnormal diastolic filling and incomplete regression of LVH on cessation of exercise.
Myocardial fibrosis occurs in exercise induced LVH in veteran athletes.
To document non‐invasively the presence of fibrosis in veteran athletes
Prospective case–control study.
City centre district general hospital.
45 normotensive elite veteran athletes and 45 normal sedentary subjects.
Echocardiographic assessment was made of LV mass, LV systolic and LV diastolic function. Plasma carboxyterminal propeptide of collagen type I (PICP), carboxyterminal telopeptide of collagen type I (CITP) and tissue inhibitor of matrix metalloproteinase type I (TIMP‐1) were measured as markers of collagen synthesis, degradation and inhibition of degradation, respectively.
Veteran athletes had significant elevation in LV dimensions and calculated LV mass index (LVMI). Diastolic and systolic function was normal. Plasma PICP (259 vs 166 μg/l, p<0.001), CITP (5.4 vs 2.9 μg/l, p<0.001) and TIMP‐1 (350 vs 253 ng/ml, p = 0.01) were elevated in the cohort of athletes. There was a further elevation of TIMP‐1 in athletes with echocardiographic LVH, defined as an LVMI >130 g/m2 (417 vs 266 ng/ml, p = 0.02).
There is biochemical evidence of disruption of the collagen equilibrium favouring fibrosis in veteran athletes with LVH. This may suggest that fibrosis occurs as part of the hypertrophic process in veteran athletes.
PMCID: PMC2465358  PMID: 17311809
25.  Abnormal subendocardial function in restrictive left ventricular disease. 
British Heart Journal  1994;72(3):237-242.
OBJECTIVE--To study possible disturbances in left ventricular long axis function in patients with a restrictive filling pattern. DESIGN--Prospective examination of the left ventricular transverse and longitudinal axes, transmitral flow, and the apexcardiogram. SETTING--A tertiary referral centre for cardiac diseases. SUBJECTS--21 normal subjects, age (SD) 51(11); 30 patients of similar age with a restrictive left ventricular filling pattern, defined as short early diastolic deceleration time less than the lower 95% confidence limit of the normal value (120 ms). 20 patients had a normal and 10 had an increased left ventricular end diastolic cavity size. RESULTS--Mitral Doppler echocardiography: E wave velocity was high only in patients with a normal cavity size. A wave velocity was greatly reduced in the two groups (P < 0.001) so that the E/A ratio was abnormally high. The relative A wave amplitude on the apexcardiogram was greatly increased in the two groups: 46(15)% (mean (SD)) and 54(4)% v 15(5)%. Minor axis: Fractional shortening was reduced from 30(10)% to 17(7)% in patients with normal cavity size and to 13(4.2)% in those with a dilated cavity (P < 0.001), as was the posterior wall thickening fraction from 100(30)% to 42(20)% and 50(25)% respectively (P < 0.001). Total systolic epicardial motion was normal and isovolumic relaxation time was short in the two groups. Long axis: Left ventricular abnormalities included reduced total amplitude of motion and its component during atrial systole (P < 0.001 for the two groups at both sites). Peak long axis shortening and lengthening were decreased at both left ventricular sites (P < 0.001). The time intervals from q wave of the electrocardiogram and A2 (aortic valve closure) to the onset of shortening and lengthening respectively were increased (both P < 0.001). Right ventricular long axis function was similarly affected but to a lesser extent. CONCLUSION--Left ventricular long axis function is consistently abnormal in patients with restrictive disease whether or not cavity size is increased. Not only are the extent and peak velocity of shortening reduced, but during diastole the peak early diastolic lengthening rate and amplitude during atrial systole are impaired. Early diastolic long axis motion is asynchronous with respect to transmitral flow and left ventricular minor axis. These effects will impair the overall left ventricular systolic and diastolic function independently of any decrease in passive cavity compliance. Unlike fibrosis, these long axis abnormalities are potentially amenable to treatment.
PMCID: PMC1025508  PMID: 7946773

Results 1-25 (878646)