PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (812583)

Clipboard (0)
None

Related Articles

1.  Dehydroepiandrosterone and age-related cognitive decline 
Age  2009;32(1):61-67.
In humans the circulating concentrations of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) decrease markedly during aging, and have been implicated in age-associated cognitive decline. This has led to the hypothesis that DHEA supplementation during aging may improve memory. In rodents, a cognitive anti-aging effect of DHEA and DHEAS has been observed but it is unclear whether this effect is mediated indirectly through conversion of these steroids to estradiol. Moreover, despite the demonstration of correlations between endogenous DHEA concentrations and cognitive ability in certain human patient populations, such correlations have yet to be convincingly demonstrated during normal human aging. This review highlights important differences between rodents and primates in terms of their circulating DHEA and DHEAS concentrations, and suggests that age-related changes within the human DHEA metabolic pathway may contribute to the relative inefficacy of DHEA replacement therapies in humans. The review also highlights the value of using nonhuman primates as a pragmatic animal model for testing the therapeutic potential of DHEA for age-associate cognitive decline in humans.
doi:10.1007/s11357-009-9113-4
PMCID: PMC2829637  PMID: 19711196
Dehydroepiandrosterone; Cognitive decline; Intracrinology; Neurosteroidogenesis
2.  Dehydroepiandrosterone and age-related cognitive decline 
Age (Dordrecht, Netherlands)  2009;32(1):61-67.
In humans the circulating concentrations of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) decrease markedly during aging, and have been implicated in age-associated cognitive decline. This has led to the hypothesis that DHEA supplementation during aging may improve memory. In rodents, a cognitive anti-aging effect of DHEA and DHEAS has been observed but it is unclear whether this effect is mediated indirectly through conversion of these steroids to estradiol. Moreover, despite the demonstration of correlations between endogenous DHEA concentrations and cognitive ability in certain human patient populations, such correlations have yet to be convincingly demonstrated during normal human aging. This review highlights important differences between rodents and primates in terms of their circulating DHEA and DHEAS concentrations, and suggests that age-related changes within the human DHEA metabolic pathway may contribute to the relative inefficacy of DHEA replacement therapies in humans. The review also highlights the value of using nonhuman primates as a pragmatic animal model for testing the therapeutic potential of DHEA for age-associate cognitive decline in humans.
doi:10.1007/s11357-009-9113-4
PMCID: PMC2829637  PMID: 19711196
Dehydroepiandrosterone; Cognitive decline; Intracrinology; Neurosteroidogenesis
3.  Effect of dehydroepiandrosterone supplementation on bone mineral density, bone markers, and body composition in older adults 
Summary
We present results of a randomized, placebo-controlled trial to examine the effect of 50 mg daily oral DHEA supplementation for one year on bone mineral density (BMD), bone metabolism and body composition in 225 healthy adults aged 55 to 85 years.
Introduction
Dehydroepiandrosterone (DHEA) levels decline dramatically with age, concurrent with the onset of osteoporosis, suggesting a role for DHEA supplementation in preventing age-related bone loss.
Methods
We conducted a randomized, placebo-controlled trial to examine the effect of 50 mg daily oral DHEA supplementation for one year on bone mineral density (BMD), bone metabolism and body composition in 225 healthy adults aged 55 to 85 years.
Results
DHEA treatment increased serum DHEA and DHEA sulfate levels to concentrations seen in young adults. Testosterone, estradiol and insulin-like growth factor (IGF-1) levels increased in women (all p<0.001), but not men, receiving DHEA. Serum C-terminal telopeptide of type-1 collagen levels decreased in women (p=0.03), but not men, whereas bone-specific alkaline phosphatase levels were not significantly altered in either sex. After 12 months, there was a positive effect of DHEA on lumbar spine BMD in women (p=0.03), but no effect was observed for hip, femoral neck or total body BMD, and no significant changes were observed at any site among men. Body composition was not affected by DHEA treatment in either sex.
Conclusion
Among older healthy adults, daily administration of 50 mg of DHEA has a modest and selective beneficial effect on BMD and bone resorption in women, but provides no bone benefit for men.
doi:10.1007/s00198-007-0520-z
PMCID: PMC2435090  PMID: 18084691
Body composition; Bone metabolism; Bone mineral density (BMD); Dehydroepiandrosterone (DHEA) levels; Placebo-controlled trial; Testosterone
4.  Effects of 7-keto Dehydroepiandrosterone on Voluntary Ethanol Intake in Male Rats 
Alcohol (Fayetteville, N.Y.)  2010;45(4):349-354.
Administration of dehydroepiandrosterone (DHEA), a neurosteroid that can negatively modulate the GABAA receptor, has been shown to decrease voluntary intake of ethanol in rats. In vivo, DHEA can be metabolized to a variety of metabolites, including 7-keto DHEA, a metabolite without the prohormonal effects of DHEA. This study compared the effectiveness of 7-keto DHEA to DHEA for reducing ethanol intake in the same group of rats. The subjects, previously trained to drink ethanol using a saccharin-fading procedure, had access to ethanol for thirty minutes daily, and the amount consumed was recorded. Subjects were administered 10 and 56 mg/kg of DHEA or 7-keto DHEA intraperitoneally 15 minutes prior to drinking sessions. Subjects received each particular dose daily until one of two criteria was met; that is, either ethanol intake did not differ by more than 20% of the mean for three consecutive days, or for a maximum of eight days. Both 10 and 56 mg/kg of 7-keto DHEA significantly reduced the dose of ethanol consumed. While 10 mg/kg of 7-keto DHEA produced decreases similar to those found with DHEA, the 56-mg/kg dose of 7-keto DHEA was significantly more effective at decreasing the dose of ethanol consumed than the same dose of DHEA. These results show that 7-keto DHEA is comparable to, or possibly more effective than, DHEA at decreasing ethanol consumption in rats, and that 7-keto DHEA is a compound deserving further investigation as a possible clinical treatment for alcohol abuse without the prohormonal effects of DHEA.
doi:10.1016/j.alcohol.2010.08.020
PMCID: PMC3095668  PMID: 21051179
DHEA; 7-ketoDHEA; neurosteroid; GABAA receptor; ethanol intake; rats
5.  PAPSS2 Deficiency Causes Androgen Excess via Impaired DHEA Sulfation—In Vitro and in Vivo Studies in a Family Harboring Two Novel PAPSS2 Mutations 
Context:
PAPSS2 (PAPS synthase 2) provides the universal sulfate donor PAPS (3′-phospho-adenosine-5′-phosphosulfate) to all human sulfotransferases, including SULT2A1, responsible for sulfation of the crucial androgen precursor dehydroepiandrosterone (DHEA). Impaired DHEA sulfation is thought to increase the conversion of DHEA toward active androgens, a proposition supported by the previous report of a girl with inactivating PAPSS2 mutations who presented with low serum DHEA sulfate and androgen excess, clinically manifesting with premature pubarche and early-onset polycystic ovary syndrome.
Patients and Methods:
We investigated a family harboring two novel PAPSS2 mutations, including two compound heterozygous brothers presenting with disproportionate short stature, low serum DHEA sulfate, but normal serum androgens. Patients and parents underwent a DHEA challenge test comprising frequent blood sampling and urine collection before and after 100 mg DHEA orally, with subsequent analysis of DHEA sulfation and androgen metabolism by mass spectrometry. The functional impact of the mutations was investigated in silico and in vitro.
Results:
We identified a novel PAPSS2 frameshift mutation, c.1371del, p.W462Cfs*3, resulting in complete disruption, and a novel missense mutation, c.809G>A, p.G270D, causing partial disruption of DHEA sulfation. Both patients and their mother, who was heterozygous for p.W462Cfs*3, showed increased 5α-reductase activity at baseline and significantly increased production of active androgens after DHEA intake. The mother had a history of oligomenorrhea and chronic anovulation that required clomiphene for ovulation induction.
Conclusions:
We provide direct in vivo evidence for the significant functional impact of mutant PAPSS2 on DHEA sulfation and androgen activation. Heterozygosity for PAPSS2 mutations can be associated with a phenotype resembling polycystic ovary syndrome.
doi:10.1210/jc.2014-3556
PMCID: PMC4399300  PMID: 25594860
6.  Dehydroepiandrosterone Restoration of Growth Hormone Gene Expression in Aging Female Rats, in Vivo and in Vitro: Evidence for Actions via Estrogen Receptors 
Endocrinology  2005;146(12):5176-5187.
A decline in dehydroepiandrosterone (DHEA) and GH levels with aging may be associated with frailty and morbidity. Little is known about the direct effects of DHEA on somatotropes. We recently reported that 17β-estradiol (E2), a DHEA metabolite, stimulates the expression of GH in vitro in young female rats. To test the hypothesis that DHEA restores function in aging somatotropes, dispersed anterior pituitary (AP) cells from middle-aged (12–14 months) or young (3–4 months) female rats were cultured in vitro with or without DHEA or E2 and fixed for immunolabeling or in situ hybridization. E2 increased the percentage of AP cells with GH protein or mRNA in the aged rats to young levels. DHEA increased the percentages of somatotropes (detected by GH protein or mRNA) from 14–16 ± 2% to 29–31 ± 3% (P ≤0.05) and of GH mRNA (detected by quantitative RT-PCR) only in aging rats. To test DHEA’s in vivo effects, 18-month-old female rats were injected with DHEA or vehicle for 2.5 d, followed by a bolus of GHRH 1 h before death. DHEA treatment increased serum GH 1.8-fold (7 ± 0.5 to 12 ± 1.3 ng/ml; P = 0.02, by RIA) along with a similar increase (P = 0.02) in GH immunolabel. GHRH target cells also increased from 11 ± 1% to 19 ± 2% (P = 0.03). Neither GH nor GHRH receptor mRNAs levels were changed. To test the mechanisms behind DHEA’s actions, AP cells from aging rats were treated with DHEA with or without inhibitors of DHEA metabolism. Trilostane, aminogluthemide, or ICI 182,780 completely blocked the stimulatory effects of DHEA, suggesting that DHEA metabolites may stimulate aging somatotropes via estrogen receptors.
doi:10.1210/en.2005-0811
PMCID: PMC1868401  PMID: 16150906
AP, Anterior pituitary; DHEA, dehydroepiandrosterone; E2, 17β-estradiol; ER, estrogen receptor; GHRH R, GHRH receptor; HPRT, hypoxanthine guanine phosphoribosyltransferase; 3β-HSD, 3β-hydroxysteroid dehydrogenase; IOD, integrated optical density; ITS, insulin, transferrin, sodium selenite, and BSA; QRT-PCR, quantitative RT-PCR
7.  Inverse Associations Between Androgens and Renal Function: The Young Men Cardiovascular Association (YMCA) Study 
American journal of hypertension  2008;22(1):100-105.
BACKGROUND
Men exhibit higher risk of nondiabetic renal diseases than women. This male susceptibility to renal disease may be mediated by gender-specific factors such as sex hormones.
METHODS
We have undertaken a cross-sectional examination of associations between renal function (creatinine clearance estimated based on Cockcroft–Gault equation) and circulating levels of sex steroids (total testosterone, total estradiol, estrone, androstenedione, dehydroepiandrosterone sulfate (DHEA-S), and dihydrotestosterone) in 928 young (mean age: 18.5 ± 1.2 years) men.
RESULTS
Both androstenedione and DHEA-S showed inverse linear associations with renal function in the crude analysis of lean men (those with body mass index (BMI) less than median). However, only DHEA-S retained its association with renal function in lean subjects after adjustment—assuming no changes in other independent variables 1 s.d. increase in DHEA-S was associated with 13%-s.d. decrease in creatinine clearance (P = 0.004). Testosterone decreased across tertiles of creatinine clearance only in the crude analysis of nonlean (BMI greater than median) subjects (P < 0.001). The adjusted regression analysis that assumed no changes in other independent variables showed that 1 s.d. increase in total testosterone was associated with 11%-s.d. decrease in creatinine clearance of nonlean men (P = 0.006). Factor analysis confirmed an inverse association of renal function with both sex steroids and a different pattern of their loadings on glomerular filtration–related factors in lean (DHEA-S) and nonlean (testosterone) subjects.
CONCLUSIONS
Our data may suggest that androgens are inversely associated with estimated renal function in apparently healthy men without history of cardiovascular disease.
doi:10.1038/ajh.2008.307
PMCID: PMC2808108  PMID: 19096379
8.  Dehydroepiandrosterone sulfate (DHEAS) levels reflect endogenous LH production and response to human chorionic gonadotropin (hCG) challenge in the older female macaque (Macaca fascicularis) 
Menopause (New York, N.Y.)  2013;20(3):329-335.
Hypothesis
We propose that the adrenal gland of an older higher primate female animal model will respond to a human chorionic gonadotropic (hCG) hormone challenge by secreting additional dehydroepiandrosterone sulfate (DHEAS). Such a response in surgically and chemically-castrated animals will provide proof-of-concept and a validated animal model for future studies to explore the rise of DHEAS during the menopausal transition of women.
Methods
Twenty four 18–26 y/o female cynomolgus monkeys were screened for ovarian function then either ovariectomized (n=4) or treated with a gonadotropic releasing hormone agonist (GnRHa) (n=20) to block ovarian steroid production. Following a recovery period from surgery or down-regulation, a single dose challenge (1,000 IU; IM) of human chorionic gonadotropin (hCG) was then administered in order to determine if LH/CG could accelerate circulating DHEAS production. Serum DHEAS, bioactive LH and urinary metabolites of ovarian sex steroids were monitored before, during and following these treatments.
Results
Circulating LH bioactivity and immunoreactive DHEAS concentrations were suppressed in all animals 14 days post administration of GnRHa. Urinary metabolites of estradiol and progesterone remained low following surgery or the flare reaction to GnRHa. Circulating DHEAS levels were increased following hCG administration and the increase in individual animals was proportional to the pre-treatment DHEAS baseline. Circulating DHEAS concentrations were positively correlated to endogenous LH bioactive concentrations prior to, and were increased by hCG challenge while no concomitant change was observed in ovarian steroid hormone excretion.
Conclusion
These data demonstrate a positive adrenal androgen response to LH/CG in older female higher primates and suggests a mechanism for the rise in adrenal androgen production during the menopausal transition in women. These results also illustrate that the nonhuman primate animal model can be effectively used to investigate this phenomenon.
doi:10.1097/GME.0b013e3182698f80
PMCID: PMC3546135  PMID: 23435031
DHEAS; menopause; adrenal androgens; LH/hCG
9.  Association of Adrenal Function and Disease Severity in Community-Acquired Pneumonia 
PLoS ONE  2014;9(6):e99518.
Introduction
Rapid and accurate risk stratification in patients with community-acquired pneumonia (CAP) is an unmet clinical need. Cortisol to dehydroepiandrosterone (DHEA) ratio was put forward as a prognostic marker in sepsis. We herein validated the prognostic value of the adrenal hormones DHEA, DHEA-Sulfate (DHEAS), cortisol/DHEA-, cortisol/DHEAS- and DHEA/DHEAS – ratios in patients with CAP.
Methods
We assessed severity of illness using the pneumonia severity index (PSI) and measured adrenal hormone concentrations in 179 serum samples of prospectively recruited patients hospitalized with CAP. We calculated spearman rank correlation, logistic regression analysis and Kaplan Meier curves to study associations of adrenal hormones and outcomes.
Results
There was a significant correlation between PSI score and total cortisol (r = 0.24, p = 0.001), DHEAS (r = −0.23, p = 0.002), cortisol/DHEA (r = 0.23, p = 0.003), cortisol/DHEAS (r = 0.32, p = <0.0001) and DHEA/DHEAS (r = 0.20, p = 0.009). In age and gender adjusted logistic regression analysis, cortisol (OR: 2.8, 95% CI: 1.48–5.28) and DHEA (OR: 2.62, 95% CI: 1.28–5.34), but not DHEAS and the different ratios were associated with all-cause mortality. The discriminatory accuracy of cortisol and DHEA in ROC analysis (area under the curve) was 0.74 and 0.61. In Kaplan Meier analysis, patients in the highest deciles of cortisol and DHEA (p = 0.005 and p = 0.015), and to a lesser extent of cortisol/DHEAS ratio (p = 0.081) had a higher risk of death.
Conclusion
Cortisol, DHEAS and their ratios correlate with CAP severity, and cortisol and DHEA predict mortality. Adrenal function in severe pneumonia may be an important factor for CAP outcomes.
doi:10.1371/journal.pone.0099518
PMCID: PMC4049821  PMID: 24910975
10.  Dehydroepiandrosterone-induces miR-21 transcription in HepG2 cells through estrogen receptor β and androgen receptor 
Although oncomiR miR-21 is highly expressed in liver and overexpressed in hepatocellular carcinoma (HCC), its regulation is uncharacterized. We examined the effect of physiologically relevant nanomolar concentrations of dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEA-S) on miR-21 expression in HepG2 human hepatoma cells. 10 nM DHEA and DHEA-S increase pri-miR-21 transcription in HepG2 cells. Dietary DHEA increased miR-21 in vivo in mouse liver. siRNA and inhibitor studies suggest that DHEA-S requires desulfation for activity and that DHEA-induced pri-miR-21 transcription involves metabolism to androgen and estrogen receptor (AR and ER) ligands. Activation of ERβ and AR by DHEA metabolites androst-5-ene-3,17-dione (ADIONE), androst-5-ene-3β,17β-diol (ADIOL), dihydrotestosterone (DHT), and 5α-androstane-3β,17β-diol (3β-Adiol) increased miR-21 transcription. DHEA-induced miR-21 increased cell proliferation and decreased Pdcd4 protein, a bona fide miR-21. Estradiol (E2) inhibited miR-21 expression via ERα. DHEA increased ERβ and AR recruitment to the miR-21 promoter within the VMP1/TMEM49 gene, with possible significance in hepatocellular carcinoma.
doi:10.1016/j.mce.2014.05.007
PMCID: PMC4074919  PMID: 24845419
microRNA; DHEA; HepG2 cells; estrogen receptor; androgen receptor
11.  Ample Evidence: Dehydroepiandrosterone (DHEA) Conversion into Activated Steroid Hormones Occurs in Adrenal and Ovary in Female Rat 
PLoS ONE  2015;10(5):e0124511.
Dehydroepiandrosterone (DHEA) is important for human health, especially for women. All estrogens and practically half of androgens are synthesized from DHEA in peripheral tissues. However, the mechanism and exact target tissues of DHEA biotransformation in the female are not fully clear. The present study showed that maximal content of androstenedione (AD) and testosterone (T) were observed at 3h after DHEA administration in female rats, which was 264% and 8000% above the control, respectively. Estradiol (E2) content significantly increased at 6h after DHEA administration, which was 113% higher than that in control group. Gavage with DHEA could significantly reduce 3β-hydroxysteroid dehydrogenase (3β-HSD) mRNA level at 3-12h and 17β-hydroxysteroid dehydrogenase (17β-HSD) mRNA level at 12h in ovary, while increasing aromatase mRNA levels at 6, 24, and 48h. It is interesting that administration of DHEA caused a significant increase of 17β-HSD, 3β-HSD and aromatase mRNA levels in adrenal. The AD and T contents also markedly increased by 537% and 2737% after DHEA administration in ovariectomised rats, in company with a significant increase in 17β-HSD and 3β-HSD mRNA levels and decreased aromatase mRNA level in adrenal. However, DHEA administration did not restore the decreased E2, estrone (E1), and progesterone (P) caused by the removal of the ovaries in females. These results clearly illustrated that exogenous DHEA is preferentially converted into androgens in adrenal, while its conversion to estrogens mainly happens in the ovary through steroidogenic enzyme in female rats.
doi:10.1371/journal.pone.0124511
PMCID: PMC4427309  PMID: 25962158
12.  In rats, oral oleoyl-DHEA is rapidly hydrolysed and converted to DHEA-sulphate 
BMC Pharmacology  2007;7:4.
Background
Dehydroepiandrosterone (DHEA) released by adrenal glands may be converted to androgens and estrogens mainly in the gonadal, adipose, mammary, hepatic and nervous tissue. DHEA is also a key neurosteroid and has antiglucocorticoid activity. DHEA has been used for the treatment of a number of diseases, including obesity; its pharmacological effects depend on large oral doses, which effect rapidly wanes in part because of its short half-life in plasma. Since steroid hormone esters circulate for longer periods, we have studied here whether the administration of DHEA oleoyl ester may extend its pharmacologic availability by keeping high circulating levels.
Results
Tritium-labelled oleoyl-DHEA was given to Wistar male and female rats by gastric tube. The kinetics of appearance of the label in plasma was unrelated to sex; the pattern being largely coincident with the levels of DHEA-sulfate only in females, and after 2 h undistinguishable from the results obtained using labelled DHEA gavages; in the short term, practically no lipophilic DHEA label was found in plasma. After 24 h only a small fraction of the label remained in the rat organs, with a different sex-related distribution pattern coincident for oleoyl- and free- DHEA gavages. The rapid conversion of oleoyl-DHEA into circulating DHEA-sulfate was investigated using stomach, liver and intestine homogenates; which hydrolysed oleoyl-DHEA optimally near pH 8. Duodenum and ileum contained the highest esterase activities. Pure hog pancreas cholesterol-esterase broke down oleoyl-DHEA at rates similar to those of oleoyl-cholesterol. The intestinal and liver esterases were differently activated by taurocholate and showed different pH-activity patterns than cholesterol esterase, suggesting that oleoyl-DHEA can be hydrolysed by a number of esterases in the lumen (e.g. cholesterol-esterase), in the intestinal wall and the liver.
Conclusion
The esterase activities found may condition the pharmacological availability (and depot effect) of orally administered steroid hormone fatty acid esters such as oleoyl-DHEA. The oral administration of oleoyl-DHEA in order to extend DHEA plasma availability has not been proved effective, since the ester is rapidly hydrolysed, probably in the intestine itself, and mainly converted to DHEA-sulfate at least in females.
doi:10.1186/1471-2210-7-4
PMCID: PMC1831771  PMID: 17346356
13.  Dehydroepiandrosterone exerts antiglucocorticoid action on human preadipocyte proliferation, differentiation, and glucose uptake 
Glucocorticoids increase adipocyte proliferation and differentiation, a process underpinned by the local reactivation of inactive cortisone to active cortisol within adipocytes catalyzed by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1). The adrenal sex steroid precursor dehydroepiandrosterone (DHEA) has been shown to inhibit 11β-HSD1 in murine adipocytes; however, rodent adrenals do not produce DHEA physiologically. Here, we aimed to determine the effects and underlying mechanisms of the potential antiglucocorticoid action of DHEA and its sulfate ester DHEAS in human preadipocytes. Utilizing a human subcutaneous preadipocyte cell line, Chub-S7, we examined the metabolism and effects of DHEA in human adipocytes, including adipocyte proliferation, differentiation, 11β-HSD1 expression, and activity and glucose uptake. DHEA, but not DHEAS, significantly inhibited preadipocyte proliferation via cell cycle arrest in the G1 phase independent of sex steroid and glucocorticoid receptor activation. 11β-HSD1 oxoreductase activity in differentiated adipocytes was inhibited by DHEA. DHEA coincubated with cortisone significantly inhibited preadipocyte differentiation, which was assessed by the expression of markers of early (LPL) and terminal (G3PDH) adipocyte differentiation. Coincubation with cortisol, negating the requirement for 11β-HSD1 oxoreductase activity, diminished the inhibitory effect of DHEA. Further consistent with glucocorticoid-opposing effects of DHEA, insulin-independent glucose uptake was significantly enhanced by DHEA treatment. DHEA increases basal glucose uptake and inhibits human preadipocyte proliferation and differentiation, thereby exerting an antiglucocorticoid action. DHEA inhibition of the amplification of glucocorticoid action mediated by 11β-HSD1 contributes to the inhibitory effect of DHEA on human preadipocyte differentiation.
doi:10.1152/ajpendo.00314.2012
PMCID: PMC3840204  PMID: 24022868
dehydroepiandrosterone; human adipogenesis; 11β-hydroxysteroid dehydrogenase type 1; insulin sensitivity
14.  Usefulness of Alternate Prognostic Serum and Plasma Markers for Antiretroviral Therapy for Human Immunodeficiency Virus Type 1 Infection▿  
In developing countries, the usability of peripheral blood constituents that are low-cost alternatives to CD4-positive (CD4+) T-cell and human immunodeficiency virus type 1 (HIV-1) RNA estimation should be evaluated as prognostic markers. The aim of our study was to investigate the use of plasma levels of dehydroepiandrosterone sulfate (DHEAS), albumin, and C-reactive protein (CRP) as alternate prognostic markers for antiretroviral treatment (ART) response in place of HIV-1 load measurements. Paired blood samples were collected from 30 HIV-infected individuals before and after initiation of ART, 13 HIV-infected individuals before and after completion of antituberculosis therapy (ATT), and 10 HIV-infected individuals not on either ATT or ART. Because of the nonavailability of samples, the CRP estimation was done for samples from only 19, 9, and 8 individuals in groups 1, 2, and 3, respectively. The measurements of all three markers, i.e., DHEAS, albumin, and CRP, were carried out with commercial assays. The differences in the albumin levels before and after ART or ATT were significant (P < 0.05), while the differences in DHEAS and CRP levels were not significant (P > 0.05). When levels of DHEAS among the individuals who were followed up were analyzed, 13 (44.8%) in the ART group and 9 (69%) in the ATT group showed an increase following treatment. Prior to treatment of HIV-infected individuals, there was a significant positive correlation of CD4+ T-cell counts and a negative correlation of viral load with albumin and DHEAS levels (P < 0.01). Among the three plasma markers we tested, plasma albumin and, to some extent, DHEAS show promise as prognostic markers in monitoring HIV infection.
doi:10.1128/CVI.00193-07
PMCID: PMC2223864  PMID: 18003813
15.  DHEA metabolites activate estrogen receptors alpha and beta 
Steroids  2012;78(1):15-25.
Dehydroepiandrosterone (DHEA) levels were reported to associate with increased breast cancer risk in postmenopausal women, but some carcinogen-induced rat mammary tumor studies question this claim. The purpose of this study was to determine how DHEA and its metabolites affect estrogen receptors α or β (ERα or ERβ) -regulated gene transcription and cell proliferation. In transiently transfected HEK-293 cells, androstenediol, DHEA, and DHEA-S activated ERα. In ERβ transfected HepG2 cells, androstenedione, DHEA, androstenediol, and 7-oxo DHEA stimulated reporter activity. ER antagonists ICI 182,780 (fulvestrant) and 4-hydroxytamoxifen, general P450 inhibitor miconazole, and aromatase inhibitor exemestane inhibited activation by DHEA or metabolites in transfected cells. ERβ-selective antagonist R,R-THC (R,R-cis-diethyl tetrahydrochrysene) inhibited DHEA and DHEA metabolite transcriptional activity in ERβ-transfected cells. Expression of endogenous estrogen-regulated genes: pS2, progesterone receptor, cathepsin D1, and nuclear respiratory factor-1 was increased by DHEA and its metabolites in an ER-subtype, gene, and cell-specific manner. DHEA metabolites, but not DHEA, competed with 17β-estradiol for ERα and ERβ binding and stimulated MCF-7 cell proliferation, demonstrating that DHEA metabolites interact directly with ERα and ERβ in vitro, modulating estrogen target genes in vivo.
doi:10.1016/j.steroids.2012.10.002
PMCID: PMC3529809  PMID: 23123738
estrogen receptors; DHEA; androstendione; androstendiol; transcription
16.  Cortisol and DHEA-S are associated with startle potentiation during aversive conditioning in humans 
Psychopharmacology  2005;186(3):434-441.
Rationale
Fear conditioning reliably increases the startle reflex and stress hormones, yet very little is known about the effect of stress hormones on fear-potentiated startle. Cortisol and the sulfate ester of dehydroepiandrosterone (DHEA-S) are involved in stress and anxiety. Evidence suggests that low cortisol/DHEA-S ratio has a buffering effect on stress and anxiety in preclinical and clinical studies, suggesting that there may be a relationship between fear-potentiated startle and cortisol and DHEA-S activity.
Objective
The aim of the study was to examine whether there is a relationship between cortisol/DHEA-S ratio and fear-potentiated startle.
Methods
Thirty healthy subjects participated in a differential aversive conditioning experiment during which one of two stimuli (CS+) was paired with a shock, and the other was not (CS-). Conditioned responses were assessed with the startle reflex, defined as startle potentiation during CS+ compared to CS-. DHEA-S and cortisol levels were assayed from blood samples collected in both a baseline and an aversive conditioning session. Subjective state anxiety, arousal, and valence were assessed at various times during testing.
Results
Fear-potentiated startle was larger in individuals with high compared to low cortisol/DHEA-S ratio. Multiple regression analyses revealed that fear-potentiated startle was positively associated with cortisol and negatively associated with DHEA-S. There was no significant correlation between DHEA-S and cortisol levels.
Conclusion
These data suggest that cortisol and DHEA-S are involved in fear conditioning.
doi:10.1007/s00213-005-0124-2
PMCID: PMC2702204  PMID: 16052364
Fear conditioning; Fear-potentiated startle; Cortisol; DHEA-S; Stress; HPA
17.  Cardiovascular Disease Is Associated with Greater Incident Dehydroepiandrosterone Sulfate Decline in the Oldest Old: The Cardiovascular Health Study All Stars Study 
OBJECTIVES
To describe cross-sectional and longitudinal associations with dehydroepiandrosterone sulfate (DHEAS) and change in DHEAS with age.
DESIGN
Longitudinal cohort study.
SETTING
Pittsburgh, Pennsylvania.
PARTICIPANTS
Cardiovascular Health Study All Stars study participants assessed in 2005/06 (N =989, mean age 85.2, 63.5% women, 16.5% African American).
MEASUREMENTS
Health characteristics were assessed in 2005/06 according to DHEAS level, mean DHEAS and DHEAS change across age categories were tested, and linear and logistic regression was used to identify factors present in 1996/97 associated with continuous and categorical DHEAS change.
RESULTS
Mean ± standard deviation DHEAS was 0.555 ± 0.414 μg/mL in 1996/97 and 0.482 ± 0.449 μg/mL in 2005/06 for women and 0.845 ± 0.520 μg/mL in 1996/97 and 0.658 ± 0.516 μg/mL in 2005/06 for men. In 2005/06, DHEAS was lower in women and subjects with cardiovascular disease (CVD) and chronic pulmonary disease and higher for African Americans and subjects with hypertension and high cholesterol. Mean DHEAS change was greater in men (− 0.200 μg/mL) than in women (− 0.078 μg/mL) (P<.001). Each 1-year increase in age attenuated the effect of male sex by 0.01 μg/mL (P =.009), abolishing the sex difference in DHEAS change by age 79. Presence of CVD before the study period was associated with greater absolute DHEAS change (β = − 0.04 μg/mL, P =.04) and with the fourth quartile of DHEAS change versus the first to third quartiles (odds ratio =1.46, 95% confidence interval =1.03–2.05).
CONCLUSION
DHEAS change continues into very old age, is not homogenous, is affected by sex, and is associated with prevalent CVD. Future studies should investigate factors that might accelerate DHEAS decline.
doi:10.1111/j.1532-5415.2010.02724.x
PMCID: PMC2880808  PMID: 20163485
dehydroepiandrosterone sulfate; cardiovascular disease; gender; aging
18.  Dehydroepiandrosterone in systemic lupus erythematosus 
Current rheumatology reports  2008;10(4):286-291.
Dehydroepiandrosterone (DHEA) is a weak androgen that exerts pleomorphic effects on the immune system. The hormone has no known receptor, and consequently, the mechanism of action of DHEA on immunocompetent cells remains poorly understood. Interestingly, serum levels of DHEA are decreased in patients with inflammatory disease including lupus, and these levels seem to inversely correlate with disease activity. Following encouraging studies demonstrating beneficial effects of DHEA supplementation in murine lupus models, a number of clinical studies have tested the effect of DHEA administration in lupus patients. DHEA treatment could improve patient’s overall quality of life assessment measures and glucocorticoid requirements in some lupus patients with mild to moderate disease, however, the effect of DHEA on disease activity in lupus patients remains controversial. Long term safety assessment studies are required in light of the reported effect of DHEA supplementation in lowering HDL cholesterol in lupus patients.
PMCID: PMC2701249  PMID: 18662508
19.  DHEA replacement in hypoadrenal women - investigation on protein anabolism and skeletal muscle function 
Mayo Clinic proceedings. Mayo Clinic  2008;83(11):1218-1225.
Objective
To determine whether dehydroepiandrosterone replacement in hypoadrenal women improves performance, muscle protein accretion and mitochondrial functions.
Participants and methods
Thirty-three hypoadrenal women were enrolled between 1st May 2002 and 31st May 2003. 28 completed a 12 week prospective randomized, placebo-controlled, crossover study with either daily placebo or 50 mg DHEA with a 2-week of washout, and then crossed over to the other treatment. Body composition, physical performance, whole body and muscle protein metabolism and mitochondrial functions were determined.
Results
DHEA administration significantly increased plasma levels of DHEA-S, testosterone and androstenedione but did not change body composition, muscle strength, peak aerobic capacity, and whole body protein turnover or synthesis rates of mitochondrial, sarcoplasmic or mixed muscle proteins. Muscle mitochondrial oxidative enzymes and mRNA levels of genes encoding mitochondrial proteins and nuclear transcription factors did not change following DHEA administration. However, mRNA levels of muscle myosin heavy chain isoform 1 (MHC I) (P<0.005) which determines muscle fiber type as well as those of IGF Binding Proteins 4 and 5 significantly decreased (P<0.04 respectively).
Conclusion
Three months of DHEA increased DHEA-S and androgen levels but had no impact on physical performance, body composition, protein metabolism or on muscle mitochondrial biogenesis in hypoadrenal women. However, lowering of mRNA levels of binding proteins of IGF 1 and MHC I suggest potential effects of DHEA on muscle fibre type on long term treatment.
PMCID: PMC2753533  PMID: 18990320
Dehydroepiandrosterone; hypoadrenal; muscle strength
20.  Dehydroepiandrosterone (DHEA) Inhibition of Monocyte Binding by Vascular Endothelium Is Associated With Sialylation of Neural Cell Adhesion Molecule 
Reproductive Sciences  2012;19(1):86-91.
Rationale: Adhesion of monocytes to vascular endothelium is necessary for atheroma formation. This adhesion requires binding of endothelial neural cell adhesion molecule (NCAM) to monocyte NCAM. NCAM:NCAM binding is blocked by sialylation of NCAM (polysialylated NCAM; PSA-NCAM). Since estradiol (E2) and dihydrotestosterone (DHT) induced PSA-NCAM and decreased monocyte adhesion, in consideration of possible clinical applications we tested whether their prohormone dehydroepiandrosterone (DHEA) has similar effects. Experimental: (1) DHEA was administered to cultured human coronary artery endothelial cells (HCAECs) from men and women. Monocyte binding was assessed using fluorescence-labeled monocytes. (2) HCEACs were incubated with E2, DHT, DHEA alone, or with trilostane, fulvestrant or flutamide. Expression of PSA-NCAM was assessed by immunohistochemistry and Western blotting. Results: Dehydroepiandrosterone inhibited monocyte adhesion to HCAECs by ≥50% (P < .01). Fulvestrant or flutamide blockade of DHEA’s inhibition of monocyte binding appeared to be gender dependent. The DHEA-induced expression of PSA-NCAM was completely blocked by trilostane. Conclusions: In these preliminary in vitro studies, DHEA increased PSA-NCAM expression and inhibited monocyte binding in an estrogen- and androgen receptor-dependent manner. Dehydroepiandrosteroneappears to act via its end metabolites, E2 and DHT. Dehydroepiandrosterone could furnish clinical prevention against atherogenesis and arteriosclerosis.
doi:10.1177/1933719111414210
PMCID: PMC3343126  PMID: 22228741
atherosclerosis; heart disease; coronary; estrogen; androgen; adhesion; NCAM; PSA-NCAM
21.  Modulation of Higher Primate Adrenal Androgen Secretion with Estradiol or Estradiol and Progesterone Intervention 
Menopause (New York, N.Y.)  2013;20(3):10.1097/GME.0b013e318273a070.
Background
Circulating adrenal steroids rise during the menopausal transition (MT) in most mid-aged women and may contribute to differences in between-woman symptoms as well as ultimate health outcomes. However, the mechanism(s) for this shift in adrenal steroid production in mid-aged women is not known.
Objective
To determine if hormone replacement therapy (HT) for one year can modulate adrenal androgen production.
Method
Younger (9.8 +/− 0.4 y/o, n=20) and older (22.7+/−0.4 y/o, n=37) female laboratory macaques were ovariectomized (OVX), and then each group was treated with different regimens of HT for up to one year. Changes in adrenal histology and circulating adrenal androgens were monitored following estradiol treatment alone (E) or estrogen plus progesterone (E+P), and these changes were compare to the same measures in similar aged animals given vehicle (V).
Results
Zona reticularis (ZR) area and serum dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS) were higher in younger compared to older V-treated animals (P< 0.02). Both E and E+P treatments decreased circulating DHEAS in the younger group (P<0.05). While E also decreased DHEAS in the older group, this was not statistically significant. In contrast, E+P treatment in the older group resulted in a rise in DHEAS over V, which was significantly higher than the results of E alone (p< 0.01). Circulating concentrations of DHEA exhibited similar trends but these changes did not reach statistical significance.
Conclusion
These data demonstrate that intervention with ovarian steroids can modulate adrenal androgen production in female higher primates and that both animal age and type of HT regimen determines the adrenal response.
doi:10.1097/GME.0b013e318273a070
PMCID: PMC3610787  PMID: 23435030
Adrenal; Steroids; Hormone Therapy; Replacement
22.  Concurrent Change in Dehydroepiandrosterone Sulfate and Functional Performance in the Oldest Old: Results From the Cardiovascular Health Study All Stars Study 
Introduction.
The correlation between dehydroepiandrosterone sulfate (DHEAS) decline and age led to the hypothesis that DHEAS might be a marker of primary aging, though conflicting data from observational studies of mortality do not support this. We evaluated concurrent DHEAS and functional decline in a very old cohort to test if DHEAS change tracks with functional change during aging.
Methods.
DHEAS and functional performance (gait speed, grip strength, Modified Mini-Mental State Examination [3MSE] score, and digit symbol substitution test [DSST] score) were measured in 1996–1997 and 2005–2006 in 989 participants in the Cardiovascular Health Study All Stars study (mean age 85.2 years in 2005–2006, 63.5% women and 16.5% African American). We used multivariable linear regression to test the association of DHEAS decline with functional decline.
Results.
After adjustment, each standard deviation decrease in DHEAS was associated with greater declines in gait speed (0.12 m/s, p = .01), grip strength (0.09 kg, p = .03), 3MSE score (0.13 points, p < .001), and DSST score (0.14 points, p = .001) in women only. Additional adjustment for baseline DHEAS attenuated the association with grip strength but did not alter other estimates appreciably, and baseline DHEAS was unassociated with functional decline.
Conclusions.
In this cohort of very old individuals, DHEAS decline tracked with declines in gait speed, 3MSE score, and DSST score, but not grip strength, in women independent of baseline DHEAS level. DHEAS decline might be a marker for age-associated performance decline, but its relevance is specific to women.
doi:10.1093/gerona/glq072
PMCID: PMC2920580  PMID: 20466773
Aging; Biomarker; Dehydroepiandrosterone sulfate; Function
23.  Androstenediol Complements Estrogenic Bioactivity during the Menopausal Transition 
Menopause (New York, N.y.)  2012;19(6):650-657.
Objective
The perimenopausal increase in circulating dehydroepiandrosterone sulfate (DHEAS) levels during the menopausal transition (MT) is accompanied by other adrenal steroids that have the potential to alter the estrogen/androgen balance and explain the wide inter-woman range of estrogen-related symptoms experienced during the MT.
Methods
Annual serum samples from the Study of Women’s Health Across the Nation (SWAN), which had previously been analyzed for immunoreactive estradiol (E2), testosterone (T), DHEAS and sex hormone binding globulin (SHBG), were selected based on DHEAS concentration and analyzed for immunoreactive and bioactive estrogens and androgens, including immunoreactive androstenedione (Adione), dehydroepiandrosterone (DHEA) and 5-androstene-3β,17β-diol (androstenediol, Adiol).
Results
A two-fold increase in circulating Adione and T was found to rise in parallel with the rise in circulating DHEAS, while DHEA and Adiol concentrations rose seven to eightfold. Circulating Adiol, which has both androgenic and estrogenic biological activity, was significantly associated (p<0.02) with circulating estrogen bioactivity only when E2 concentrations were low and Adiol levels were high.
Conclusions
The wide range of circulating levels of Adiol and its contribution to total circulating estrogenicity during the MT is consistent with the observed inter-woman difference in symptoms at this time. Therefore, we conclude that Adiol contributes to circulating estrogenicity when E2 production falls at menopause and may contribute significantly to the endocrine changes experienced by midlife women.
doi:10.1097/gme.0b013e31823df577
PMCID: PMC3366061  PMID: 22415563
Androstenediol; estrogenicity; menopause; adrenal
24.  Perimenopausal regulation of steroidogenesis in the nonhuman primate 
Neurobiology of Aging  2011;33(7):1487.e1-1487.e13.
Human aging is characterized by a marked decrease in circulating levels of dehydroepiandrosterone and dehydroepiandrosterone sulfate (DHEAS), hormonal changes associated with cognitive decline. Despite beneficial effects of DHEA supplementation in rodents, studies in elderly humans have generally failed to show cognitive improvement after treatment. In the present study we evaluate the effects of age and estradiol supplementation on expression of genes involved in the de novo synthesis of DHEA and its conversion to estradiol in the rhesus macaque hippocampus. Using RT-PCR we demonstrate the expression of genes associated with this synthesis in several areas of the rhesus brain. Furthermore, real-time PCR reveals an age-related attenuation of hippocampal expression level of the genes CYP17A1, STS, and 3BHSD1/2. Additionally, short-term administration of estradiol is associated with decreased expression of CYP17A1, STS, SULT2B1, and AROMATASE, consistent with a downregulation not only of estrogen synthesis from circulating DHEA, but also of de novo DHEA synthesis within the hippocampus. These findings suggest a decline in neurosteroidogenesis may account for the inefficacy of DHEA supplementation in elderly humans, and that central steroidogenesis may be a function of circulating hormones and menopausal status.
doi:10.1016/j.neurobiolaging.2011.05.004
PMCID: PMC3196783  PMID: 21683476
Aging; Dehydroepiandrosterone; Hormone replacement; Menopause; Neurosteroidogenesis
25.  TGFβ1 alters androgenic metabolites and hydroxysteroid dehydrogenase enzyme expression in human prostate reactive stromal primary cells: Is steroid metabolism altered by prostate reactive stromal microenvironment? 
The Journal of steroid biochemistry and molecular biology  2013;138:10.1016/j.jsbmb.2013.05.016.
The inflammatory tissue microenvironment can be an active promoter in preneoplastic cancer lesions. Altered steroid hormone metabolism as induced by the inflammatory microenvironment may contribute to epithelial cancer progression. Dehydroepiandrosterone sulfate (DHEAS) is the most abundant endogenous steroid hormone present in human serum and can be metabolized to DHEA, androgens and/or estrogens in peripheral tissues. We have previously reported that TGFβ1-induced reactive prostate stromal cells increase DHEA metabolism to active androgens and alter prostate cancer cell gene expression. While much of the focus on mechanisms of prostate cancer and steroid metabolism is in the epithelial cancer cells, this study focuses on TGFβ1-induced effects on DHEA metabolic pathways and enzymes in human prostate stromal cells. In DHEA-treated primary prostate stromal cells, TGFβ1 produced time- and dose-dependent increases in metabolism of DHEA to androstenedione and testosterone. Also TGFβ1-treated prostate stromal cells exhibited changes in the gene expression of enzymes involved in steroid metabolism including up-regulation of 3β hydroxysteroid dehydrogenase (HSD), and down-regulation of 17βHSD5, and 17βHSD2. These studies suggest that reactive prostate stroma and the inflammatory microenvironment may contribute to altered steroid metabolism and increased intratumoral androgens.
doi:10.1016/j.jsbmb.2013.05.016
PMCID: PMC3839662  PMID: 23770322
TGFβ1; Reactive prostate stroma; Androstenedione; Testosterone; DHEA; Steroid metabolism

Results 1-25 (812583)