PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (88291)

Clipboard (0)
None

Related Articles

1.  Patellofemoral pain syndrome (PFPS): a systematic review of anatomy and potential risk factors 
Background
Patellofemoral Pain Syndrome (PFPS), a common cause of anterior knee pain, is successfully treated in over 2/3 of patients through rehabilitation protocols designed to reduce pain and return function to the individual. Applying preventive medicine strategies, the majority of cases of PFPS may be avoided if a pre-diagnosis can be made by clinician or certified athletic trainer testing the current researched potential risk factors during a Preparticipation Screening Evaluation (PPSE). We provide a detailed and comprehensive review of the soft tissue, arterial system, and innervation to the patellofemoral joint in order to supply the clinician with the knowledge required to assess the anatomy and make recommendations to patients identified as potentially at risk. The purpose of this article is to review knee anatomy and the literature regarding potential risk factors associated with patellofemoral pain syndrome and prehabilitation strategies. A comprehensive review of knee anatomy will present the relationships of arterial collateralization, innervations, and soft tissue alignment to the possible multifactoral mechanism involved in PFPS, while attempting to advocate future use of different treatments aimed at non-soft tissue causes of PFPS.
Methods
A systematic database search of English language PubMed, SportDiscus, Ovid MEDLINE, Web of Science, LexisNexis, and EBM reviews, plus hand searching the reference lists of these retrieved articles was performed to determine possible risk factors for patellofemoral pain syndrome.
Results
Positive potential risk factors identified included: weakness in functional testing; gastrocnemius, hamstring, quadriceps or iliotibial band tightness; generalized ligamentous laxity; deficient hamstring or quadriceps strength; hip musculature weakness; an excessive quadriceps (Q) angle; patellar compression or tilting; and an abnormal VMO/VL reflex timing. An evidence-based medicine model was utilized to report evaluation criteria to determine the at-risk individuals, then a defined prehabilitation program was proposed that begins with a dynamic warm-up followed by stretches, power and multi-joint exercises, and culminates with isolation exercises. The prehabilitation program is performed at lower intensity level ranges and can be conducted 3 days per week in conjunction with general strength training. Based on an objective one repetition maximum (1RM) test which determines the amount an individual can lift in good form through a full range of motion, prehabilitation exercises are performed at 50–60% intensity.
Conclusion
To reduce the likelihood of developing PFPS, any individual, especially those with positive potential risk factors, can perform the proposed prehabilitation program.
doi:10.1186/1476-5918-7-9
PMCID: PMC2443365  PMID: 18582383
2.  Cellulite and extracorporeal Shockwave therapy (CelluShock-2009) - a Randomized Trial 
BMC Women's Health  2010;10:29.
Background
Cellulite is a widespread problem involving females' buttocks and thighs based on the female specific anatomy. Given the higher number of fat cells stored in female fatty tissue in contrast to males, and the aging process of connective tissue leads to an imbalance between lipogenesis and lipolysis with subsequent large fat cells bulging the skin. In addition, microcirculatory changes have been suggested, however remain largely unknown in a controlled clinical setting. We hypothesize that the combination of extracorporeal shockwave and a daily gluteal muscle strength program is superior to the gluteal muscle strength program alone in cellulite.
Methods/Design
Study design: Randomized-controlled trial. IRB approval was granted at Hannover Medical School, Germany on May 22, 2009. For allocation of participants, a 1:1 ratio randomization was performed using opaque envelopes for the concealment of allocation. Reporting: according to CONSORT 2010. Eligible patients were females aged 18 or over and 65 or younger with cellulite with documented cellulite 1°-4° according to the Nürnberger score. Exclusion criteria were suspected or evident pregnancy, no cellulite, no informed consent or age under 18 years or above 65 years. Patients were recruited by advertisements in local regional newspapers and via the Internet. Analysis: Intention-to-treat. Outcome parameters: a) Photonumeric severity scale, b) Nürnberger Score, c) circumference measurements, d) capillary blood flow, e) tissue oxygen saturation, f) postcapillary venous blood flow. Intervention group: Six sessions of extracorporeal focused shock wave for six sessions (2000 impulses, 0,25 mJ/m2 every 1-2 weeks) at both gluteal and thigh regions plus a specific gluteal strength exercise training. Control group: Six sessions of sham extracorporeal focused shock wave for six sessions (2000 impulses, 0,01 mJ/m2 every 1-2 weeks) at both gluteal and thigh regions plus a specific gluteal strength exercise training. Follow-up: 12 weeks. Blinding was achieved for all participants enrolled in the trial, the photograph taking the digital images for the primary outcome measure, the two assessors of the outcome measures, all additional health care providers and for the analyst from the biometrical department. Only one researcher (BJ) was aware of the group assignment performing the randomisation and the extracorporeal shock wave therapy.
Discussion
This randomised-controlled trial will provide much needed evidence on the clinical effectiveness of focused extracorporal shock wave therapy as an adjunct to gluteal strength training in females suffering cellulite.
ClinicalTrials.gov identifier
NCT00947414
doi:10.1186/1472-6874-10-29
PMCID: PMC2987889  PMID: 20977764
3.  Dose–Response Relationships of Resistance Training in Healthy Old Adults: A Systematic Review and Meta-Analysis 
Sports Medicine (Auckland, N.z.)  2015;45(12):1693-1720.
Background
Resistance training (RT) is an intervention frequently used to improve muscle strength and morphology in old age. However, evidence-based, dose–response relationships regarding specific RT variables (e.g., training period, frequency, intensity, volume) are unclear in healthy old adults.
Objectives
The aims of this systematic review and meta-analysis were to determine the general effects of RT on measures of muscle strength and morphology and to provide dose–response relationships of RT variables through an analysis of randomized controlled trials (RCTs) that could improve muscle strength and morphology in healthy old adults.
Data Sources
A computerized, systematic literature search was performed in the electronic databases PubMed, Web of Science, and The Cochrane Library from January 1984 up to June 2015 to identify all RCTs related to RT in healthy old adults.
Study Eligibility Criteria
The initial search identified 506 studies, with a final yield of 25 studies. Only RCTs that examined the effects of RT in adults with a mean age of 65 and older were included. The 25 studies quantified at least one measure of muscle strength or morphology and sufficiently described training variables (e.g., training period, frequency, volume, intensity).
Study Appraisal and Synthesis Methods
We quantified the overall effects of RT on measures of muscle strength and morphology by computing weighted between-subject standardized mean differences (SMDbs) between intervention and control groups. We analyzed the data for the main outcomes of one-repetition maximum (1RM), maximum voluntary contraction under isometric conditions (MVC), and muscle morphology (i.e., cross-sectional area or volume or thickness of muscles) and assessed the methodological study quality by Physiotherapy Evidence Database (PEDro) scale. Heterogeneity between studies was assessed using I2 and χ2 statistics. A random effects meta-regression was calculated to explain the influence of key training variables on the effectiveness of RT in terms of muscle strength and morphology. For meta-regression, training variables were divided into the following subcategories: volume, intensity, and rest. In addition to meta-regression, dose–response relationships were calculated independently for single training variables (e.g., training frequency).
Results
RT improved muscle strength substantially (mean SMDbs = 1.57; 25 studies), but had small effects on measures of muscle morphology (mean SMDbs = 0.42; nine studies). Specifically, RT produced large effects in both 1RM of upper (mean SMDbs = 1.61; 11 studies) and lower (mean SMDbs = 1.76; 19 studies) extremities and a medium effect in MVC of lower (mean SMDbs = 0.76; four studies) extremities. Results of the meta-regression revealed that the variables “training period” (p = 0.04) and “intensity” (p < 0.01) as well as “total time under tension” (p < 0.01) had significant effects on muscle strength, with the largest effect sizes for the longest training periods (mean SMDbs = 2.34; 50–53 weeks), intensities of 70–79 % of the 1RM (mean SMDbs = 1.89), and total time under tension of 6.0 s (mean SMDbs = 3.61). A tendency towards significance was found for rest in between sets (p = 0.06), with 60 s showing the largest effect on muscle strength (mean SMDbs = 4.68; two studies). We also determined the independent effects of the remaining training variables on muscle strength. The following independently computed training variables are most effective in improving measures of muscle strength: a training frequency of two sessions per week (mean SMDbs = 2.13), a training volume of two to three sets per exercise (mean SMDbs = 2.99), seven to nine repetitions per set (mean SMDbs = 1.98), and a rest of 4.0 s between repetitions (SMDbs = 3.72). With regard to measures of muscle morphology, the small number of identified studies allowed us to calculate meta-regression for the subcategory training volume only. No single training volume variable significantly predicted RT effects on measures of muscle morphology. Additional training variables were independently computed to detect the largest effect for the single training variable. A training period of 50–53 weeks, a training frequency of three sessions per week, a training volume of two to three sets per exercise, seven to nine repetitions per set, a training intensity from 51 to 69 % of the 1RM, a total time under tension of 6.0 s, a rest of 120 s between sets, and a rest of 2.5 s between repetitions turned out to be most effective.
Limitations
The current results must be interpreted with caution because of the poor overall methodological study quality (mean PEDro score 4.6 points) and the considerable large heterogeneity (I2 = 80 %, χ2 = 163.1, df = 32, p < 0.01) for muscle strength. In terms of muscle morphology, our search identified nine studies only, which is why we consider our findings preliminary. While we were able to determine a dose–response relationship based on specific individual training variables with respect to muscle strength and morphology, it was not possible to ascertain any potential interactions between these variables. We recognize the limitation that the results may not represent one general dose–response relationship.
Conclusions
This systematic literature review and meta-analysis confirmed the effectiveness of RT on specific measures of upper and lower extremity muscle strength and muscle morphology in healthy old adults. In addition, we were able to extract dose–response relationships for key training variables (i.e., volume, intensity, rest), informing clinicians and practitioners to design effective RTs for muscle strength and morphology. Training period, intensity, time under tension, and rest in between sets play an important role in improving muscle strength and morphology and should be implemented in exercise training programs targeting healthy old adults. Still, further research is needed to reveal optimal dose–response relationships following RT in healthy as well as mobility limited and/or frail old adults.
doi:10.1007/s40279-015-0385-9
PMCID: PMC4656698  PMID: 26420238
4.  Does Combined Dry Land Strength and Aerobic Training Inhibit Performance of Young Competitive Swimmers? 
The aim of the current study was twofold: (i) to examine the effects of eight weeks of combined dry land strength and aerobic swimming training for increasing upper and lower body strength, power and swimming performance in young competitive swimmers and, (ii) to assess the effects of a detraining period (strength training cessation) on strength and swimming performance. The participants were divided into two groups: an experimental group (eight boys and four girls) and a control group (six boys and five girls). Apart from normal practice sessions (six training units per week of 1 h and 30 min per day), the experimental group underwent eight weeks (two sessions per week) of strength training. The principal strength exercises were the bench press, the leg extension, and two power exercises such as countermovement jump and medicine ball throwing. Immediately following this strength training program, all the swimmers undertook a 6 week detraining period, maintaining the normal swimming program, without any strength training. Swimming (25 m and 50 m performances, and hydrodynamic drag values), and strength (bench press and leg extension) and power (throwing medicine ball and countermovement jump) performances were tested in three moments: (i) before the experimental period, (ii) after eight weeks of combined strength and swimming training, and (iii) after the six weeks of detraining period. Both experimental and control groups were evaluated. A combined strength and aerobic swimming training allow dry land strength developments in young swimmers. The main data can not clearly state that strength training allowed an enhancement in swimming performance, although a tendency to improve sprint performance due to strength training was noticed. The detraining period showed that, although strength parameters remained stable, swimming performance still improved.
Key pointsThis study investigated the effect of dry land strength training on sprint performance in young competitive swimmers.A combined strength and aerobic swimming training allow dry land strength developments in young swimmers.The main data can not clearly state that strength training allowed an enhancement in swimming performance, although a tendency to improve sprint performance due to strength training was noticed.The detraining period showed that, although strength parameters remained stable, swimming performance still improved.
PMCID: PMC3761739  PMID: 24149700
Children; combined training; detraining; hydrodynamics; cross training
5.  Training in laparoscopic colorectal surgery: a new educational model using specially embalmed human anatomical specimen 
Surgical Endoscopy  2012;26(8):2189-2194.
Background
With an increasing percentage of colorectal resections performed laparoscopically nowadays, there is more emphasis on training “before the job” on operative skills, including the comprehension of specific laparoscopic surgical anatomy. As integration of technical skills with correct interpretation of the anatomical image must be incorporated in laparoscopic training, a human specimen training model with special emphasis on surgical anatomy was developed.
Methods
The new embalming method Anubifix™ combines long-term high-quality embalming of human bodies with almost normal flexibility and plasticity, and the body can be kept operational as long as conventionally embalmed human specimens. A colorectal training model was created in a specimen in which anatomical landmarks of colorectal anatomy were permanently colored to explore laparoscopic colorectal anatomy in a skills training setting. Airtight closure of the abdominal wall permits the creation of pneumoperitoneum. Residents were asked to test the model by mobilizing the small and large bowels and expose the central vessels and ureters. Afterward they were asked to fill out an eight-item questionnaire about the model.
Results
Eleven surgical residents in their first and second year of training participated. Responses to the questionnaire showed that a majority of residents considered the model to be representative of the real situation and superior to animal models or virtual reality simulators, and helped to improve the knowledge of three-dimensional anatomy and laparoscopic skills.
Conclusion
The new training model for laparoscopic colorectal surgery proved to be a high-quality tool, concentrating on laparoscopic colorectal anatomy in a skills training setting. We believe it may be a valuable adjunct to residency training programs based on the principle of “training before the job.”
doi:10.1007/s00464-012-2158-y
PMCID: PMC3392504  PMID: 22286275
Abdominal; Laparoscopic education; Training; Colorectal surgery; Gastrointestinal
6.  Effects of Strength vs. Ballistic-Power Training on Throwing Performance 
The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05). Muscle fibre Cross Sectional Area (fCSA) increased in all fibre types after Strength training by 19-26% (p < 0.05), while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (%) decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations.
Key pointsBallistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks.In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance.The ballistic type of power training resulted in a significant increase of the mass of type IIx muscle fibres and no change in their proportion. Thus, this type of training might be used effectively during the last weeks before competition, when the strength training load is usually reduced, in order to increase muscle power and shot put performance in novice shot putters.
PMCID: PMC3761775  PMID: 24149736
Shot put; muscle fibres; ultrasound; ballistic training; muscle mass.
7.  Efficiency of muscle strength training on motor function in patients with coronary artery disease: a meta-analysis 
Background: Existing literature has shown that patients with coronary artery disease (CAD) can benefit greatly from the strength training; therefore, the strength training should play a more important role in cardiac rehabilitation. However, the medical community may still have conservation to apply the strength training owing to no comprehensive study so far to compare the effectiveness of the strength training to the other trainings, such as aerobic training. Objective: To evaluate the effect of strength training on motor function in patients with CAD. Methods: Published articles from the earliest date available to July 2015 were identified using electronic searches. Two reviewers selected independently relevant randomized controlled trials (RCTs) investigating exercise program with strength training versus control interventions (exercise without strength training, including aerobic training and no exercise group) for the treatment of CAD patients. We examined effects of exercise with strength training versus control interventions on peak oxygen uptake (VO2peak), duration of exercise test and muscle strength. Two reviewers extracted data independently. Results: Twenty seven trials that represented 1151 participants passed the selection criteria and were evaluated for the effects of strength training in CAD patients. For improving VO2peak [SMD (95%CI) = 0.58 (0.11, 1.06)] and muscle strength [upper limb, SMD (95% CI) =0.44 (0.34, 0.55); lower limb, SMD (95% CI) =0.33 (0.16, 0.50)], exercise program with strength training were significantly more effective than one without it. But there is no significantly difference on duration of exercise test [SMD (95%CI) = 0.17 (-0.04, 0.39)] in strength training group than in control group. Conclusions: We conclude strength training is effective in improving muscle strength and VO2peak, in CAD patients, when compared to patients with control group. Furthermore, our evaluations suggest that strength training does not compromise clinical trial completion or safety.
PMCID: PMC4694245  PMID: 26770345
Coronary artery disease; muscle strength training; motor function; randomized controlled trials; meta-analysis
8.  Outcomes of allogenic cages in anterior and posterior lumbar interbody fusion 
European Spine Journal  2001;10(Suppl 2):S158-S168.
Abstract.
Interbody lumbar fusions provide a proven logical solution to diseases of the intervertebral discs by eliminating motion of the segment. Historically, there are many techniques to achieve spinal fusion in the lumbar spine. These include anterior, posterior, and foramenal approaches, often in combination with various internal fixation devices. The surgeon's choice of the approach and mechanical or biological implant is dependent on the patient's specific pathology and anatomy, in addition to the experience and training of the surgeon in similar conditions. In the past decade, new mechanical spine implants/spacers have been designed to provide restoration of disc height and improve stabilization of the spine. The ability to radiographically assess the "biology" of bone incorporation in these mechanical (metal) spacers has become a significant limitation.
The femoral ring allograft (FRA) and the posterior lumbar interbody fusion (PLIF) spacers have been developed as "biological cages" that permit restoration of the anterior column with machined allograft bone biological cages. Test results demonstrate that the FRA and PLIF spacers have a compressive strength of over 25,000 N. The pyramid-shaped teeth on the surfaces and the geometry of the implant increase the resistance to expulsion at clinically relevant loads (1053 and 1236 N). The technique of anterior column reconstruction with both the FRA and the PLIF biological cages have been previously reported.
Clinical outcomes and experience with the FRA spacer (137 patients) and the PLIF spacer (13 patients) were reported on and did not reveal any evidence of bone cage resorption or infectious inflammatory process. There was clinical migration with one PLIF spacer, which was later revised with an anterior approach and a FRA spacer. The radiographic outcomes demonstrated that 94% arthrodesis was achieved with the biological spacer and additional posterior instrumentation. The clinical success of every spine fusion procedure is dependent on many factors such as the extent of the instability, the pathology, type of graft used, the patient's pathology/anatomy and lifestyle.
doi:10.1007/s005860100292
PMCID: PMC3611548  PMID: 11716014
Biological cages Femoral ring allograft spacer Posterior lumbar interbody fusion spacer Interbody lumbar fusion Arthrodesis
9.  A recommended workflow methodology in the creation of an educational and training application incorporating a digital reconstruction of the cerebral ventricular system and cerebrospinal fluid circulation to aid anatomical understanding 
BMC Medical Imaging  2015;15:44.
Background
The use of computer-aided learning in education can be advantageous, especially when interactive three-dimensional (3D) models are used to aid learning of complex 3D structures. The anatomy of the ventricular system of the brain is difficult to fully understand as it is seldom seen in 3D, as is the flow of cerebrospinal fluid (CSF). This article outlines a workflow for the creation of an interactive training tool for the cerebral ventricular system, an educationally challenging area of anatomy. This outline is based on the use of widely available computer software packages.
Methods
Using MR images of the cerebral ventricular system and several widely available commercial and free software packages, the techniques of 3D modelling, texturing, sculpting, image editing and animations were combined to create a workflow in the creation of an interactive educational and training tool. This was focussed on cerebral ventricular system anatomy, and the flow of cerebrospinal fluid.
Results
We have successfully created a robust methodology by using key software packages in the creation of an interactive education and training tool. This has resulted in an application being developed which details the anatomy of the ventricular system, and flow of cerebrospinal fluid using an anatomically accurate 3D model. In addition to this, our established workflow pattern presented here also shows how tutorials, animations and self-assessment tools can also be embedded into the training application.
Conclusions
Through our creation of an established workflow in the generation of educational and training material for demonstrating cerebral ventricular anatomy and flow of cerebrospinal fluid, it has enormous potential to be adopted into student training in this field. With the digital age advancing rapidly, this has the potential to be used as an innovative tool alongside other methodologies for the training of future healthcare practitioners and scientists. This workflow could be used in the creation of other tools, which could be developed for use not only on desktop and laptop computers but also smartphones, tablets and fully immersive stereoscopic environments. It also could form the basis on which to build surgical simulations enhanced with haptic interaction.
doi:10.1186/s12880-015-0088-6
PMCID: PMC4617484  PMID: 26482126
Ventricular; Neuroanatomy; 3D; Volumetric visualisation; Education
10.  Relating Structure and Function in the Human Brain: Relative Contributions of Anatomy, Stationary Dynamics, and Non-stationarities 
PLoS Computational Biology  2014;10(3):e1003530.
Investigating the relationship between brain structure and function is a central endeavor for neuroscience research. Yet, the mechanisms shaping this relationship largely remain to be elucidated and are highly debated. In particular, the existence and relative contributions of anatomical constraints and dynamical physiological mechanisms of different types remain to be established. We addressed this issue by systematically comparing functional connectivity (FC) from resting-state functional magnetic resonance imaging data with simulations from increasingly complex computational models, and by manipulating anatomical connectivity obtained from fiber tractography based on diffusion-weighted imaging. We hypothesized that FC reflects the interplay of at least three types of components: (i) a backbone of anatomical connectivity, (ii) a stationary dynamical regime directly driven by the underlying anatomy, and (iii) other stationary and non-stationary dynamics not directly related to the anatomy. We showed that anatomical connectivity alone accounts for up to 15% of FC variance; that there is a stationary regime accounting for up to an additional 20% of variance and that this regime can be associated to a stationary FC; that a simple stationary model of FC better explains FC than more complex models; and that there is a large remaining variance (around 65%), which must contain the non-stationarities of FC evidenced in the literature. We also show that homotopic connections across cerebral hemispheres, which are typically improperly estimated, play a strong role in shaping all aspects of FC, notably indirect connections and the topographic organization of brain networks.
Author Summary
By analogy with the road network, the human brain is defined both by its anatomy (the ‘roads’), that is, the way neurons are shaped, clustered together and connected to each others and its dynamics (the ‘traffic’): electrical and chemical signals of various types, shapes and strength constantly propagate through the brain to support its sensorimotor and cognitive functions, its capacity to learn and adapt to disease, and to create consciousness. While anatomy and dynamics are organically intertwined (anatomy contributes to shape dynamics), the nature and strength of this relation remain largely mysterious. Various hypotheses have been proposed and tested using modern neuroimaging techniques combined with mathematical models of brain activity. In this study, we demonstrate the existence (and quantify the contribution) of a dynamical regime in the brain, coined ‘stationary’, that appears to be largely induced and shaped by the underlying anatomy. We also reveal the critical importance of specific anatomical connections in shaping the global anatomo-functional structure of this dynamical regime, notably connections between hemispheres.
doi:10.1371/journal.pcbi.1003530
PMCID: PMC3961181  PMID: 24651524
11.  The Effects of Whole-Body Vibration on the Cross-Transfer of Strength 
The Scientific World Journal  2012;2012:504837.
This study investigated whether the use of superimposed whole-body vibration (WBV) during cross-education strength training would optimise strength transfer compared to conventional cross-education strength training. Twenty-one healthy, dominant right leg volunteers (21 ± 3 years) were allocated to a strength training (ST, m = 3, f = 4), a strength training with WBV (ST + V, m = 3, f = 4), or a control group (no training, m = 3, f = 4). Training groups performed 9 sessions over 3 weeks, involving unilateral squats for the right leg, with or without WBV (35 Hz; 2.5 mm amplitude). All groups underwent dynamic single leg maximum strength testing (1RM) and single and paired pulse transcranial magnetic stimulation (TMS) prior to and following training. Strength increased in the trained limb for the ST (41%; ES = 1.14) and ST + V (55%; ES = 1.03) groups, which resulted in a 35% (ES = 0.99) strength transfer to the untrained left leg for the ST group and a 52% (ES = 0.97) strength transfer to the untrained leg for the ST + V group, when compared to the control group. No differences in strength transfer between training groups were observed (P = 0.15). For the untrained leg, no differences in the peak height of recruitment curves or SICI were observed between ST and ST + V groups (P = 1.00). Strength training with WBV does not appear to modulate the cross-transfer of strength to a greater magnitude when compared to conventional cross-education strength training.
doi:10.1100/2012/504837
PMCID: PMC3529861  PMID: 23365521
12.  A Systematic Review and Meta-Analysis of Strength Training in Individuals With Multiple Sclerosis Or Parkinson Disease 
Medicine  2015;94(4):e411.
Abstract
Strength training has, in recent years, been shown to be beneficial for people with Parkinson disease and multiple sclerosis. Consensus regarding its utility for these disorders nevertheless remains contentious among healthcare professionals. Greater clarity is required, especially in regards to the type and magnitude of effects as well as the response differences to strength training between individuals with Parkinson disease or multiple sclerosis.
This study examines the effects, magnitude of those effects, and response differences to strength training between patients with Parkinson disease or multiple sclerosis.
A comprehensive search of electronic databases including Physiotherapy Evidence Database scale, PubMed, EMBASE, Cochrane Central Register of Controlled Trials, and CINAHL was conducted from inception to July 2014.
English articles investigating the effect of strength training for individuals with neurodegenerative disorders were selected. Strength training trials that met the inclusion criteria were found for individuals with Parkinson disease or multiple sclerosis.
Individuals with Parkinson disease or multiple sclerosis were included in the study. Strength training interventions included traditional (free weights/machine exercises) and nontraditional programs (eccentric cycling).
Included articles were critically appraised using the Physiotherapy Evidence Database scale.
Of the 507 articles retrieved, only 20 articles met the inclusion criteria. Of these, 14 were randomized and 6 were nonrandomized controlled articles in Parkinson disease or multiple sclerosis. Six randomized and 2 nonrandomized controlled articles originated from 3 trials and were subsequently pooled for systematic analysis. Strength training was found to significantly improve muscle strength in people with Parkinson disease (15%–83.2%) and multiple sclerosis (4.5%–36%). Significant improvements in mobility (11.4%) and disease progression were also reported in people with Parkinson disease after strength training. Furthermore, significant improvements in fatigue (8.2%), functional capacity (21.5%), quality of life (8.3%), power (17.6%), and electromyography activity (24.4%) were found in individuals with multiple sclerosis after strength training.
The limitations of the study were the heterogeneity of interventions and study outcomes in Parkinson disease and multiple sclerosis trials. Strength training is useful for increasing muscle strength in Parkinson disease and to a lesser extent multiple sclerosis.
doi:10.1097/MD.0000000000000411
PMCID: PMC4602948  PMID: 25634170
13.  Concentric Versus Enhanced Eccentric Hamstring Strength Training: Clinical Implications 
Journal of Athletic Training  1998;33(3):216-221.
Objective:
Hamstring injuries can be quite debilitating and often result in chronic problems. Eccentric muscle actions are often the last line of defense against muscle injury and ligament disruption. Traditionally, the focus of hamstring strength rehabilitation has been on concentric muscle actions. The purpose of our study was to compare hamstring muscle strength gains in concentric and eccentric hamstring strength training.
Design and Setting:
A randomized-group design was used to examine differences in 1-repetition maximum (1 RM) and isokinetic strength values among 3 groups of subjects. Subjects were tested in a biomechanics laboratory using an isokinetic dynamometer, while training was carried out in a physical therapy outpatient clinic.
Subjects:
Twenty-seven healthy male subjects (age = 22.9 ± 3.1 years, wt = 81.8 ± 12.9 kg, ht = 178.6 ± 7.2 cm) participated in this study. Subjects were randomly assigned to 1 of 3 treatment groups: eccentric training, concentric training, or control.
Measurements:
Subjects performed hamstring curls using an isotonic weight training device. Pretest 1 RM weight values were determined for all subjects using a standardized 1 RM protocol. In addition, maximum concentric and eccentric isokinetic strength values for knee-flexion strength were determined. Control group subjects refrained from weight training for 6 weeks. Subjects in the training groups trained 2 days per week for 6 weeks (12 sessions). After 6 weeks of training, all subjects returned for 1RM and isokinetic posttesting.
Results:
The concentric group improved 19%, while the eccentric group improved 29%. The control group subjects did not show any significant change over the 6 weeks. In addition, there were improvements in eccentric isokinetic peak torque/ body weight ratios at both 60 °s and 180° from pretesting to posttesting in the eccentric training group only.
Conclusions:
Our results demonstrate the effectiveness of isotonic strength training on the development of hamstring muscle strength. More important is the dramatic effect of eccentric strength training on overall hamstring muscle strength, both isotonic and isokinetic. Clinicians should consider using eccentric hamstring strengthening as part of their rehabilitation protocols for hamstring and knee injuries.
Images
PMCID: PMC1320426  PMID: 16558513
1RM; peak torque/body weight ratios; enhanced eccentrics; isotonic; isokinetic
14.  Effects of physical training with different intensities of effort on lipid metabolism in rats submitted to the neonatal application of alloxan 
Background
Type 2 diabetes mellitus (T2DM) is a chronic disease that is characterized by insulin resistance. Its development is directly connected with the inability of insulin to exert its action, not just on carbohydrate metabolism but also on primarily on lipid metabolism. The present study aimed to compare the effects of continuous, intermittent, and strength training on serum and tissue variables on the lipid metabolism of alloxan rats.
Methods
Wistar rats were divided into eight groups: sedentary alloxan (SA), sedentary control (SC), continuous training alloxan (CA), intermittent training alloxan (IA), strength training alloxan (StA), continuous training control (CC), intermittent training control (IC) and strength training control (StC). Alloxan (250 mg/kg bw) was injected into neonatal rats at 6 days of age. The continuous training protocol consisted of 12 weeks of swimming training for 1 uninterrupted hour / day, five days/ week, supporting a load that was 5% bw. The intermittent training protocol consisted of 12 weeks of swimming training with 30 s of activity interrupted by 30 s of rest, for a total of 20 min/day, five days/ week, supporting a load that was 15% bw. The strength-training protocol consisted of 12 weeks of training, five days/week with 4 sets of 10 jumps in water with 1 min rest between sets, supporting a load that was a 50% bw.
Results
At 28 days, the alloxan animals exhibited higher insulin resistance as measured by the disappearance of glucose serum (% Kitt/min) during the ITT. At 120 days, the sedentary alloxan animals showed higher FFA values than continuous and intermittent training alloxan. In addition, the alloxan animals that underwent intermittent and strength training showed lower FFA values compared to the corresponding controls. The continuous training protocol was less effective than the strength training protocol for reducing the levels of total cholesterol in the alloxan animals. Serum total lipid values revealed that intermittent training increased serum levels in alloxan animals
Conclusion
Thus, it was concluded that physical training at different intensities of effort is of great importance in attenuation and control of changes in the lipid metabolism in alloxan animals.
doi:10.1186/1476-511X-11-138
PMCID: PMC3532126  PMID: 23067133
Neonatal rats; Alloxan; Exercise training; Lipid metabolism
15.  Creatine Supplementation Associated or Not with Strength Training upon Emotional and Cognitive Measures in Older Women: A Randomized Double-Blind Study 
PLoS ONE  2013;8(10):e76301.
Purpose
To assess the effects of creatine supplementation, associated or not with strength training, upon emotional and cognitive measures in older woman.
Methods
This is a 24-week, parallel-group, double-blind, randomized, placebo-controlled trial. The individuals were randomly allocated into one of the following groups (n=14 each): 1) placebo, 2) creatine supplementation, 3) placebo associated with strength training or 4) creatine supplementation associated with strength training. According to their allocation, the participants were given creatine (4 x 5 g/d for 5 days followed by 5 g/d) or placebo (dextrose at the same dosage) and were strength trained or not. Cognitive function, assessed by a comprehensive battery of tests involving memory, selective attention, and inhibitory control, and emotional measures, assessed by the Geriatric Depression Scale, were evaluated at baseline, after 12 and 24 weeks of the intervention. Muscle strength and food intake were evaluated at baseline and after 24 weeks.
Results
After the 24-week intervention, both training groups (ingesting creatine supplementation and placebo) had significant reductions on the Geriatric Depression Scale scores when compared with the non-trained placebo group (p = 0.001 and p = 0.01, respectively) and the non-trained creatine group (p < 0.001 for both comparison). However, no significant differences were observed between the non-trained placebo and creatine (p = 0.60) groups, or between the trained placebo and creatine groups (p = 0.83). Both trained groups, irrespective of creatine supplementation, had better muscle strength performance than the non-trained groups. Neither strength training nor creatine supplementation altered any parameter of cognitive performance. Food intake remained unchanged.
Conclusion
Creatine supplementation did not promote any significant change in cognitive function and emotional parameters in apparently healthy older individuals. In addition, strength training per se improved emotional state and muscle strength, but not cognition, with no additive effects of creatine supplementation.
Trial Registration
Clinicaltrials.gov NCT01164020
doi:10.1371/journal.pone.0076301
PMCID: PMC3789718  PMID: 24098469
16.  Efficacy of WBV as a modality for inducing changes in body composition, aerobic fitness, and muscular strength: a pilot study 
The purpose of this pilot study was to evaluate the effectiveness of whole body vibration (WBV) training as a modality for inducing changes in body composition, cardiovascular condition, and muscular strength in sedentary postmenopausal women. WBV training was compared with other training regimens, ie, aerobic training and circuit resistance training, commonly used to promote weight loss, cardiovascular conditioning, and muscular strength. Postmenopausal women (aged 48–60 years) were randomly assigned to WBV training, circuit resistance training, or aerobic training. Participants trained three times per week for 8 weeks. The training regimens were progressive in nature, with increases in training intensity and duration occurring throughout the 8-week period. Body composition was assessed using dual-energy X-ray absorptiometry analyses. A modified Bruce treadmill protocol was used to assess aerobic capacity (VO2peak) and time to peak exhaustion. Upper and lower body strengths were determined by one repetition maximum (1-RM) chest and leg presses, respectively. Variables were analyzed using separate 3 (exercise mode) × 2 (time) repeated-measures analysis of variance with effect sizes due to the small sample size. No significant main effects or interactions were seen for any body composition variable; however, moderate to large effect sizes (η2=0.243 and η2=0.257) were detected regarding interactions for percent body fat and lean body mass favoring aerobic training and circuit resistance training. For VO2peak, no significant main effects or interactions were detected (time, η2=0.150; P=0.11; time × group, η2=0.139; P=0.30); but a significant time effect was observed for time to peak exhaustion (η2=0.307; P=0.017). A significant interaction for upper body strength (η2=0.464; P=0.007), and main effect for time in lower body strength (η2=0.663; P=0.0001) was detected. Post hoc analysis indicated a significant increase in upper body strength for circuit resistance training (P=0.023) and a decrease for WBV training (P=0.015). Our results indicate that WBV may not be an effective alternative to traditional training with regard to body composition or aerobic capacity, but could have a positive impact on lower body strength.
doi:10.2147/CIA.S30048
PMCID: PMC3875193  PMID: 24399871
acceleration training; percent body fat; lean body mass; exercise; maximum oxygen consumption
17.  Strength Gains by Motor Imagery with Different Ratios of Physical to Mental Practice 
The purpose of this training study was to determine the magnitude of strength gains following a high-intensity resistance training (i.e., improvement of neuromuscular coordination) that can be achieved by imagery of the respective muscle contraction imagined maximal isometric contraction (IMC training). Prior to the experimental intervention, subjects completed a 4-week standardized strength training program. 3 groups with different combinations of real maximum voluntary contraction (MVC) and mental (IMC) strength training (M75, M50, M25; numbers indicate percentages of mental trials) were compared to a MVC-only training group (M0) and a control condition without strength training (CO). Training sessions (altogether 12) consisted of four sets of two maximal 5-s isometric contractions with 10 s rest between sets of either MVC or IMC training. Task-specific effects of IMC training were tested in four strength exercises commonly used in practical settings (bench pressing, leg pressing, triceps extension, and calf raising). Maximum isometric voluntary contraction force (MVC) was measured before and after the experimental training intervention and again 1 week after cessation of the program. IMC groups (M25, M50, M75) showed slightly smaller increases in MVC (3.0% to 4.2%) than M0 (5.1%), but significantly stronger improvements than CO (−0.2%). Compared to further strength gains in M0 after 1 week (9.4% altogether), IMC groups showed no “delayed” improvement, but the attained training effects remained stable. It is concluded that high-intensity strength training sessions can be partly replaced by IMC training sessions without any considerable reduction of strength gains.
doi:10.3389/fpsyg.2011.00194
PMCID: PMC3158386  PMID: 21897826
motor imagery; mental training; maximum voluntary contraction; strength training
18.  Anatomy in a Modern Medical Curriculum 
Anatomy in undergraduate education has been in decline for many years. Some suggest that it has fallen below a safe level. Balances between detail and safety, and assimilation and application of anatomy have yet to be established as the methods of teaching undergo another metamorphosis. For doctors, the human body is the focus of investigation and intervention on a daily basis; for this reason, the study of anatomy in some form will continue to be essential to safe medical practice. It is necessary for core knowledge of anatomy to be assimilated by all doctors in order to practice and communicate safely. It may be true that most doctors do not need to dissect a cadaver or study a prosection in order to practice, but if it can improve their understanding of what they do and why they do it, this surely has to be of benefit both for the safety of the patient and satisfaction of the doctor as a professional. Integration of newer teaching modalities and modern technology will encourage interest and retention of anatomical knowledge and its clinical relevance. Anatomy has a promising future in postgraduate specialist and surgical training. Detailed knowledge should be integrated into specialist training when it is clinically relevant allowing specialists of the future to practice safely and accurately and also to provide a strong base for future clinical developments.
doi:10.1308/003588407X168244
PMCID: PMC1964553  PMID: 17346399
Anatomy; Teaching; Learning
19.  Effects of Light and Nutrient Availability on Leaf Mechanical Properties of Plantago major: A Conceptual Approach 
Annals of Botany  2008;101(5):727-736.
Background and Aims
Leaf mechanical properties, which are important to protect leaves against physical stresses, are thought to change with light and nutrient availabilities. This study aims to understand phenotypic changes of leaf mechanical properties with respect to dry mass allocation and anatomy.
Methods
Leaf lamina strength (maximum force per unit area to fracture), toughness (work to fracture) and stiffness (resistance against deformation) were measured by punch-and-die tests, and anatomical and physiological traits were determined in Plantago major plants grown at different light and nutrient availabilities. A conceptual approach was developed by which punch strength and related carbon costs can be quantitatively related to the underlying anatomical and morphological traits: leaf thickness, dry-mass allocation to cell walls and cell-wall-specific strength.
Key Results
Leaf lamina strength, toughness and stiffness (all expressed on a punch area basis) increased with light availability. By contrast, nutrient availability did not change strength or toughness, but stiffness was higher in low-nutrient plants. Punch strength (maximum force per unit punch area, Fmax/area) was analysed as the product of leaf mass per area (LMA) and Fmax/leaf mass (= punch strength/LMA, indicating mass-use efficiency for strength). The greater strength of sun leaves was mainly explained by their higher LMA. Shade leaves, by contrast, had a higher Fmax/leaf mass. This greater efficiency in shade leaves was caused by a greater fraction of leaf mass in cell walls and by a greater specific strength of cell walls. These differences are probably because epidermis cells constitute a relatively large fraction of the leaf cross-section in shaded leaves. Although a larger percentage of intercellular spaces were found in shade leaves, this in itself did not reduce ‘material’ strength (punch strength/thickness); it might, however, be important for increasing distance between upper and lower epidermis per unit mass and thus maintaining flexural stiffness at minimal costs.
Conclusions
The consequences of a reduced LMA for punch strength in shaded leaves was partially compensated for by a mechanically more efficient design, which, it is suggested, contributes importantly to resisting mechanical stress under carbon-limited conditions.
doi:10.1093/aob/mcn013
PMCID: PMC2710173  PMID: 18272529
Cell walls; cost–benefit; defence; leaf biomechanics; leaf mass per area; nitrogen; Plantago major; punch-and-die test; stiffness; strength; toughness
20.  Metabolic load during strength training or NMES in individuals with COPD: results from the DICES trial 
BMC Pulmonary Medicine  2014;14:146.
Background
Strength training and neuromuscular electrical stimulation (NMES) are effective training modalities for improving muscle function, exercise performance and health status in individuals with COPD. The aim of the present study was to analyze the metabolic load of these training modalities at baseline, half-way, and at the end of an eight-week interdisciplinary pulmonary rehabilitation program in a subgroup of individuals with COPD of the DICES trial.
Methods
Of 24 individuals with COPD (FEV1: 34 ± 2% predicted, men: 58%, age: 66 (61–68) years), peak oxygen uptake (VO2), peak minute ventilation (VE), heart rate, oxygen saturation and symptom scores were assessed during HF-NMES (75 Hz), LF-NMES (15 Hz) and strength training at three moments during their pulmonary rehabilitation program.
Results
Intervention-related peak VO2 did not change over time during HF-NMES, LF-NMES or strength training. Intervention-related peak VE did not change over time during strength training or LF-NMES and increased slightly, but significantly over time during HF-NMES. Peak VO2 and VE were significantly higher during strength training compared to HF-NMES or LF-NMES. Oxygen saturation significantly decreased after the first measurements during HF-NMES and strength training group to baseline, while no significant changes in oxygen saturation were observed during the other measurements. Heart rate significantly increased compared to baseline in all groups at all moments and was significantly higher after strength training compared to HF-NMES or LF-NMES. Median end scores (points) for dyspnea, fatigue and muscle pain ranged from 1 to 3, from 0.5 to 2 and from 0 to 6 after HF-NMES, from 2 to 3, from 2 to 5 and from 0 to 9 after LF-NMES and from 2 to 5, from 1.5 to 4 and from 0 to 28 after strength training respectively.
Conclusions
To conclude, the metabolic load and symptom scores remain acceptable low over time with increasing training loads during HF-NMES, LF-NMES or strength training.
Trial registration
Trial registration:NTR2322
doi:10.1186/1471-2466-14-146
PMCID: PMC4236758  PMID: 25182377
Chronic obstructive pulmonary disease; Neuromuscular electrical stimulation; Pulmonary rehabilitation; Strength training
21.  Feasibility of Progressive Strength Training Implemented in the Acute Ward after Hip Fracture Surgery 
PLoS ONE  2014;9(4):e93332.
Importance
Patients with a hip fracture lose more than 50% knee-extension strength in the fractured limb within one week of surgery. Hence, immediate progressive strength training following hip fracture surgery may be rational, but the feasibility unknown.
Objective
To examine the feasibility of in-hospital progressive strength training implemented in the acute ward following hip fracture surgery, based on pre-specified criteria for feasibility.
Design, Setting and Patients
A prospective cohort study conducted in an acute orthopedic hip fracture unit at a university hospital. A consecutive sample of 36 patients, 18 with a cervical and 18 with a trochanteric hip fracture (27 women and 9 men, mean (SD) age of 79.4 (8.3) years) were included between June and December 2012.
Intervention
A daily (on weekdays) program of progressive knee-extension strength training for the fractured limb, using ankle weight cuffs in 3 sets of 10 repetition maximum loadings.
Main outcomes and Measures
The primary outcome was the change in training load (kg) during the knee-extension strength training. The secondary outcomes were changes in hip fracture-related pain and maximal isometric knee-extension strength.
Results
The strength training was commenced at a mean of 2.4 (0.7) days after surgery. The training loads (kilograms lifted) increased from 1.6 (0.8) to 4.3 (1.7) kg over 4.3 (2.2) training sessions (P<.001). The maximal isometric knee-extension strength of the fractured limb increased from 0.37 (0.2) to 0.61 (0.3) Nm/kg (P<.001), while the average strength deficit in the fractured limb decreased from 50% to 32% (% non-fractured, P<.001). Only 3 of 212 sessions were not performed because of severe hip fracture-related pain.
Conclusion and Relevance
Progressive knee-extension strength training of the fractured limb commenced in the acute ward seems feasible, and may reduce strength asymmetry between limbs without hip pain interfering. The clinical efficacy needs confirmation in a randomized controlled design.
Trial Registration
ClinicalTrials.gov ID: NCT01616030
doi:10.1371/journal.pone.0093332
PMCID: PMC3974729  PMID: 24699276
22.  Effect of Training with Neuromuscular Electrical Stimulation on Elbow Flexion Strength 
Neuromuscular electrical stimulation (NMES) may be used to prevent strength loss associated with post-surgical immobilization. Most studies testing the effectiveness of NMES have trained the knee extensors. The purpose of this investigation was to test the effectiveness of NMES when training the elbow flexors. Twenty-four students were randomly assigned to one of three groups: NMES training, isometric training or control. Testing and training were completed using a Biodex™ dynamometer. After a standard warm-up, subjects were positioned on the Biodex™ with left shoulder in anatomical neutral, elbow flexed to 90o and forearm supinated. Subjects performed three maximum isometric contractions of 5 seconds duration, with 1 min rest between repetitions. Average peak torque during three repetitions was calculated. Subjects trained on three days per week for four weeks. Training included 15 maximum contractions of 15 seconds duration with 45 seconds recovery between repetitions. Russian current was delivered by a Forte™ 400 Combo via electrodes placed over ends of biceps brachii. A maximum tolerable ramped intensity was delivered with frequency of 90 bps and duty cycle of 15:45. After training, subjects were post-tested in a manner identical to pretest. Mean normalized strength data were analyzed using a 3 (Group) x 2 (Test) ANOVA. The Group x Test interaction was significant. Post-hoc analyses revealed that the voluntary training group (normalized means of 0.49 to 0.71 for the pretest and post-test, respectively) had a significantly greater increase than the other two groups, which were not significantly different from each other. The lack of significant strength gains with NMES was likely due to low average training intensity, which was only 20.4% of MVIC. Based on these results, NMES training may not be an effective alternative to voluntary training in healthy subjects.
Key PointsTraining the elbow flexors with voluntary isometric contractions produced significantly greater strength gains than did training with NMES.Strength gains when training with NMES were no greater than with no training.The lack of strength gains with NMES was likely due to a low average training torque of 20.4% of MVIC.
PMCID: PMC3827569  PMID: 24260000
Electrical stimulation; upper extremity; biceps; torque
23.  The Effects of Concurrent Resistance and Endurance Training Follow a Specific Detraining Cycle in Young School Girls 
Journal of Human Kinetics  2011;29A:93-103.
The purpose of this study was to compare the effects of an 8-week training period of strength training alone (GR), or combined strength and endurance training (GCOM), followed by 12-weeks of de-training (DT) on body composition, power strength and VO2max adaptations in a schooled group of adolescent girls. Methods: Sixty-seven healthy girls recruited from a Portuguese public high school (age: 13.5+1.03 years, from 7th and 9th grade) were divided into three experimental groups to train twice a week for 8 wks: GR (n=21), GCOM (n=25) and a control group (GC: n=21; no training program). Anthropometric parameters variables as well as performance variables (strength and aerobic fitness) were assessed. Results: No significant training-induced differences were observed in 1kg and 3kg medicine ball throw gains (2.7 to 10.8%) between GR and GCOM groups, whereas no significant changes were observed after a DT period in any of the experimental groups. Significant training-induced gains in CMVJ (8 to 12%) and CMSLJ (0.8 to 5.4%) were observed in the experimental groups. Time of 20m significantly decreased (GR: −11.5% and GCOM: −10%) after both treatment periods, whereas only the GR group kept the running speed after a DT period of 12 weeks. After training VO2max increased only slightly for GCOM (4.0%). No significant changes were observed after the DT period in all groups, except to GCOM in CMVJ and CMSLJ. Conclusion: Performing simultaneous strength and endurance training in the same workout does not appear to negatively influence power strength and aerobic fitness development in adolescent girls. Indeed, concurrent strength and endurance training seems to be an effective, well-rounded exercise program that can be prescribed as a means to improve initial or general strength in healthy school girls. De-training period was not sufficient to reduce the overall training effects.
doi:10.2478/v10078-011-0064-3
PMCID: PMC3588889  PMID: 23487482
Youth; Strength; Endurance; School; Experimental; weight training; detraining
24.  Lower limb strength training in children with cerebral palsy – a randomized controlled trial protocol for functional strength training based on progressive resistance exercise principles 
BMC Pediatrics  2008;8:41.
Background
Until recently, strength training in children with cerebral palsy (CP) was considered to be inappropriate, because it could lead to increased spasticity or abnormal movement patterns. However, the results of recent studies suggest that progressive strength training can lead to increased strength and improved function, but low methodological quality and incomplete reporting on the training protocols hampers adequate interpretation of the results. This paper describes the design and training protocol of a randomized controlled trial to assess the effects of a school-based progressive functional strength training program for children with CP.
Methods/Results
Fifty-one children with Gross Motor Function Classification Systems levels I to III, aged of 6 to 13 years, were recruited. Using stratified randomization, each child was assigned to an intervention group (strength training) or a control group (usual care). The strength training was given in groups of 4–5 children, 3 times a week, for a period of 12 weeks. Each training session focussed on four exercises out of a 5-exercise circuit. The training load was gradually increased based on the child's maximum level of strength, as determined by the 8 Repetition Maximum (8 RM). To evaluate the effectiveness of the training, all children were evaluated before, during, directly after, and 6 weeks after the intervention period. Primary outcomes in this study were gross motor function (measured with the Gross Motor Function Measure and functional muscle strength tests) and walking ability (measured with the 10-meter, the 1-minute and the timed stair test). Secondary outcomes were lower limb muscle strength (measured with a 6 RM test, isometric strength tests, and a sprint capacity test), mobility (measured with a mobility questionnaire), and sport activities (measured with the Children's Assessment of Participation and Enjoyment). Spasticity and range of motion were assessed to evaluate any adverse events.
Conclusion
Randomized clinical trials are considered to present the highest level of evidence. Nevertheless, it is of utmost importance to report on the design, the applied evaluation methods, and all elements of the intervention, to ensure adequate interpretation of the results and to facilitate implementation of the intervention in clinical practice if the results are positive.
Trial Registration
Trial Register NTR1403
doi:10.1186/1471-2431-8-41
PMCID: PMC2579291  PMID: 18842125
25.  Importance and challenges of measuring intrinsic foot muscle strength 
Background
Intrinsic foot muscle weakness has been implicated in a range of foot deformities and disorders. However, to establish a relationship between intrinsic muscle weakness and foot pathology, an objective measure of intrinsic muscle strength is needed. The aim of this review was to provide an overview of the anatomy and role of intrinsic foot muscles, implications of intrinsic weakness and evaluate the different methods used to measure intrinsic foot muscle strength.
Method
Literature was sourced from database searches of MEDLINE, PubMed, SCOPUS, Cochrane Library, PEDro and CINAHL up to June 2012.
Results
There is no widely accepted method of measuring intrinsic foot muscle strength. Methods to estimate toe flexor muscle strength include the paper grip test, plantar pressure, toe dynamometry, and the intrinsic positive test. Hand-held dynamometry has excellent interrater and intrarater reliability and limits toe curling, which is an action hypothesised to activate extrinsic toe flexor muscles. However, it is unclear whether any method can actually isolate intrinsic muscle strength. Also most methods measure only toe flexor strength and other actions such as toe extension and abduction have not been adequately assessed. Indirect methods to investigate intrinsic muscle structure and performance include CT, ultrasonography, MRI, EMG, and muscle biopsy. Indirect methods often discriminate between intrinsic and extrinsic muscles, but lack the ability to measure muscle force.
Conclusions
There are many challenges to accurately measure intrinsic muscle strength in isolation. Most studies have measured toe flexor strength as a surrogate measure of intrinsic muscle strength. Hand-held dynamometry appears to be a promising method of estimating intrinsic muscle strength. However, the contribution of extrinsic muscles cannot be excluded from toe flexor strength measurement. Future research should clarify the relative contribution of intrinsic and extrinsic muscles during intrinsic foot muscle strength testing.
doi:10.1186/1757-1146-5-29
PMCID: PMC3544647  PMID: 23181771
Foot; Muscles; Toes; Muscle strength; Dynamometer

Results 1-25 (88291)