Search tips
Search criteria

Results 1-25 (749889)

Clipboard (0)

Related Articles

1.  Lack of Association of Bone Morphogenetic Protein 2 Gene Haplotypes with Bone Mineral Density, Bone Loss, or Risk of Fractures in Men 
Journal of Osteoporosis  2011;2011:243465.
Introduction. The association of bone morphogenetic protein 2 (BMP2) with BMD and risk of fracture was suggested by a recent linkage study, but subsequent studies have been contradictory. We report the results of a study of the relationship between BMP2 genotypes and BMD, annual change in BMD, and risk of fracture in male subjects. Materials and Methods. We tested three single-nucleotide polymorphisms (SNPs) across the BMP2 gene, including Ser37Ala SNP, in 342 Caucasian Englishmen, comprising 224 control and 118 osteoporotic subjects. Results. BMP2 SNP1 (Ser37Ala) genotypes were found to have similar low frequency in control subjects and men with osteoporosis. The major informative polymorphism, BMP2 SNP3 (Arg190Ser), showed no statistically significant association with weight, height, BMD, change in BMD at hip or lumbar spine, and risk of fracture. Conclusion. There were no genotypic or haplotypic effects of the BMP2 candidate gene on BMD, change in BMD, or fracture risk identified in this cohort.
PMCID: PMC3195445  PMID: 22013543
2.  Refined QTLs of osteoporosis-related traits by linkage analysis with genome-wide SNPs: Framingham SHARe 
Bone  2010;46(4):1114-1121.
Genome-wide association studies (GWAS) using high-density array of single-nucleotide polymorphisms (SNPs) offer an unbiased strategy to identify new candidate genes for osteoporosis.
We used a subset of autosomal SNPs from the Affymetrix 500K+50K SNP GeneChip marker set to examine genetic linkage with multiple highly heritable osteoporosis-related traits, including BMD of the hip and spine, heel ultrasound (attenuation and speed of sound), and geometric indices of the hip, in two generations from the Framingham Osteoporosis Study. Variance component linkage analysis was performed using normalized residuals (adjusted for age, height, BMI, and estrogen status in women).
Multipoint linkage analyses produced LOD scores ≥ 3.0 for BMD on chromosomes (chr.) 9 and 11, and for ultrasound speed of sound on chr. 5. Hip geometric traits were linked with higher LOD scores, such as with Shaft Width on chr. 4 (LOD = 3.9) and chr. 16 (LOD = 3.8), and with Shaft section modulus on chr. 22 (LOD = 4.0). LOD score ≥ 5.0 was obtained for femoral Neck Width on chr. 7.
In conclusion, with a SNP-based linkage approach, we identified several novel potential QTLs and confirmed previously identified chromosomal regions linked to bone mass and geometry. Subsequent focus on the spectrum of genetic polymorphisms in these refined regions may contribute to finding variants predisposing to osteoporosis.
PMCID: PMC2842472  PMID: 20064633
quantitative trait loci; BMD; bone geometry; osteoporosis; SNP array
3.  Polymorphisms in the Estrogen Receptor β (ESR2) Gene Are Associated with Bone Mineral Density in Caucasian Men and Women 
A major determinant of osteoporotic fractures is peak bone mineral density (BMD), which is a highly heritable trait. Recently, we identified significant linkage for hip BMD in premenopausal sister pairs at chromosome 14q (LOD score = 3.5), where the estrogen receptor β gene (ESR2) is located.
The objective of the study was to determine whether ESR2 polymorphisms are associated with normal BMD variation.
This was a population‐based genetic association study, using 11 single nucleotide polymorphisms (SNPs) distributed across the ESR2 gene.
The study was conducted at an academic research laboratory and medical center.
Patients and Other Participants
A total of 411 healthy men (aged 18–61 yr) and 1291 healthy premenopausal women (aged 20–50 yr) living in Indiana participated in the study.
There were no interventions.
Main Outcome Measure(s)
The main outcome measures were SNP genotype distributions and their association with BMD at the femoral neck and lumbar spine.
Significant association of spine BMD was found with three SNPs in men and one SNP in women (P ≤ 0.05). The conditional linkage analysis using the ESR2 haplotypes showed that the ESR2 gene accounts for, at most, 18% of the original linkage.
ESR2 polymorphisms are significantly associated with bone mass in both men and women. However, the ESR2 gene is not entirely responsible for our original linkage, and an additional gene(s) in chromosome 14q contributes to the determination of BMD.
PMCID: PMC1948071  PMID: 16118344
4.  Identification of QTL genes for BMD variation using both linkage and gene-based association approaches 
Human Genetics  2011;130(4):539-546.
Low bone mineral density (BMD) is a risk factor for osteoporotic fracture with a high heritability. Previous large scale linkage study in Northern Chinese has identified four significant quantitative trait loci (QTL) for BMD variation on chromosome 2q24, 5q21, 7p21 and 13q21. We performed a replication study of these four QTL in 1,459 Southern Chinese from 306 pedigrees. Successful replication was observed on chromosome 5q21 for femoral neck BMD with a LOD score of 1.38 (nominal p value = 0.006). We have previously identified this locus in a genome scan meta-analysis of BMD variation in a white population. Subsequent QTL-wide gene-based association analysis in 800 subjects with extreme BMD identified CAST and ERAP1 as novel BMD candidate genes (empirical p value of 0.032 and 0.014, respectively). The associations were independently replicated in a Northern European population (empirical p value of 0.01 and 0.004 for CAST and ERAP1, respectively). These findings provide further evidence that 5q21 is a BMD QTL, and CAST and ERAP1 may be associated with femoral neck BMD variation.
Electronic supplementary material
The online version of this article (doi:10.1007/s00439-011-0972-2) contains supplementary material, which is available to authorized users.
PMCID: PMC3178777  PMID: 21424381
5.  A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality 
Journal of Clinical Investigation  2001;107(7):899-907.
Osteoporosis is a common disease with a strong genetic component. We previously described a polymorphic Sp1 binding site in the COL1A1 gene that has been associated with osteoporosis in several populations. Here we explore the molecular mechanisms underlying this association. A meta-analysis showed significant associations between COL1A1 “s” alleles and bone mineral density (BMD), body mass index (BMI), and osteoporotic fractures. The association with fracture was stronger than expected on the basis of the observed differences in BMD and BMI, suggesting an additional effect on bone strength. Gel shift assays showed increased binding affinity of the “s” allele for Sp1 protein, and primary RNA transcripts derived from the “s” allele were approximately three times more abundant than “S” allele–derived transcripts in “Ss” heterozygotes. Collagen produced from osteoblasts cultured from “Ss” heterozygotes had an increased ratio of α1(I) protein relative to α2(I), and this was accompanied by an increased ratio of COL1A1 mRNA relative to COL1A2. Finally, the yield strength of bone derived from “Ss” individuals was reduced when compared with bone derived from “SS” subjects. We conclude that the COL1A1 Sp1 polymorphism is a functional genetic variant that predisposes to osteoporosis by complex mechanisms involving changes in bone mass and bone quality.
PMCID: PMC199568  PMID: 11285309
6.  Association of bone morphogenetic protein-2 gene polymorphisms with susceptibility to ossification of the posterior longitudinal ligament of the spine and its severity in Chinese patients 
European Spine Journal  2008;17(7):956-964.
A case–control study was conducted to examine the association between two single nucleotide polymorphisms (SNPs) in exon 2 of the bone morphogenetic protein-2 gene (BMP-2) and ossification of the posterior longitudinal ligament (OPLL), and to investigate whether SNPs of the Ser37Ala (T/G) and the Ser87Ser (A/G) in the BMP-2 gene are associated with genetic susceptibility to OPLL and its severity in Chinese subjects. The Ser87Ser (A/G) SNP has been implicated in bone mineral density (BMD) and increases the risk of OA in women. The Ser37Ala (T/G) SNP is associated with BMD and the rate of bone loss in osteoporosis and osteoporosis fractures. A total of 57 OPLL patients and 135 non-OPLL controls were studied. Radiographs of the cervical spine were analyzed to determine the presence and the severity of OPLL. The association of two SNPs with the occurrence and the extent of OPLL were statistically evaluated. There was a significant association between the Ser37Ala (T/G) polymorphism and the occurrence of OPLL in the cervical spine. However, no significant association was found between the Ser37Ala (T/G) polymorphism and the more number of ossified cervical vertebrae in OPLL patients. There was a significant association between the Ser87Ser (A/G) polymorphism and the more number of ossified cervical vertebrae in OPLL patients. However, there was no statistical difference between the Ser87Ser (A/G) SNP and the occurrence of OPLL in the cervical spine. In addition, the Ser87Ser (A/G) polymorphism in male patients and in female patients showed no statistical difference between cases and controls. The present results demonstrate that BMP-2 Gene is not only a factor associated with the occurrence of OPLL, but also a factor related to more extensive OPLL. The “G” allele in the Ser37Ala (T/G) polymorphism is associated with the occurrence of OPLL, but not more extensive OPLL in the cervical spine. The “G” allele in the Ser87Ser (A/G) polymorphism promotes the extent of OPLL, whereas the “A” allele in the Ser87Ser (A/G) polymorphism restricts ectopic ossification in the cervical spine at least in Chinese subjects.
PMCID: PMC2443260  PMID: 18389292
OPLL; BMP-2 gene; PCR; Polymorphism; Case–control study
7.  Association of oestrogen receptor α gene polymorphisms with postmenopausal bone loss, bone mass, and quantitative ultrasound properties of bone 
Journal of Medical Genetics  2005;42(3):240-246.
Background: The gene encoding oestrogen receptor α (ESR1) appears to regulate bone mineral density (BMD) and other determinants of osteoporotic fracture risk.
Objective: To investigate the relation between common polymorphisms and haplotypes of the ESR1 gene and osteoporosis related phenotypes in a population based cohort of 3054 Scottish women.
Results: There was a significant association between a common haplotype "px", defined by the PvuII andXbaI restriction fragment length polymorphisms within intron 1 of the ESR1 gene, and femoral neck bone loss in postmenopausal women who had not received hormone replacement therapy (n = 945; p = 0.009). Annual rates of femoral neck bone loss were ∼14% higher in subjects who carried one copy of px and 22% higher in those who carried two copies, compared with those who did not carry the px haplotype. The px haplotype was associated with lower femoral neck BMD in the postmenopausal women (p = 0.02), and with reduced calcaneal broadband ultrasound attenuation (BUA) values in the whole study population (p = 0.005). There was no association between a TA repeat polymorphism in the ESR1 promoter and any phenotype studied, though on long range haplotype analysis subjects with a smaller number of TA repeats who also carried the px haplotype had reduced BUA values.
Conclusions: The ESR1px haplotype is associated with reduced hip BMD values and increased rates of femoral neck bone loss in postmenopausal women. An association with BUA may explain the fact that ESR1 intron 1 alleles predict osteoporotic fractures by a mechanism partly independent of differences in BMD.
PMCID: PMC1736016  PMID: 15744038
8.  Large-Scale Evidence for the Effect of the COLIA1 Sp1 Polymorphism on Osteoporosis Outcomes: The GENOMOS Study  
PLoS Medicine  2006;3(4):e90.
Osteoporosis and fracture risk are considered to be under genetic control. Extensive work is being performed to identify the exact genetic variants that determine this risk. Previous work has suggested that a G/T polymorphism affecting an Sp1 binding site in the COLIA1 gene is a genetic marker for low bone mineral density (BMD) and osteoporotic fracture, but there have been no very-large-scale studies of COLIA1 alleles in relation to these phenotypes.
Methods and Findings
Here we evaluated the role of COLIA1 Sp1 alleles as a predictor of BMD and fracture in a multicenter study involving 20,786 individuals from several European countries. At the femoral neck, the average (95% confidence interval [CI]) BMD values were 25 mg/cm 2 (CI, 16 to 34 mg/cm 2) lower in TT homozygotes than the other genotype groups ( p < 0.001), and a similar difference was observed at the lumbar spine; 21 mg/cm 2 (CI, 1 to 42 mg/cm 2), ( p = 0.039). These associations were unaltered after adjustment for potential confounding factors. There was no association with fracture overall (odds ratio [OR] = 1.01 [CI, 0.95 to 1.08]) in either unadjusted or adjusted analyses, but there was a non-significant trend for association with vertebral fracture and a nominally significant association with incident vertebral fractures in females (OR = 1.33 [CI, 1.00 to 1.77]) that was independent of BMD, and unaltered in adjusted analyses.
Allowing for the inevitable heterogeneity between participating teams, this study—which to our knowledge is the largest ever performed in the field of osteoporosis genetics for a single gene—demonstrates that the COLIA1 Sp1 polymorphism is associated with reduced BMD and could predispose to incident vertebral fractures in women, independent of BMD. The associations we observed were modest however, demonstrating the importance of conducting studies that are adequately powered to detect and quantify the effects of common genetic variants on complex diseases.
A large collaborative European study finds only weak links between a much studied potential genetic risk factor and bone mineral density or fracture risk.
PMCID: PMC1370920  PMID: 16475872
9.  Autosome-Wide Linkage Analysis of Hip Structural Phenotypes in the Old Order Amish 
Bone  2008;43(3):607-612.
Fracture risk is associated with bone mineral density (BMD) and with other indices of bone strength, including hip geometry. While the heritability and associated fracture risk of BMD are well described, less is known about genetic influences of bone geometry. We derived hip structural phenotypes using the Hip Structural Analysis Program (HSA) and performed autosome-wide linkage analysis of hip geometric structural phenotypes.
Materials and Methods
The Amish Family Osteoporosis Study was designed to identify genes affecting bone health. BMD was measured at the hip using dual x-ray absorptiometry (DXA) in 879 participants (mean age ± SD = 49.8 ± 16.1 yrs, range 18–91 yrs) from large multigenerational families. From DXA scans, we computed structural measures of hip geometry at the femoral neck (NN) and shaft (S) by HSA, including cross sectional area (CSA), endocortical or inner diameter (ID), outer diameter (OD) buckling ratio (BR) and section modulus (Z). Genotyping of 731 highly polymorphic microsatellite markers (average spacing of 5.4 cM) and autosome-wide multipoint linkage analysis was performed.
The heritability of HSA-derived hip phenotypes ranged from 40 to 84%. In the group as a whole, autosome-wide linkage analysis suggested evidence of linkage for QTLs related to NN_Z on chromosome 1p36 (LOD=2.36). In sub-group analysis, ten additional suggestive regions of linkage were found on chromosomes 1, 2, 5, 6, 11, 12, 14, 15 and 17, all with LOD ≥ 2.3 except for our linkage at 17q11.2–13 for men and women age 50 and under for NN_CSA, which had a lower LOD of 2.16, but confirmed a previous linkage report.
We found HSA-derived measures of hip structure to be highly heritable independent of BMD. No strong evidence of linkage was found for any phenotype. Confirmatory evidence of linkage was found on chromosome 17q11.2–12 for NN_CSA. Modest evidence was found for genes affecting hip structural phenotypes at ten other chromosomal locations.
PMCID: PMC2591020  PMID: 18555766
hip structural phenotype; bone geometry; heritability; genetics; autosome-wide scan
10.  Genome-Wide Association Study Identifies ALDH7A1 as a Novel Susceptibility Gene for Osteoporosis 
PLoS Genetics  2010;6(1):e1000806.
Osteoporosis is a major public health problem. It is mainly characterized by low bone mineral density (BMD) and/or low-trauma osteoporotic fractures (OF), both of which have strong genetic determination. The specific genes influencing these phenotypic traits, however, are largely unknown. Using the Affymetrix 500K array set, we performed a case-control genome-wide association study (GWAS) in 700 elderly Chinese Han subjects (350 with hip OF and 350 healthy matched controls). A follow-up replication study was conducted to validate our major GWAS findings in an independent Chinese sample containing 390 cases with hip OF and 516 controls. We found that a SNP, rs13182402 within the ALDH7A1 gene on chromosome 5q31, was strongly associated with OF with evidence combined GWAS and replication studies (P = 2.08×10−9, odds ratio = 2.25). In order to explore the target risk factors and potential mechanism underlying hip OF risk, we further examined this candidate SNP's relevance to hip BMD both in Chinese and Caucasian populations involving 9,962 additional subjects. This SNP was confirmed as consistently associated with hip BMD even across ethnic boundaries, in both Chinese and Caucasians (combined P = 6.39×10−6), further attesting to its potential effect on osteoporosis. ALDH7A1 degrades and detoxifies acetaldehyde, which inhibits osteoblast proliferation and results in decreased bone formation. Our findings may provide new insights into the pathogenesis of osteoporosis.
Author Summary
Osteoporosis is a major health concern worldwide. It is a highly heritable disease characterized mainly by low bone mineral density (BMD) and/or osteoporotic fractures. However, the specific genetic variants determining risk for low BMD or OF are largely unknown. Here, taking advantage of recent technological advances in human genetics, we performed a genome-wide association study and follow-up validation studies to identify genetic variants for osteoporosis. By examining a total of 11,568 individuals from Chinese and Caucasian populations, we discovered a susceptibility gene, ALDH7A1, which is associated with hip osteoporotic fracture and BMD. ALDH7A1 might inhibit osteoblast proliferation and decrease bone formation. Our finding opens a new avenue for exploring the pathophysiology of osteoporosis.
PMCID: PMC2794362  PMID: 20072603
11.  Bone mass pharmacogenetics and ethnic health implications 
Osteoporosis is a common skeletal disease with a strong genetic component characterized by reduced bone mass and increased risk of fragility fractures. Bone mineral density (BMD) is considered the best established risk factor for osteoporotic fractures.
Over the last years a large number of studies have pointed to the variability in many target genes and their relation with BMD and other determinants of fracture risk such as ultrasound bone properties, skeletal geometry and bone turnover markers. The importance of genetic factors in the bone quality is substantial, but no consensus exists yet on the genes that are involved.
Although osteoporosis is world healthy problem, there are many differences in human ethnics regarding both disease morbidity and drug treatment efficacy. Heterogeneity in drug response may reflect varying responsiveness to osteoporosis treatments due to allele variation in signaling pathway genes such as vitamin D receptor (VDR) or estrogen receptor α (ERα). Polymorphisms of VDR and ERαloci appear genetic determinants of their corresponding hormonal treatment response such as vitamin D and estrogens. Because of their specific ethnic distribution, polymorphisms of VDR and ERαgenes may be involved in reported human differences of osteoporosis treatment responses.
Knowledge of the molecular and functional consequences of the gene polymorphisms is crucial to fully appreciate their significance and understand their potential clinical implications. Future studies and preventive strategies to management osteoporosis need to take in account these genetic factors.
PMCID: PMC2781242  PMID: 22461213
genetics; estrogen receptor; osteoporosis; pharmacogenomics; polymorphism; vitamin D receptor
12.  Impact of Common Variation in Bone-Related Genes on Type 2 Diabetes and Related Traits 
Diabetes  2012;61(8):2176-2186.
Exploring genetic pleiotropy can provide clues to a mechanism underlying the observed epidemiological association between type 2 diabetes and heightened fracture risk. We examined genetic variants associated with bone mineral density (BMD) for association with type 2 diabetes and glycemic traits in large well-phenotyped and -genotyped consortia. We undertook follow-up analysis in ∼19,000 individuals and assessed gene expression. We queried single nucleotide polymorphisms (SNPs) associated with BMD at levels of genome-wide significance, variants in linkage disequilibrium (r2 > 0.5), and BMD candidate genes. SNP rs6867040, at the ITGA1 locus, was associated with a 0.0166 mmol/L (0.004) increase in fasting glucose per C allele in the combined analysis. Genetic variants in the ITGA1 locus were associated with its expression in the liver but not in adipose tissue. ITGA1 variants appeared among the top loci associated with type 2 diabetes, fasting insulin, β-cell function by homeostasis model assessment, and 2-h post–oral glucose tolerance test glucose and insulin levels. ITGA1 has demonstrated genetic pleiotropy in prior studies, and its suggested role in liver fibrosis, insulin secretion, and bone healing lends credence to its contribution to both osteoporosis and type 2 diabetes. These findings further underscore the link between skeletal and glucose metabolism and highlight a locus to direct future investigations.
PMCID: PMC3402303  PMID: 22698912
13.  Association of the Methylenetetrahydrofolate reductase C677T polymorphism and fracture risk in Chinese postmenopausal women* 
Bone  2006;40(3):737-742.
Osteoporotic fractures are a leading cause of disability and, indirectly, of death in the elderly population. Previous studies have shown that homocysteine level and the C677T polymorphism in the gene encoding methylenetetrahydrofolate reductase (MTHFR) may be involved in the development of osteoporosis and its related fracture in European populations. The aim of this study was to verify the association of this polymorphism with bone mineral density (BMD) and fractures in our 1899 Chinese postmenopausal women. The C677T T-allele frequency in this population was 39.2%. The distribution of the MTHFR genotypes followed the Hardy-Weinberg equilibrium. BMD at total body, total hip or femoral neck did not significantly vary with MTHFR C677T genotype. The T-allele carrier tended to have higher risk of having osteoporosis or osteopenia, but the difference was statistically insignificant. However, Poisson regression analysis revealed that the T-allele carriers had an increased risk of fractures (RR=1.7, 95%CI=1.1–2.7, p=0.01) which occurred before or after menopause. As far as fracture incidence after menopause was concerned, the CT or TT genotype had more than twice the risk of the CC genotype (RR=2.5, 95%CI=1.2–4.9, P=0.009). This association was independent of age, physical activity, occupation, passive smoking, height, weight, years since menopause, and total hip BMD.
Our data show that the MTHFR C677T polymorphism is an independent predictor of fracture risk, although it only had a weak effect on BMD. Further study on the mechanistic role that this polymorphism plays in the development of fractures may lead to better understanding of the etiology of osteoporotic fracture.
PMCID: PMC1855293  PMID: 17174622
Methylenetetrahydrofolate Reductase Gene; Fracture; Osteoporosis; Genetics; Postmenopausal Women
14.  Association of Methylene Tetrahydrofolate Reductase Polymorphism with BMD and Homocysteine in Premenopausal North Indian Women 
Background and Aim: Osteoporosis (OP) is a common nutrigenomic disease associated with various genetic components. Observational studies have indicated that mildly elevated homocysteine was a strong risk factor for osteoporotic fractures. Yet there is no clear biologic mechanism for an effect of homocysteine on bone.The aim of this study was to investigate the association of MTHFR C677T and A1298C polymorphisms, and to verify the association of these polymorphisms with bone mineral density and homocysteine in premenopausal women of northern India.
Material and Methods: We included 402 north Indian patients with altered BMD, both Osteopenic (OPN) and Osteoporosis, and normal controls. Genotype identification for MTHFR C677T and A1298C polymorphisms were analyzed by PCR-RFLP method, correlated with Bone Mineral Density (BMD), Homocysteine (Hcy), Folate and Vitamin B12.
Results: The study groups did not differ in terms of age, weight and body mass indices. Prevalence of Genotype frequencies (GFs) for MTHFRC677T OP were (n: 402): CC 361 (89.8%), CT 25 (6.22%), TT 16 (3.98%) and that for MTHFR A1298C were (n: 402) AA 353(87.81%), AC 29(7.21%), CC 20(4.98%). Folate was significantly lower in the OP group than those in both the other groups, while there was no significant difference in Hcy in the OP group relative to OPN, as compared to controls.
Conclusion: The GFs for MTHFR C677T and A1298C polymorphisms were not different between both groups. In conclusion, polymorphism of the MTHFR 677T is associated with small differences in BMD with folate levels. Further, more investigations should be done in larger studies for other epigenetic pathways, that may increase the risk of Osteoporosis.
PMCID: PMC3919399  PMID: 24551672
Methylene tetra hydro folate reductase; Bone mineral density; Premenopausal women
15.  Osteoporosis genetics: year 2011 in review 
BoneKEy reports  2012;1:114.
Increased rates of osteoporotic fractures represent a worldwide phenomenon, which result from a progressing aging in the population around the world and creating socioeconomic problems. This review will focus mostly on human genetic studies identifying genomic regions, genes and mutations associated with osteoporosis (bone mineral density (BMD) and bone loss) and related fractures, which were published during 2011. Although multiple genome-wide association studies (GWAS) were performed to date, the genetic cause of osteoporosis and fractures has not yet been found, and only a small fraction of high heritability of bone mass was successfully explained. GWAS is a successful tool to initially define and prioritize specific chromosomal regions showing associations with the desired traits or diseases. Following the initial discovery and replication, targeted sequencing is needed in order to detect those rare variants which GWAS does not reveal by design. Recent GWAS findings for BMD included WNT16 and MEF2C. The role of bone morphogenetic proteins in fracture healing has been explored by several groups, and new single-nucleotide polymorphisms present in genes such as NOGGIN and SMAD6 were found to be associated with a greater risk of fracture non-union. Finding new candidate genes, and mutations associated with BMD and fractures, also provided new biological connections. Thus, candidates for molecular link between bone metabolism and lactation (for example, RAP1A gene), as well as possible pleiotropic effects for bone and muscle (ACTN3 gene) were suggested. The focus of contemporary studies seems to move toward whole-genome sequencing, epigenetic and functional genomics strategies to find causal variants for osteoporosis.
PMCID: PMC3727733  PMID: 23951496
16.  Association of a functional microsatellite within intron 1 of the BMP5 gene with susceptibility to osteoarthritis 
BMC Medical Genetics  2009;10:141.
In a previous study carried out by our group, the genotyping of 36 microsatellite markers from within a narrow interval of chromosome 6p12.3-q13 generated evidence for linkage and for association to female hip osteoarthritis (OA), with the most compelling association found for a marker within intron 1 of the bone morphogenetic protein 5 gene (BMP5). In this study, we aimed to further categorize the association of variants within intron 1 of BMP5 with OA through an expanded genetic association study of the intron and subsequent functional analysis of associated polymorphisms.
We genotyped 18 common polymorphisms including 8 microsatellites and 9 single nucleotide polymorphisms (SNPs) and 1 insertion/deletion (INDEL) from within highly conserved regions between human and mouse within intron 1 of BMP5. These markers were then tested for association to OA by a two-stage approach in which the polymorphisms were initially genotyped in a case-control cohort comprising 361 individuals with associated polymorphisms (P ≤ 0.05) then genotyped in a second case-control cohort comprising 1185 individuals.
Two BMP5 intron 1 polymorphisms demonstrated association in the combined case-control cohort of 1546 individuals (765 cases and 781 controls): microsatellite D6S1276 (P = 0.018) and SNP rs921126 (P = 0.013). Functional analyses in osteoblastic, chondrocytic, and adipocytic cell lines indicated that allelic variants of D6S1276 have significant effects on the transcriptional activity of the BMP5 promoter in vitro.
Variability in gene expression of BMP5 may be an important contributor to OA genetic susceptibility.
PMCID: PMC2807860  PMID: 20021689
17.  Genetic and environmental factors affecting bone mineral density in large families. 
Postgraduate Medical Journal  1998;74(872):349-354.
This study assessed whether relatives with low bone mineral density (BMD) could be identified in five large families using historical, biochemical, and genetic markers for osteoporosis. Fifty of 65 relatives had their bone density and bone turnover markers measured, together with an assessment of their risk factors for osteoporosis. Only 33% (5/15) of siblings, 50% (6/12) of children and 43% (10/23) of nephews and nieces had entirely normal BMD. There was no difference in life-style risk factors for osteoporosis, history of previous fractures or body mass index between normal subjects and those with osteopenia or osteoporosis. Osteopenic individuals had a significantly higher than normal osteocalcin value. Within families, there was no clear association between BMD and any of the genetic markers (vitamin D receptor gene polymorphisms, COL 1A1 and COL 1A2 polymorphisms of the collagen gene), either alone or in combination. The addition of genetic markers to the other risk factors for low BMD did not improve the prediction of BMD. In conclusion, we suggest that the presence of osteoporosis in a first degree relative should be one of the clinical indications for bone density measurement as the individuals at risk would not be picked up by other methods.
PMCID: PMC2360948  PMID: 9799889
18.  Management of Age-Related Osteoporosis and Prevention of Associated Fractures 
Osteoporosis and related fractures are a significant concern for the global community. As the population continues to age, morbidity and mortality from fractures due to low bone mineral density (BMD) will likely continue to increase. Efforts should be made to screen those at risk for osteoporosis, identify and address various risk factors for falls and associated fractures, ensure adequate calcium and vitamin D intake, and institute pharmacological therapy to increase BMD when indicated. Agents which increase BMD and have been shown to decrease fractures, particularly at the hip, should be considered preferentially over those for which only BMD data are available. Drugs which have been shown to decrease the risk of age-related osteoporotic fractures include oral bisphosphonates (alendronate, ibandronate, and risedronate), intranasal calcitonin, estrogen receptor stimulators (eg, estrogen, selective estrogen receptor modulators [raloxifene]), parathyroid hormone (teriparatide), sodium fluoride, and strontium ranelate. Data are beginning to emerge supporting various combination therapies (eg, bisphosphonate plus an estrogen receptor stimulator), though more data are needed to identify combinations which are most effective and confer added fracture protection. In addition, further research is needed to identify ideal regimens in special populations such as nursing home patients and men.
PMCID: PMC1936264  PMID: 18360603
osteoporosis; fracture; prevention; treatment
19.  WNT16 Influences Bone Mineral Density, Cortical Bone Thickness, Bone Strength, and Osteoporotic Fracture Risk 
PLoS Genetics  2012;8(7):e1002745.
We aimed to identify genetic variants associated with cortical bone thickness (CBT) and bone mineral density (BMD) by performing two separate genome-wide association study (GWAS) meta-analyses for CBT in 3 cohorts comprising 5,878 European subjects and for BMD in 5 cohorts comprising 5,672 individuals. We then assessed selected single-nucleotide polymorphisms (SNPs) for osteoporotic fracture in 2,023 cases and 3,740 controls. Association with CBT and forearm BMD was tested for ∼2.5 million SNPs in each cohort separately, and results were meta-analyzed using fixed effect meta-analysis. We identified a missense SNP (Thr>Ile; rs2707466) located in the WNT16 gene (7q31), associated with CBT (effect size of −0.11 standard deviations [SD] per C allele, P = 6.2×10−9). This SNP, as well as another nonsynonymous SNP rs2908004 (Gly>Arg), also had genome-wide significant association with forearm BMD (−0.14 SD per C allele, P = 2.3×10−12, and −0.16 SD per G allele, P = 1.2×10−15, respectively). Four genome-wide significant SNPs arising from BMD meta-analysis were tested for association with forearm fracture. SNP rs7776725 in FAM3C, a gene adjacent to WNT16, was associated with a genome-wide significant increased risk of forearm fracture (OR = 1.33, P = 7.3×10−9), with genome-wide suggestive signals from the two missense variants in WNT16 (rs2908004: OR = 1.22, P = 4.9×10−6 and rs2707466: OR = 1.22, P = 7.2×10−6). We next generated a homozygous mouse with targeted disruption of Wnt16. Female Wnt16−/− mice had 27% (P<0.001) thinner cortical bones at the femur midshaft, and bone strength measures were reduced between 43%–61% (6.5×10−13
Author Summary
Bone traits are highly dependent on genetic factors. To date, numerous genetic loci for bone mineral density (BMD) and only one locus for osteoporotic fracture have been previously identified to be genome-wide significant. Cortical bone has been reported to be an important determinant of bone strength; so far, no genome-wide association studies (GWAS) have been performed for cortical bone thickness (CBT) of the tibial and radial diaphysis or BMD at forearm, a skeletal site rich in cortical bone. Therefore, we performed two separated meta-analyses of GWAS for cortical thickness of the tibia in 3 independent cohorts of 5,878 men and women, and for forearm BMD in 5 cohorts of 5,672 individuals. We identified the 7q31 locus, which contains WNT16, to be associated with CBT and BMD. Four SNPs from this locus were then tested in 2,023 osteoporotic fracture cases and 3,740 controls. One of these SNPs was genome-wide significant, and two were genome-wide suggestive, for forearm fracture. Generating a mouse with targeted disruption of Wnt16, we also demonstrated that mice lacking this protein had substantially thinner bone cortices and reduced bone strength than their wild-type littermates. These findings highlight WNT16 as a clinically relevant member of the Wnt signaling pathway and increase our understanding of the etiology of osteoporosis-related phenotypes and fracture.
PMCID: PMC3390364  PMID: 22792071
Cell Journal (Yakhteh)  2013;15(1):75-82.
Osteoporosis is a bone disorder that reduces bone mineral density (BMD) and leads to bone fracture. In addition to different factors, gene polymorphisms have been revealed to be associated with osteoporosis. In this study, we investigated the association between the BsmI polymorphism of vitamin D receptor (VDR) gene (rs1544410) and BMD in a population of Iranian women.
Materials and Methods:
In this case control study, clinical risk factors for osteoporosis were obtained from the participants through a questionnaire for a case-control study. The World Health Organisation (WHO) criteria were applied for the diagnosis of the disease. Peripheral blood samples were obtained from 146 pre- and or postmenopausal Iranian women aged between 35 and 71 years (53.53 ± 9.8). The study population was classified for BMD into normal and osteoporotic groups, who matched for age, pregnancy status, menstrual condition, and body mass index (BMI). The BMD of the lumbar spine (L1-4) and femoral neck was measured. Polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP) was performed to detect and analyze the genotype.
The frequencies of AA and GG were significantly different between the two groups (p value<0.05), with the first genotype being higher in the patients and the second being higher in the normal group. The GG genotype was significantly associated with increased BMD in the lumbar spine (p value<0.05) but non-significant in the femoral neck (p value>0.05).
BsmI polymorphism of VDR gene has a significant association with BMD in the lumbar spine and may have a minor effect on the proximal femur BMD in Iranian women.
PMCID: PMC3660027  PMID: 23700563
Vitamin D Receptor; BsmI; Polymorphism; Bone Mineral Density; Osteoporosis
Journal of Clinical Investigation  1997;100(2):259-263.
Osteoporosis and osteoarthritis are age-related disorders of the skeleton with genetic components. Low bone density is a risk factor for osteoporotic fracture while osteoarthritis is associated with increased bone density. The 1,25-dihydroxyvitamin D3 receptor (VDR) gene locus was previously found to be associated with bone density. We therefore studied the relationship between radiographic osteoarthritis at the knee and VDR genotype in a population-based sample (n = 846), using molecular haplotyping of anonymous intragenic DNA polymorphisms. Radiographic osteoarthritis was defined using the Kellgren score, which is based on the assessment of osteophytes and joint space narrowing (JSN). We show that one VDR haplotype allele is significantly overrepresented in individuals with knee osteoarthritis and associated with a 2.27-fold increased relative risk (95% confidence interval 1.46, 3.52). Adjustment for bone density at the femoral neck did not change these results, indicating that the association is not mediated by bone density. The association appeared to be largely explained by the presence of osteophytes rather than JSN. Our results indicate a role of the VDR gene in the pathogenesis of osteophytes while linkage disequilibrium with another nearby gene, i.e., the collagen type IIa1 gene encoding the most abundant protein in cartilage, might contribute to the association.
PMCID: PMC508187  PMID: 9218501
Postmenopausal osteoporosis is the most common bone disease, associated with low bone mineral density (BMD) and pathological fractures which lead to significant morbidity. It is defined clinically by a BMD of 2.5 standard deviations or more below the young female adult mean (T-score =−2.5). Osteoporosis was a huge global problem both socially and economically – in the UK alone, in 2011 £6 million per day was spent on treatment and social care of the 230,000 osteoporotic fracture patients – and therefore viable preventative and therapeutic approaches are key to managing this problem within the aging population of today. One of the main issues surrounding the potential of osteoporosis management is diagnosing patients at risk before they develop a fracture. We discuss the current and future possibilities for identifying susceptible patients, from fracture risk assessment to shape modeling and in relation to the high heritability of osteoporosis now that a plethora of genes have been associated with low BMD and osteoporotic fracture. This review highlights the current therapeutics in clinical use (including bisphosphonates, anti-RANKL [receptor activator of NF-κB ligand], intermittent low dose parathyroid hormone, and strontium ranelate) and some of those in development (anti-sclerostin antibodies and cathepsin K inhibitors). By highlighting the intimate relationship between the activities of bone forming (osteoblasts) and bone-resorbing (osteoclasts) cells, we include an overview and comparison of the molecular mechanisms exploited in each therapy.
PMCID: PMC3686324  PMID: 23807838
BMD; fracture; bisphosphonate; strontium; denosumab; teriparatide; raloxifene
Journal of Bone and Mineral Research  2010;25(7):1555-1563.
Genome-wide association studies offer an unbiased approach to identify new candidate genes for osteoporosis. We examined the Affymetrix 500K + 50K SNP GeneChip marker sets for associations with multiple osteoporosis-related traits at various skeletal sites, including bone mineral density (BMD, hip and spine), heel ultrasound, and hip geometric indices in the Framingham Osteoporosis Study. We evaluated 433,510 single-nucleotide polymorphisms (SNPs) in 2073 women (mean age 65 years), members of two-generational families. Variance components analysis was performed to estimate phenotypic, genetic, and environmental correlations (ρP, ρG, and ρE) among bone traits. Linear mixed-effects models were used to test associations between SNPs and multivariable-adjusted trait values. We evaluated the proportion of SNPs associated with pairs of the traits at a nominal significance threshold α = 0.01. We found substantial correlation between the proportion of associated SNPs and the ρP and ρG (r = 0.91 and 0.84, respectively) but much lower with ρE (r = 0.38). Thus, for example, hip and spine BMD had 6.8% associated SNPs in common, corresponding to ρP = 0.55 and ρG = 0.66 between them. Fewer SNPs were associated with both BMD and any of the hip geometric traits (eg, femoral neck and shaft width, section moduli, neck shaft angle, and neck length); ρG between BMD and geometric traits ranged from −0.24 to +0.40. In conclusion, we examined relationships between osteoporosis-related traits based on genome-wide associations. Most of the similarity between the quantitative bone phenotypes may be attributed to pleiotropic effects of genes. This knowledge may prove helpful in defining the best phenotypes to be used in genetic studies of osteoporosis. © 2010 American Society for Bone and Mineral Research.
PMCID: PMC3153998  PMID: 20200953
bone mineral density; quantitative ultrasound; femoral geometry; genome-wide association; single-nucleotide polymorphisms; genetic correlations; pleiotropy
PPAR research  2006;2006:93258.
Osteoporosis is a complex metabolic bone disorder. Recently it has been appreciated that the “obesity in bone” phenomenon occurs at the expense of bone formation, and that is a key component of the pathology of this disease. Mouse models with altered bone expression levels of peroxisome proliferator-activated receptor gamma (PPARG) impact bone formation, but genetic studies connecting PPARG polymorphisms to skeletal phenotypes in humans have proven to be less than satisfactory. One missense polymorphism in exon one has been linked to low bone mineral density (BMD), but the most studied polymorphism, Pro12Ala, has not yet been examined in the context of skeletal phenotype. The studies to date are a promising start in leading to our understanding of the genetic contribution of PPARG to the phenotypes of BMD and fracture risk.
PMCID: PMC1679963  PMID: 17347532
PLoS ONE  2011;6(7):e22035.
Osteoporotic hip fracture (HF) is a serious global public health problem associated with high morbidity and mortality. Hip bone size (BS) has been identified as one of key measurable risk factors for HF, independent of bone mineral density (BMD). Hip BS is highly genetically determined, but genetic factors underlying BS variation are still poorly defined. Here, we performed an initial genome-wide copy number variation (CNV) association analysis for hip BS in 1,627 Chinese Han subjects using Affymetrix GeneChip Human Mapping SNP 6.0 Array and a follow-up replicate study in 2,286 unrelated US Caucasians sample. We found that a copy number polymorphism (CNP267) located at chromosome 2q12.2 was significantly associated with hip BS in both initial Chinese and replicate Caucasian samples with p values of 4.73E-03 and 5.66E-03, respectively. An important candidate gene, four and a half LIM domains 2 (FHL2), was detected at the downstream of CNP267, which plays important roles in bone metabolism by binding to several bone formation regulator, such as insulin-like growth factor-binding protein 5 (IGFBP-5) and androgen receptor (AR). Our findings suggest that CNP267 region may be associated with hip BS which might influence the FHL2 gene downstream.
PMCID: PMC3137628  PMID: 21789208

Results 1-25 (749889)