PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1316580)

Clipboard (0)
None

Related Articles

1.  Lung Cancer Occurrence in Never-Smokers: An Analysis of 13 Cohorts and 22 Cancer Registry Studies  
PLoS Medicine  2008;5(9):e185.
Background
Better information on lung cancer occurrence in lifelong nonsmokers is needed to understand gender and racial disparities and to examine how factors other than active smoking influence risk in different time periods and geographic regions.
Methods and Findings
We pooled information on lung cancer incidence and/or death rates among self-reported never-smokers from 13 large cohort studies, representing over 630,000 and 1.8 million persons for incidence and mortality, respectively. We also abstracted population-based data for women from 22 cancer registries and ten countries in time periods and geographic regions where few women smoked. Our main findings were: (1) Men had higher death rates from lung cancer than women in all age and racial groups studied; (2) male and female incidence rates were similar when standardized across all ages 40+ y, albeit with some variation by age; (3) African Americans and Asians living in Korea and Japan (but not in the US) had higher death rates from lung cancer than individuals of European descent; (4) no temporal trends were seen when comparing incidence and death rates among US women age 40–69 y during the 1930s to contemporary populations where few women smoke, or in temporal comparisons of never-smokers in two large American Cancer Society cohorts from 1959 to 2004; and (5) lung cancer incidence rates were higher and more variable among women in East Asia than in other geographic areas with low female smoking.
Conclusions
These comprehensive analyses support claims that the death rate from lung cancer among never-smokers is higher in men than in women, and in African Americans and Asians residing in Asia than in individuals of European descent, but contradict assertions that risk is increasing or that women have a higher incidence rate than men. Further research is needed on the high and variable lung cancer rates among women in Pacific Rim countries.
Michael Thun and colleagues pooled and analyzed comprehensive data on lung cancer incidence and death rates among never-smokers to examine what factors other than active smoking affect lung cancer risk.
Editors' Summary
Background.
Every year, more than 1.4 million people die from lung cancer, a leading cause of cancer deaths worldwide. In the US alone, more than 161,000 people will die from lung cancer this year. Like all cancers, lung cancer occurs when cells begin to divide uncontrollably because of changes in their genes. The main trigger for these changes in lung cancer is exposure to the chemicals in cigarette smoke—either directly through smoking cigarettes or indirectly through exposure to secondhand smoke. Eighty-five to 90% of lung cancer deaths are caused by exposure to cigarette smoke and, on average, current smokers are 15 times more likely to die from lung cancer than lifelong nonsmokers (never smokers). Furthermore, a person's cumulative lifetime risk of developing lung cancer is related to how much they smoke, to how many years they are a smoker, and—if they give up smoking—to the age at which they stop smoking.
Why Was This Study Done?
Because lung cancer is so common, even the small fraction of lung cancer that occurs in lifelong nonsmokers represents a large number of people. For example, about 20,000 of this year's US lung cancer deaths will be in never-smokers. However, very little is known about how age, sex, or race affects the incidence (the annual number of new cases of diseases in a population) or death rates from lung cancer among never-smokers. A better understanding of the patterns of lung cancer incidence and death rates among never-smokers could provide useful information about the factors other than cigarette smoke that increase the likelihood of not only never-smokers, but also former smokers and current smokers developing lung cancer. In this study, therefore, the researchers pooled and analyzed a large amount of information about lung cancer incidence and death rates among never smokers to examine what factors other than active smoking affect lung cancer risk.
What Did the Researchers Do and Find?
The researchers analyzed information on lung cancer incidence and/or death rates among nearly 2.5 million self-reported never smokers (men and women) from 13 large studies investigating the health of people in North America, Europe, and Asia. They also analyzed similar information for women taken from cancer registries in ten countries at times when very few women were smokers (for example, the US in the late 1930s). The researchers' detailed statistical analyses reveal, for example, that lung cancer death rates in African Americans and in Asians living in Korea and Japan (but not among Asians living in the US) are higher than those in people of the European continental ancestry group. They also show that men have higher death rates from lung cancer than women irrespective of racial group, but that women aged 40–59 years have a slightly higher incidence of lung cancer than men of a similar age. This difference disappears at older ages. Finally, an analysis of lung cancer incidence and death rates at different times during the past 70 years shows no evidence of an increase in the lung cancer burden among never smokers over time.
What Do These Findings Mean?
Although some of the findings described above have been hinted at in previous, smaller studies, these and other findings provide a much more accurate picture of lung cancer incidence and death rates among never smokers. Most importantly the underlying data used in these analyses are now freely available and should provide an excellent resource for future studies of lung cancer in never smokers.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050185.
The US National Cancer Institute provides detailed information for patients and health professionals about all aspects of lung cancer and information on smoking and cancer (in English and Spanish)
Links to other US-based resources dealing with lung cancer are provided by MedlinePlus (in English and Spanish)
Cancer Research UK provides key facts about the link between lung cancer and smoking and information about all other aspects of lung cancer
doi:10.1371/journal.pmed.0050185
PMCID: PMC2531137  PMID: 18788891
2.  Burden of Total and Cause-Specific Mortality Related to Tobacco Smoking among Adults Aged ≥45 Years in Asia: A Pooled Analysis of 21 Cohorts 
PLoS Medicine  2014;11(4):e1001631.
Wei Zheng and colleagues quantify the burden of tobacco-smoking-related deaths for adults in Asia.
Please see later in the article for the Editors' Summary
Background
Tobacco smoking is a major risk factor for many diseases. We sought to quantify the burden of tobacco-smoking-related deaths in Asia, in parts of which men's smoking prevalence is among the world's highest.
Methods and Findings
We performed pooled analyses of data from 1,049,929 participants in 21 cohorts in Asia to quantify the risks of total and cause-specific mortality associated with tobacco smoking using adjusted hazard ratios and their 95% confidence intervals. We then estimated smoking-related deaths among adults aged ≥45 y in 2004 in Bangladesh, India, mainland China, Japan, Republic of Korea, Singapore, and Taiwan—accounting for ∼71% of Asia's total population. An approximately 1.44-fold (95% CI = 1.37–1.51) and 1.48-fold (1.38–1.58) elevated risk of death from any cause was found in male and female ever-smokers, respectively. In 2004, active tobacco smoking accounted for approximately 15.8% (95% CI = 14.3%–17.2%) and 3.3% (2.6%–4.0%) of deaths, respectively, in men and women aged ≥45 y in the seven countries/regions combined, with a total number of estimated deaths of ∼1,575,500 (95% CI = 1,398,000–1,744,700). Among men, approximately 11.4%, 30.5%, and 19.8% of deaths due to cardiovascular diseases, cancer, and respiratory diseases, respectively, were attributable to tobacco smoking. Corresponding proportions for East Asian women were 3.7%, 4.6%, and 1.7%, respectively. The strongest association with tobacco smoking was found for lung cancer: a 3- to 4-fold elevated risk, accounting for 60.5% and 16.7% of lung cancer deaths, respectively, in Asian men and East Asian women aged ≥45 y.
Conclusions
Tobacco smoking is associated with a substantially elevated risk of mortality, accounting for approximately 2 million deaths in adults aged ≥45 y throughout Asia in 2004. It is likely that smoking-related deaths in Asia will continue to rise over the next few decades if no effective smoking control programs are implemented.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every year, more than 5 million smokers die from tobacco-related diseases. Tobacco smoking is a major risk factor for cardiovascular disease (conditions that affect the heart and the circulation), respiratory disease (conditions that affect breathing), lung cancer, and several other types of cancer. All told, tobacco smoking kills up to half its users. The ongoing global “epidemic” of tobacco smoking and tobacco-related diseases initially affected people living in the US and other Western countries, where the prevalence of smoking (the proportion of the population that smokes) in men began to rise in the early 1900s, peaking in the 1960s. A similar epidemic occurred in women about 40 years later. Smoking-related deaths began to increase in the second half of the 20th century, and by the 1990s, tobacco smoking accounted for a third of all deaths and about half of cancer deaths among men in the US and other Western countries. More recently, increased awareness of the risks of smoking and the introduction of various tobacco control measures has led to a steady decline in tobacco use and in smoking-related diseases in many developed countries.
Why Was This Study Done?
Unfortunately, less well-developed tobacco control programs, inadequate public awareness of smoking risks, and tobacco company marketing have recently led to sharp increases in the prevalence of smoking in many low- and middle-income countries, particularly in Asia. More than 50% of men in many Asian countries are now smokers, about twice the prevalence in many Western countries, and more women in some Asian countries are smoking than previously. More than half of the world's billion smokers now live in Asia. However, little is known about the burden of tobacco-related mortality (deaths) in this region. In this study, the researchers quantify the risk of total and cause-specific mortality associated with tobacco use among adults aged 45 years or older by undertaking a pooled statistical analysis of data collected from 21 Asian cohorts (groups) about their smoking history and health.
What Did the Researchers Do and Find?
For their study, the researchers used data from more than 1 million participants enrolled in studies undertaken in Bangladesh, India, mainland China, Japan, the Republic of Korea, Singapore, and Taiwan (which together account for 71% of Asia's total population). Smoking prevalences among male and female participants were 65.1% and 7.1%, respectively. Compared with never-smokers, ever-smokers had a higher risk of death from any cause in pooled analyses of all the cohorts (adjusted hazard ratios [HRs] of 1.44 and 1.48 for men and women, respectively; an adjusted HR indicates how often an event occurs in one group compared to another group after adjustment for other characteristics that affect an individual's risk of the event). Compared with never smoking, ever smoking was associated with a higher risk of death due to cardiovascular disease, cancer (particularly lung cancer), and respiratory disease among Asian men and among East Asian women. Moreover, the researchers estimate that, in the countries included in this study, tobacco smoking accounted for 15.8% of all deaths among men and 3.3% of deaths among women in 2004—a total of about 1.5 million deaths, which scales up to 2 million deaths for the population of the whole of Asia. Notably, in 2004, tobacco smoking accounted for 60.5% of lung-cancer deaths among Asian men and 16.7% of lung-cancer deaths among East Asian women.
What Do These Findings Mean?
These findings provide strong evidence that tobacco smoking is associated with a substantially raised risk of death among adults aged 45 years or older throughout Asia. The association between smoking and mortality risk in Asia reported here is weaker than that previously reported for Western countries, possibly because widespread tobacco smoking started several decades later in most Asian countries than in Europe and North America and the deleterious effects of smoking take some years to become evident. The researchers note that certain limitations of their analysis are likely to affect the accuracy of its findings. For example, because no data were available to estimate the impact of secondhand smoke, the estimate of deaths attributable to smoking is likely to be an underestimate. However, the finding that nearly 45% of the global deaths from active tobacco smoking occur in Asia highlights the urgent need to implement comprehensive tobacco control programs in Asia to reduce the burden of tobacco-related disease.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001631.
The World Health Organization provides information about the dangers of tobacco (in several languages) and about the WHO Framework Convention on Tobacco Control, an international instrument for tobacco control that came into force in February 2005 and requires parties to implement a set of core tobacco control provisions including legislation to ban tobacco advertising and to increase tobacco taxes; its 2013 report on the global tobacco epidemic is available
The US Centers for Disease Control and Prevention provides detailed information about all aspects of smoking and tobacco use
The UK National Health Services Choices website provides information about the health risks associated with smoking
MedlinePlus has links to further information about the dangers of smoking (in English and Spanish)
SmokeFree, a website provided by the UK National Health Service, offers advice on quitting smoking and includes personal stories from people who have stopped smoking
Smokefree.gov, from the US National Cancer Institute, offers online tools and resources to help people quit smoking
doi:10.1371/journal.pmed.1001631
PMCID: PMC3995657  PMID: 24756146
3.  Evaluation of the Lung Cancer Risks at Which to Screen Ever- and Never-Smokers: Screening Rules Applied to the PLCO and NLST Cohorts 
PLoS Medicine  2014;11(12):e1001764.
Martin Tammemägi and colleagues evaluate which risk groups of individuals, including nonsmokers and high-risk individuals from 65 to 80 years of age, should be screened for lung cancer using computed tomography.
Please see later in the article for the Editors' Summary
Background
Lung cancer risks at which individuals should be screened with computed tomography (CT) for lung cancer are undecided. This study's objectives are to identify a risk threshold for selecting individuals for screening, to compare its efficiency with the U.S. Preventive Services Task Force (USPSTF) criteria for identifying screenees, and to determine whether never-smokers should be screened. Lung cancer risks are compared between smokers aged 55–64 and ≥65–80 y.
Methods and Findings
Applying the PLCOm2012 model, a model based on 6-y lung cancer incidence, we identified the risk threshold above which National Lung Screening Trial (NLST, n = 53,452) CT arm lung cancer mortality rates were consistently lower than rates in the chest X-ray (CXR) arm. We evaluated the USPSTF and PLCOm2012 risk criteria in intervention arm (CXR) smokers (n = 37,327) of the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). The numbers of smokers selected for screening, and the sensitivities, specificities, and positive predictive values (PPVs) for identifying lung cancers were assessed. A modified model (PLCOall2014) evaluated risks in never-smokers. At PLCOm2012 risk ≥0.0151, the 65th percentile of risk, the NLST CT arm mortality rates are consistently below the CXR arm's rates. The number needed to screen to prevent one lung cancer death in the 65th to 100th percentile risk group is 255 (95% CI 143 to 1,184), and in the 30th to <65th percentile risk group is 963 (95% CI 291 to −754); the number needed to screen could not be estimated in the <30th percentile risk group because of absence of lung cancer deaths. When applied to PLCO intervention arm smokers, compared to the USPSTF criteria, the PLCOm2012 risk ≥0.0151 threshold selected 8.8% fewer individuals for screening (p<0.001) but identified 12.4% more lung cancers (sensitivity 80.1% [95% CI 76.8%–83.0%] versus 71.2% [95% CI 67.6%–74.6%], p<0.001), had fewer false-positives (specificity 66.2% [95% CI 65.7%–66.7%] versus 62.7% [95% CI 62.2%–63.1%], p<0.001), and had higher PPV (4.2% [95% CI 3.9%–4.6%] versus 3.4% [95% CI 3.1%–3.7%], p<0.001). In total, 26% of individuals selected for screening based on USPSTF criteria had risks below the threshold PLCOm2012 risk ≥0.0151. Of PLCO former smokers with quit time >15 y, 8.5% had PLCOm2012 risk ≥0.0151. None of 65,711 PLCO never-smokers had PLCOm2012 risk ≥0.0151. Risks and lung cancers were significantly greater in PLCO smokers aged ≥65–80 y than in those aged 55–64 y. This study omitted cost-effectiveness analysis.
Conclusions
The USPSTF criteria for CT screening include some low-risk individuals and exclude some high-risk individuals. Use of the PLCOm2012 risk ≥0.0151 criterion can improve screening efficiency. Currently, never-smokers should not be screened. Smokers aged ≥65–80 y are a high-risk group who may benefit from screening.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lung cancer is the most commonly occurring cancer in the world and the most common cause of cancer-related deaths. Like all cancers, lung cancer occurs when cells acquire genetic changes that allow them to grow uncontrollably and to move around the body (metastasize). The most common trigger for these genetic changes in lung cancer is exposure to cigarette smoke. Symptoms of lung cancer include a persistent cough and breathlessness. If lung cancer is diagnosed when it is confined to the lung (stage I), the tumor can often be removed surgically. Stage II tumors, which have spread into nearby lymph nodes, are usually treated with surgery plus chemotherapy or radiotherapy. For more advanced lung cancers that have spread throughout the chest (stage III) or the body (stage IV), surgery is rarely helpful and these tumors are treated with chemotherapy and radiotherapy alone. Overall, because most lung cancers are not detected until they are advanced, less than 17% of people diagnosed with lung cancer survive for five years.
Why Was This Study Done?
Screening for lung cancer—looking for early disease in healthy people—could save lives. In the US National Lung Screening Trial (NLST), annual screening with computed tomography (CT) reduced lung cancer mortality by 20% among smokers at high risk of developing cancer compared with screening with a chest X-ray. But what criteria should be used to decide who is screened for lung cancer? The US Preventive Services Task Force (USPSTF), for example, recommends annual CT screening of people who are 55–80 years old, have smoked 30 or more pack-years (one pack-year is defined as a pack of cigarettes per day for one year), and—if they are former smokers—quit smoking less than 15 years ago. However, some experts think lung cancer risk prediction models—statistical models that estimate risk based on numerous personal characteristics—should be used to select people for screening. Here, the researchers evaluate PLCOm2012, a lung cancer risk prediction model based on the incidence of lung cancer among smokers enrolled in the US Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). Specifically, the researchers use NLST and PLCO screening trial data to identify a PLCOm2012 risk threshold for selecting people for screening and to compare the efficiency of the PLCOm2012 model and the USPSTF criteria for identifying “screenees.”
What Did the Researchers Do and Find?
By analyzing NLST data, the researchers calculated that at PLCOm2012 risk ≥0.0151, mortality (death) rates among NLST participants screened with CT were consistently below mortality rates among NLST participants screened with chest X-ray and that 255 people with a PLCOm2012 risk ≥0.0151 would need to be screened to prevent one lung cancer death. Next, they used data collected from smokers in the screened arm of the PLCO trial to compare the efficiency of the PLCOm2012 and USPSTF criteria for identifying screenees. They found that 8.8% fewer people had a PLCOm2012 risk ≥0.0151 than met USPSTF criteria for screening, but 12.4% more lung cancers were identified. Thus, using PLCOm2012 improved the sensitivity and specificity of the selection of individuals for lung cancer screening over using UPSTF criteria. Notably, 8.5% of PLCO former smokers with quit times of more than 15 years had PLCOm2012 risk ≥0.0151, none of the PLCO never-smokers had PLCOm2012 risk ≥0.0151, and the calculated risks and incidence of lung cancer were greater among PLCO smokers aged ≥65–80 years than among those aged 55–64 years.
What Do These Findings Mean?
Despite the absence of a cost-effectiveness analysis in this study, these findings suggest that the use of the PLCOm2012 risk ≥0.0151 threshold rather than USPSTF criteria for selecting individuals for lung cancer screening could improve screening efficiency. The findings have several other important implications. First, these findings suggest that screening may be justified in people who stopped smoking more than 15 years ago; USPSTF currently recommends that screening stop once an individual's quit time exceeds 15 years. Second, these findings do not support lung cancer screening among never-smokers. Finally, these findings suggest that smokers aged ≥65–80 years might benefit from screening, although the presence of additional illnesses and reduced life expectancy need to be considered before recommending the provision of routine lung cancer screening to this section of the population.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001764.
The US National Cancer Institute provides information about all aspects of lung cancer for patients and health-care professionals, including information on lung cancer screening (in English and Spanish)
Cancer Research UK also provides detailed information about lung cancer and about lung cancer screening
The UK National Health Service Choices website has a page on lung cancer that includes personal stories
MedlinePlus provides links to other sources of information about lung cancer (in English and Spanish)
Information about the USPSTF recommendations for lung cancer screening is available
doi:10.1371/journal.pmed.1001764
PMCID: PMC4251899  PMID: 25460915
4.  Combined Impact of Lifestyle-Related Factors on Total and Cause-Specific Mortality among Chinese Women: Prospective Cohort Study 
PLoS Medicine  2010;7(9):e1000339.
Findings from the Shanghai Women's Health Study confirm those derived from other, principally Western, cohorts regarding the combined impact of lifestyle-related factors on mortality.
Background
Although cigarette smoking, excessive alcohol drinking, obesity, and several other well-studied unhealthy lifestyle-related factors each have been linked to the risk of multiple chronic diseases and premature death, little is known about the combined impact on mortality outcomes, in particular among Chinese and other non-Western populations. The objective of this study was to quantify the overall impact of lifestyle-related factors beyond that of active cigarette smoking and alcohol consumption on all-cause and cause-specific mortality in Chinese women.
Methods and Findings
We used data from the Shanghai Women's Health Study, an ongoing population-based prospective cohort study in China. Participants included 71,243 women aged 40 to 70 years enrolled during 1996–2000 who never smoked or drank alcohol regularly. A healthy lifestyle score was created on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes (normal weight, lower waist-hip ratio, daily exercise, never exposed to spouse's smoking, higher daily fruit and vegetable intake). The score ranged from zero (least healthy) to five (most healthy) points. During an average follow-up of 9 years, 2,860 deaths occurred, including 775 from cardiovascular disease (CVD) and 1,351 from cancer. Adjusted hazard ratios for mortality decreased progressively with an increasing number of healthy lifestyle factors. Compared to women with a score of zero, hazard ratios (95% confidence intervals) for women with four to five factors were 0.57 (0.44–0.74) for total mortality, 0.29 (0.16–0.54) for CVD mortality, and 0.76 (0.54–1.06) for cancer mortality. The inverse association between the healthy lifestyle score and mortality was seen consistently regardless of chronic disease status at baseline. The population attributable risks for not having 4–5 healthy lifestyle factors were 33% for total deaths, 59% for CVD deaths, and 19% for cancer deaths.
Conclusions
In this first study, to our knowledge, to quantify the combined impact of lifestyle-related factors on mortality outcomes in Chinese women, a healthier lifestyle pattern—including being of normal weight, lower central adiposity, participation in physical activity, nonexposure to spousal smoking, and higher fruit and vegetable intake—was associated with reductions in total and cause-specific mortality among lifetime nonsmoking and nondrinking women, supporting the importance of overall lifestyle modification in disease prevention.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
It is well established that lifestyle-related factors, such as limited physical activity, unhealthy diets, excessive alcohol consumption, and exposure to tobacco smoke are linked to an increased risk of many chronic diseases and premature death. However, few studies have investigated the combined impact of lifestyle-related factors and mortality outcomes, and most of such studies of combinations of established lifestyle factors and mortality have been conducted in the US and Western Europe. In addition, little is currently known about the combined impact on mortality of lifestyle factors beyond that of active smoking and alcohol consumption.
Why Was This Study Done?
Lifestyles in regions of the world can vary considerably. For example, many women in Asia do not actively smoke or regularly drink alcohol, which are important facts to note when considering practical disease prevention measures for these women. Therefore, it is important to study the combination of lifestyle factors appropriate to this population.
What Did the Researchers Do and Find?
The researchers used the Shanghai Women's Health Study, an ongoing prospective cohort study of almost 75,000 Chinese women aged 40–70 years, as the basis for their analysis. The Shanghai Women's Health Study has comprehensive baseline data on anthropometric measurements, lifestyle habits (including the responses to validated food frequency and physical activity questionnaires), medical history, occupational history, and select information from each participant's spouse, such as smoking history and alcohol consumption. This information was used by the researchers to create a healthy lifestyle score on the basis of five lifestyle-related factors shown to be independently associated with mortality outcomes in this population: normal weight, lower waist-hip ratio, daily exercise, never being exposed to spouse's smoking, and higher daily fruit and vegetable intake. The score ranged from zero (least healthy) to five (most healthy) points. The researchers found that higher healthy lifestyle scores were significantly associated with decreasing mortality and that this association persisted for all women regardless of their baseline comorbidities. So in effect, healthier lifestyle-related factors, including normal weight, lower waist-hip ratio, participation in exercise, never being exposed to spousal smoking, and higher daily fruit and vegetable intake, were significantly and independently associated with lower risk of total, and cause-specific, mortality.
What Do These Findings Mean?
This large prospective cohort study conducted among lifetime nonsmokers and nonalcohol drinkers shows that lifestyle factors, other than active smoking and alcohol consumption, have a major combined impact on total mortality on a scale comparable to the effect of smoking—the leading cause of death in most populations. However, the sample sizes for some cause-specific analyses were relatively small (despite the overall large sample size), and extended follow-up of this cohort will provide the opportunity to further evaluate the impact of these lifestyle-related factors on mortality outcomes in the future.
The findings of this study highlight the importance of overall lifestyle modification in disease prevention, especially as most of the lifestyle-related factors studied here may be improved by individual motivation to change unhealthy behaviors. Further research is needed to design appropriate interventions to increase these healthy lifestyle factors among Asian women.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000339
The Vanderbilt Epidemiology Center has more information on the Shanghai Women's Health Study
The World Health Organization provides information on health in China
The document Health policy and systems research in Chinacontains information about health policy and health systems research in China
The Chinese Ministry of Healthalso provides health information
doi:10.1371/journal.pmed.1000339
PMCID: PMC2939020  PMID: 20856900
5.  Long-Term Exposure to Silica Dust and Risk of Total and Cause-Specific Mortality in Chinese Workers: A Cohort Study 
PLoS Medicine  2012;9(4):e1001206.
A retro-prospective cohort study by Weihong Chen and colleagues provides new estimates for the risk of total and cause-specific mortality due to long-term silica dust exposure among Chinese workers.
Background
Human exposure to silica dust is very common in both working and living environments. However, the potential long-term health effects have not been well established across different exposure situations.
Methods and Findings
We studied 74,040 workers who worked at 29 metal mines and pottery factories in China for 1 y or more between January 1, 1960, and December 31, 1974, with follow-up until December 31, 2003 (median follow-up of 33 y). We estimated the cumulative silica dust exposure (CDE) for each worker by linking work history to a job–exposure matrix. We calculated standardized mortality ratios for underlying causes of death based on Chinese national mortality rates. Hazard ratios (HRs) for selected causes of death associated with CDE were estimated using the Cox proportional hazards model. The population attributable risks were estimated based on the prevalence of workers with silica dust exposure and HRs. The number of deaths attributable to silica dust exposure among Chinese workers was then calculated using the population attributable risk and the national mortality rate. We observed 19,516 deaths during 2,306,428 person-years of follow-up. Mortality from all causes was higher among workers exposed to silica dust than among non-exposed workers (993 versus 551 per 100,000 person-years). We observed significant positive exposure–response relationships between CDE (measured in milligrams/cubic meter–years, i.e., the sum of silica dust concentrations multiplied by the years of silica exposure) and mortality from all causes (HR 1.026, 95% confidence interval 1.023–1.029), respiratory diseases (1.069, 1.064–1.074), respiratory tuberculosis (1.065, 1.059–1.071), and cardiovascular disease (1.031, 1.025–1.036). Significantly elevated standardized mortality ratios were observed for all causes (1.06, 95% confidence interval 1.01–1.11), ischemic heart disease (1.65, 1.35–1.99), and pneumoconiosis (11.01, 7.67–14.95) among workers exposed to respirable silica concentrations equal to or lower than 0.1 mg/m3. After adjustment for potential confounders, including smoking, silica dust exposure accounted for 15.2% of all deaths in this study. We estimated that 4.2% of deaths (231,104 cases) among Chinese workers were attributable to silica dust exposure. The limitations of this study included a lack of data on dietary patterns and leisure time physical activity, possible underestimation of silica dust exposure for individuals who worked at the mines/factories before 1950, and a small number of deaths (4.3%) where the cause of death was based on oral reports from relatives.
Conclusions
Long-term silica dust exposure was associated with substantially increased mortality among Chinese workers. The increased risk was observed not only for deaths due to respiratory diseases and lung cancer, but also for deaths due to cardiovascular disease.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Walk along most sandy beaches and you will be walking on millions of grains of crystalline silica, one of the commonest minerals on earth and a major ingredient in glass and in ceramic glazes. Silica is also used in the manufacture of building materials, in foundry castings, and for sandblasting, and respirable (breathable) crystalline silica particles are produced during quarrying and mining. Unfortunately, silica dust is not innocuous. Several serious diseases are associated with exposure to this dust, including silicosis (a chronic lung disease characterized by scarring and destruction of lung tissue), lung cancer, and pulmonary tuberculosis (a serious lung infection). Moreover, exposure to silica dust increases the risk of death (mortality). Worryingly, recent reports indicate that in the US and Europe, about 1.7 and 3.0 million people, respectively, are occupationally exposed to silica dust, figures that are dwarfed by the more than 23 million workers who are exposed in China. Occupational silica exposure, therefore, represents an important global public health concern.
Why Was This Study Done?
Although the lung-related adverse health effects of exposure to silica dust have been extensively studied, silica-related health effects may not be limited to these diseases. For example, could silica dust particles increase the risk of cardiovascular disease (diseases that affect the heart and circulation)? Other environmental particulates, such as the products of internal combustion engines, are associated with an increased risk of cardiovascular disease, but no one knows if the same is true for silica dust particles. Moreover, although it is clear that high levels of exposure to silica dust are dangerous, little is known about the adverse health effects of lower exposure levels. In this cohort study, the researchers examined the effect of long-term exposure to silica dust on the risk of all cause and cause-specific mortality in a large group (cohort) of Chinese workers.
What Did the Researchers Do and Find?
The researchers estimated the cumulative silica dust exposure for 74,040 workers at 29 metal mines and pottery factories from 1960 to 2003 from individual work histories and more than four million measurements of workplace dust concentrations, and collected health and mortality data for all the workers. Death from all causes was higher among workers exposed to silica dust than among non-exposed workers (993 versus 551 deaths per 100,000 person-years), and there was a positive exposure–response relationship between silica dust exposure and death from all causes, respiratory diseases, respiratory tuberculosis, and cardiovascular disease. For example, the hazard ratio for all cause death was 1.026 for every increase in cumulative silica dust exposure of 1 mg/m3-year; a hazard ratio is the incidence of an event in an exposed group divided by its incidence in an unexposed group. Notably, there was significantly increased mortality from all causes, ischemic heart disease, and silicosis among workers exposed to respirable silica concentrations at or below 0.1 mg/m3, the workplace exposure limit for silica dust set by the US Occupational Safety and Health Administration. For example, the standardized mortality ratio (SMR) for silicosis among people exposed to low levels of silica dust was 11.01; an SMR is the ratio of observed deaths in a cohort to expected deaths calculated from recorded deaths in the general population. Finally, the researchers used their data to estimate that, in 2008, 4.2% of deaths among industrial workers in China (231,104 deaths) were attributable to silica dust exposure.
What Do These Findings Mean?
These findings indicate that long-term silica dust exposure is associated with substantially increased mortality among Chinese workers. They confirm that there is an exposure–response relationship between silica dust exposure and a heightened risk of death from respiratory diseases and lung cancer. That is, the risk of death from these diseases increases as exposure to silica dust increases. In addition, they show a significant relationship between silica dust exposure and death from cardiovascular diseases. Importantly, these findings suggest that even levels of silica dust that are considered safe increase the risk of death. The accuracy of these findings may be affected by the accuracy of the silica dust exposure estimates and/or by confounding (other factors shared by the people exposed to silica such as diet may have affected their risk of death). Nevertheless, these findings highlight the need to tighten regulations on workplace dust control in China and elsewhere.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001206.
The American Lung Association provides information on silicosis
The US Centers for Disease Control and Prevention provides information on silica in the workplace, including links to relevant US National Institute for Occupational Health and Safety publications, and information on silicosis and other pneumoconioses
The US Occupational Safety and Health Administration also has detailed information on occupational exposure to crystalline silica
What does silicosis mean to you is a video provided by the US Mine Safety and Health Administration that includes personal experiences of silicosis; Dont let silica dust you is a video produced by the Association of Occupational and Environmental Clinics that identifies ways to reduce silica dust exposure in the workplace
The MedlinePlus encyclopedia has a page on silicosis (in English and Spanish)
The International Labour Organization provides information on health surveillance for those exposed to respirable crystalline silica
The World Health Organization has published a report about the health effects of crystalline silica and quartz
doi:10.1371/journal.pmed.1001206
PMCID: PMC3328438  PMID: 22529751
6.  Tobacco Smoke, Indoor Air Pollution and Tuberculosis: A Systematic Review and Meta-Analysis 
PLoS Medicine  2007;4(1):e20.
Background
Tobacco smoking, passive smoking, and indoor air pollution from biomass fuels have been implicated as risk factors for tuberculosis (TB) infection, disease, and death. Tobacco smoking and indoor air pollution are persistent or growing exposures in regions where TB poses a major health risk. We undertook a systematic review and meta-analysis to quantitatively assess the association between these exposures and the risk of infection, disease, and death from TB.
Methods and Findings
We conducted a systematic review and meta-analysis of observational studies reporting effect estimates and 95% confidence intervals on how tobacco smoking, passive smoke exposure, and indoor air pollution are associated with TB. We identified 33 papers on tobacco smoking and TB, five papers on passive smoking and TB, and five on indoor air pollution and TB. We found substantial evidence that tobacco smoking is positively associated with TB, regardless of the specific TB outcomes. Compared with people who do not smoke, smokers have an increased risk of having a positive tuberculin skin test, of having active TB, and of dying from TB. Although we also found evidence that passive smoking and indoor air pollution increased the risk of TB disease, these associations are less strongly supported by the available evidence.
Conclusions
There is consistent evidence that tobacco smoking is associated with an increased risk of TB. The finding that passive smoking and biomass fuel combustion also increase TB risk should be substantiated with larger studies in future. TB control programs might benefit from a focus on interventions aimed at reducing tobacco and indoor air pollution exposures, especially among those at high risk for exposure to TB.
Evidence from a number of studies suggest that tobacco smoking, environmental tobacco smoke, and indoor air pollution from biomass fuels is associated with an increased risk of tuberculosis.
Editors' Summary
Background.
Tobacco smoking has been identified by the World Health Organization as one of the leading causes of death worldwide. Smokers are at higher risk than nonsmokers for a very wide variety of illnesses, many of which are life-threatening. Inhaling tobacco smoke, whether this is active (when an individual smokes) or passive (when an individual is exposed to cigarette smoke in their environment) has also been associated with tuberculosis (TB). Many people infected with the TB bacterium never develop disease, but it is thought that people infected with TB who also smoke are far more likely to develop the symptoms of disease, and to have worse outcomes when they do.
Why Was This Study Done?
The researchers were specifically interested in the link between smoking and TB. They wanted to try to work out the overall increase in risk for getting TB in people who smoke, as compared with people who do not smoke. In this study, the researchers wanted to separately study the risks for different types of exposure to smoke, so, for example, what the risks were for people who actively smoke as distinct from people who are exposed to smoke from others. The researchers also wanted to calculate the association between TB and exposure to indoor pollution from burning fuels such as wood and charcoal.
What Did the Researchers Do and Find?
In carrying out this study, the researchers wanted to base their conclusions on all the relevant information that was already available worldwide. Therefore they carried out a systematic review. A systematic review involves setting out the research question that is being asked and then developing a search strategy to find all the meaningful evidence relating to the particular question under study. For this systematic review, the researchers wanted to find all published research in the biomedical literature that looked at human participants and dealt with the association between active smoking, passive smoking, indoor air pollution and TB. Studies were included if they were published in English, Russian, or Chinese, and included enough data for the researchers to calculate a number for the increase in TB risk. The researchers initially found 1,397 research studies but then narrowed that down to 38 that fit their criteria. Then specific pieces of data were extracted from each of those studies and in some cases the researchers combined data to produce overall calculations for the increase in TB risk. Separate assessments were done for different aspects of “TB risk,” namely, TB infection, TB disease, and mortality from TB. The data showed an approximately 2-fold increase in risk of TB infection among smokers as compared with nonsmokers. The researchers found that all studies evaluating the link between smoking and TB disease or TB mortality showed an association, but they did not combine these data together because of wide potential differences between the studies. Finally, all studies looking at passive smoking found an association with TB, as did some of those examining the link with indoor air pollution.
What Do These Findings Mean?
The findings here show that smoking is associated with an increased risk of TB infection, disease, and deaths from TB. The researchers found much more data on the risks for active smoking than on passive smoking or indoor air pollution. Tobacco smoking is increasing in many countries where TB is already a problem. These results therefore suggest that it is important for health policy makers to further develop strategies for controlling tobacco use in order to reduce the impact of TB worldwide.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0040020
The World Health Organization (WHO)'s Tobacco Free Initiative provides resources on research and policy related to tobacco control, its network of initiatives, and other relevant information
WHO also has a tuberculosis minisite
The US National Library of Medicine's MedLinePlus provides a set of links and resources about smoking, including news, overviews, recent research, statistics, and others
The Health Consequences of Smoking: A Report of the Surgeon General provides information on the health consequences of smoking
Tobacco Country Profiles provides information on smoking in different countries
doi:10.1371/journal.pmed.0040020
PMCID: PMC1769410  PMID: 17227135
7.  A Longitudinal Study of Medicaid Coverage for Tobacco Dependence Treatments in Massachusetts and Associated Decreases in Hospitalizations for Cardiovascular Disease 
PLoS Medicine  2010;7(12):e1000375.
Thomas Land and colleagues show that among Massachusetts Medicaid subscribers, use of a comprehensive tobacco cessation pharmacotherapy benefit was followed by a substantial decrease in claims for hospitalizations for acute myocardial infarction and acute coronary heart disease.
Background
Insurance coverage of tobacco cessation medications increases their use and reduces smoking prevalence in a population. However, uncertainty about the impact of this coverage on health care utilization and costs is a barrier to the broader adoption of this policy, especially by publicly funded state Medicaid insurance programs. Whether a publicly funded tobacco cessation benefit leads to decreased medical claims for tobacco-related diseases has not been studied. We examined the experience of Massachusetts, whose Medicaid program adopted comprehensive coverage of tobacco cessation medications in July 2006. Over 75,000 Medicaid subscribers used the benefit in the first 2.5 years. On the basis of earlier secondary survey work, it was estimated that smoking prevalence declined among subscribers by 10% during this period.
Methods and Findings
Using claims data, we compared the probability of hospitalization prior to use of the tobacco cessation pharmacotherapy benefit with the probability of hospitalization after benefit use among Massachusetts Medicaid beneficiaries, adjusting for demographics, comorbidities, seasonality, influenza cases, and the implementation of the statewide smoke-free air law using generalized estimating equations. Statistically significant annualized declines of 46% (95% confidence interval 2%–70%) and 49% (95% confidence interval 6%–72%) were observed in hospital admissions for acute myocardial infarction and other acute coronary heart disease diagnoses, respectively. There were no significant decreases in hospitalizations rates for respiratory diagnoses or seven other diagnostic groups evaluated.
Conclusions
Among Massachusetts Medicaid subscribers, use of a comprehensive tobacco cessation pharmacotherapy benefit was associated with a significant decrease in claims for hospitalizations for acute myocardial infarction and acute coronary heart disease, but no significant change in hospital claims for other diagnoses. For low-income smokers, removing the barriers to the use of smoking cessation pharmacotherapy has the potential to decrease short-term utilization of hospital services.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Smoking is the leading preventable cause of death in the world. Globally, it is responsible for one in ten deaths among adults. In developed countries, the death toll is even higher—in the USA and the UK, for example, one in five deaths are caused by cigarette smoking. In the USA alone, where a fifth of adults smoke, smoking accounts for more than 400,000 deaths every year; globally, smoking causes 5 million deaths per year. On average, smokers die 14 years earlier than nonsmokers, and half of all long-term smokers will die prematurely because of a smoking-related disease. These diseases include lung cancer, other types of cancer, heart disease, stroke, and lung diseases such as chronic airway obstruction, bronchitis, and emphysema. And, for every smoker who dies from one of these smoking-related diseases, another 20 will develop at least one serious disease because of their addiction to tobacco.
Why Was This Study Done?
About half of US smokers try to quit each year but most of these attempts fail. Many experts believe that counseling and/or treatment with tobacco cessation medications such as nicotine replacement products help smokers to quit. In the USA, where health care is paid for through private or state health insurance, there is some evidence that insurance coverage of tobacco cessation medications increases their use and reduces smoking prevalence. However, smoking cessation treatment is poorly covered by US health insurance programs, largely because of uncertainty about the impact of such coverage on health care costs. It is unknown, for example, whether the introduction of publicly funded tobacco cessation benefits decreases claims for treatment for tobacco-related diseases. In this longitudinal study (a study that follows a group of individuals over a period of time), the researchers ask whether the adoption of comprehensive coverage of tobacco cessation medications by the Massachusetts Medicaid program (MassHealth) in July 2006 has affected claims for treatment for tobacco-related diseases. During its first two and half years, more than 75,000 MassHealth subscribers used the tobacco cessation medication benefit and smoking prevalence among subscribers declined by approximately 10% (38.3% to 28.8%).
What Did the Researchers Do and Find?
The researchers used MassHealth claims data and a statistical method called generalized estimating equations to compare the probability of hospitalization prior to the use of tobacco cessation medication benefit with the probability of hospitalization after benefit use among MassHealth subscribers. After adjusting for other factors that might have affected hospitalization such as influenza outbreaks and the implementation of the Massachusetts Smoke-Free Workplace Law in July 2004, there was a statistically significant annualized decline in hospital admissions for heart attack of 46% after use of the tobacco cessation medication benefit. That is, the calculated annual rate of admissions for heart attacks was 46% lower after use of the benefit than before among MassHealth beneficiaries. There was also a 49% annualized decline in admissions for coronary atherosclerosis, another smoking-related heart disease. There were no significant changes in hospitalization rates for lung diseases (including asthma, pneumonia, and chronic airway obstruction) or for seven other diagnostic groups.
What Do These Findings Mean?
These findings show that, among MassHealth subscribers, the use of a tobacco cessation medication benefit was followed by a significant decrease in claims for hospitalization for heart attack and for coronary atherosclerosis but not for other diseases. It does not, however, show that the reduced claims for hospitalization were associated with a reduction in smoking because smoking cessation was not recorded by MassHealth. Furthermore, it is possible that the people who used the tobacco cessation medication benefit shared other characteristics that reduced their chances of hospitalization for heart disease. For example, people using tobacco cessation medication might have been more likely to adhere to prescription schedules for medications such as statins that would also reduce their risk of heart disease. Finally, these findings might be unique to Massachusetts, so similar studies need to be undertaken in other states. Nevertheless, the results of this study suggest that, for low-income smokers, removing financial barriers to the use of smoking cessation medications has the potential to produce short-term decreases in the use of hospital services that will, hopefully, outweigh the costs of comprehensive tobacco cessation medication benefits.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000375.
The US Centers for Disease Control and Prevention Office on Smoking and Health has information on all aspects of smoking and health, including advice on how to quit
The UK National Health Service Choices Web site provides advice about quitting smoking; more advice on quitting is provided by Smokefree
The American Heart Association provides information on heart disease, including advice on how to quit smoking (in several languages)
Information about MassHealth is available, including information on smoking and tobacco use prevention
doi:10.1371/journal.pmed.1000375
PMCID: PMC3000429  PMID: 21170313
8.  “Efforts to Reprioritise the Agenda” in China: British American Tobacco's Efforts to Influence Public Policy on Secondhand Smoke in China 
PLoS Medicine  2008;5(12):e251.
Background
Each year, 540 million Chinese are exposed to secondhand smoke (SHS), resulting in more than 100,000 deaths. Smoke-free policies have been demonstrated to decrease overall cigarette consumption, encourage smokers to quit, and protect the health of nonsmokers. However, restrictions on smoking in China remain limited and ineffective. Internal tobacco industry documents show that transnational tobacco companies (TTCs) have pursued a multifaceted strategy for undermining the adoption of restrictions on smoking in many countries.
Methods and Findings
To understand company activities in China related to SHS, we analyzed British American Tobacco's (BAT's) internal corporate documents produced in response to litigation against the major cigarette manufacturers to understand company activities in China related to SHS. BAT has carried out an extensive strategy to undermine the health policy agenda on SHS in China by attempting to divert public attention from SHS issues towards liver disease prevention, pushing the so-called “resocialisation of smoking” accommodation principles, and providing “training” for industry, public officials, and the media based on BAT's corporate agenda that SHS is an insignificant contributor to the larger issue of air pollution.
Conclusions
The public health community in China should be aware of the tactics previously used by TTCs, including efforts by the tobacco industry to co-opt prominent Chinese benevolent organizations, when seeking to enact stronger restrictions on smoking in public places.
Monique Muggli and colleagues study British American Tobacco (BAT) internal documents and find that from the mid 1990s BAT pursued a strategy aimed at influencing the public debate on secondhand smoke in China.
Editors' Summary
Background.
Each year, about one million people die in China from tobacco-caused diseases, including cancer, heart disease, and lung disease. Although most of these deaths occur among smokers—300 million people smoke in China, accounting for one-third of the global “consumption” of cigarettes—more than 100,000 deaths from tobacco-related causes occur annually among the 540 million Chinese people who are exposed to secondhand smoke. Tobacco smoke contains 4,000 known chemicals, 69 of which are known or probable carcinogens, and, when it is produced in enclosed spaces, both smokers and nonsmokers are exposed to its harmful effects. The only effective way to reduce tobacco smoke exposure indoors to acceptable levels is to implement 100% smoke-free environments—ventilation, filtration, and the provision of segregated areas for smokers and nonsmokers are insufficient. Importantly, as well as protecting nonsmokers from secondhand smoke, the implementation of smoke-free public places also reduces the number of cigarettes smoked among continuing smokers, increases the likelihood of smokers quitting, and reduces the chances of young people taking up smoking.
Why Was This Study Done?
Article 8 of the World Health Organization's Framework Convention on Tobacco Control (FCTC; an international public-health treaty that seeks to reduce tobacco-caused death and disease) calls on countries party to the treaty to protect their citizens from secondhand smoke exposure. China became a party to the FCTC in 2005 but restrictions on smoking in public places in China remain limited and ineffective. Previous analyses of internal tobacco industry documents have revealed that transnational tobacco companies (TTCs) have used a multifaceted approach to undermine the adoption of restrictions on smoking in many countries. TTCs have been shown to influence media coverage of secondhand smoke issues and to promote ineffective ventilation and separate smoking and nonsmoking areas in restaurants, bars, and hotels (so-called “resocalization of smoking” accommodation principles) with the aim of undermining smoke-free legislation. In addition, TTCs have created organizations interested in non-tobacco-related diseases to draw attention away from the public-health implications of secondhand smoke. In this study, the researchers ask whether TTCs have used a similar approach to undermine the adoption of restrictions on smoking in China, one of the most coveted cigarette markets in the world by the major TTCs.
What Did the Researchers Do and Find?
The researchers analyzed internal corporate documents produced by British American Tobacco (BAT; the predominant TTC in China) in response to litigation against major cigarette manufacturers stored in document depositories in Minnesota, USA and Guildford, UK. Among these documents, they found evidence that BAT had attempted to divert attention from secondhand smoke issues toward liver disease prevention by funding the Beijing Liver Foundation (BFL) from its inception in 1997 until at least 2002 (the most recent year that BAT's corporate records are available for public review). The researchers also found evidence that BAT had promoted “resocialization of smoking” accommodation principles as a “route to avoid smoking bans” and pushed ventilation and air filtration in airports and in establishments serving food and drink. Finally, the researchers found evidence that BAT had sought to “present the message that ‘tobacco smoke is just one of the sources of air polution [sic] and a very insignificant one compared with other pollutants'” through presentations given to the Chinese tobacco industry and media seminars aimed at Chinese journalists.
What Do These Findings Mean?
These findings indicate that, beginning in the mid 1990s and continuing until at least 2002, BAT has followed an intensive, multi-pronged strategy designed to undermine the health policy agenda on secondhand smoke in China. Given their findings, the researchers suggest that BFL and other charitable organizations in China must be wary of accepting tobacco money and that measures must be taken to improve the transparency and accountability of these and other public organizations. To meet FCTC obligations under Article 5.3 (industry interference), policy makers in China, they suggest, must be made aware of how BAT and other TTCs have repeatedly sought to influence health policy in China by focusing attention toward the adoption of ineffective air filtration and ventilation systems in hospitality venues rather than the implementation of 100% smoke-free environments. Finally, Chinese policy makers and the media need to be better informed about BAT's long-standing attempts to communicate misleading messages to them about the health effects of secondhand smoke.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050251.
The World Health Organization's Regional Office for the Western Pacific provides smoking statistics for China and other countries in the region
The World Health Organization provides information on the health problems associated with secondhand smoke, about its Tobacco Free Initiative (available in several languages), and about the Framework Convention on Tobacco Control (also available in several languages)
MedlinePlus provides links to information about the dangers of secondhand smoke (available in English and Spanish)
The UK National Health Service Smokefree Web site provides information about the advantages of giving up smoking, how to give up smoking, and the dangers associated with secondhand smoke
British American Tobacco documents stored in the Minnesota and Guildford Depositories, including those analyzed in this study, can be searched through the British American Tobacco Documents Archive
doi:10.1371/journal.pmed.0050251
PMCID: PMC2605899  PMID: 19108603
9.  Current and Former Smoking and Risk for Venous Thromboembolism: A Systematic Review and Meta-Analysis 
PLoS Medicine  2013;10(9):e1001515.
In a meta-analysis of 32 observational studies involving 3,966,184 participants and 35,151 events, Suhua Wu and colleagues found that current, ever, and former smoking was associated with risk of venous thromboembolism.
Please see later in the article for the Editors' Summary
Background
Smoking is a well-established risk factor for atherosclerotic disease, but its role as an independent risk factor for venous thromboembolism (VTE) remains controversial. We conducted a meta-analysis to summarize all published prospective studies and case-control studies to update the risk for VTE in smokers and determine whether a dose–response relationship exists.
Methods and Findings
We performed a literature search using MEDLINE (source PubMed, January 1, 1966 to June 15, 2013) and EMBASE (January 1, 1980 to June 15, 2013) with no restrictions. Pooled effect estimates were obtained by using random-effects meta-analysis. Thirty-two observational studies involving 3,966,184 participants and 35,151 VTE events were identified. Compared with never smokers, the overall combined relative risks (RRs) for developing VTE were 1.17 (95% CI 1.09–1.25) for ever smokers, 1.23 (95% CI 1.14–1.33) for current smokers, and 1.10 (95% CI 1.03–1.17) for former smokers, respectively. The risk increased by 10.2% (95% CI 8.6%–11.8%) for every additional ten cigarettes per day smoked or by 6.1% (95% CI 3.8%–8.5%) for every additional ten pack-years. Analysis of 13 studies adjusted for body mass index (BMI) yielded a relatively higher RR (1.30; 95% CI 1.24–1.37) for current smokers. The population attributable fractions of VTE were 8.7% (95% CI 4.8%–12.3%) for ever smoking, 5.8% (95% CI 3.6%–8.2%) for current smoking, and 2.7% (95% CI 0.8%–4.5%) for former smoking. Smoking was associated with an absolute risk increase of 24.3 (95% CI 15.4–26.7) cases per 100,000 person-years.
Conclusions
Cigarette smoking is associated with a slightly increased risk for VTE. BMI appears to be a confounding factor in the risk estimates. The relationship between VTE and smoking has clinical relevance with respect to individual screening, risk factor modification, and the primary and secondary prevention of VTE.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Blood normally flows throughout the human body, supplying its organs and tissues with oxygen and nutrients. But, when an injury occurs, proteins called clotting factors make the blood gel (coagulate) at the injury site. The resultant clot (thrombus) plugs the wound and prevents blood loss. Occasionally, a thrombus forms inside an uninjured blood vessel and partly or completely blocks the blood flow. Clot formation inside one of the veins deep within the body, usually in a leg, is called deep vein thrombosis (DVT) and can cause pain, swelling, and redness in the affected limb. DVT can be treated with drugs that stop the blood clot from getting larger (anticoagulants) but, if left untreated, part of the clot can break off and travel to the lungs, where it can cause a life-threatening pulmonary embolism. DVT and pulmonary embolism are collectively known as venous thromboembolism (VTE). Risk factors for VTE include having an inherited blood clotting disorder, oral contraceptive use, prolonged inactivity (for example, during a long-haul plane flight), and having surgery. VTEs are present in about a third of all people who die in hospital and, in non-bedridden populations, about 10% of people die within 28 days of a first VTE event.
Why Was This Study Done?
Some but not all studies have reported that smoking is also a risk factor for VTE. A clear demonstration of a significant association (a relationship unlikely to have occurred by chance) between smoking and VTE might help to reduce the burden of VTE because smoking can potentially be reduced by encouraging individuals to quit smoking and through taxation policies and other measures designed to reduce tobacco consumption. In this systematic review and meta-analysis, the researchers examine the link between smoking and the risk of VTE in the general population and investigate whether heavy smokers have a higher risk of VTE than light smokers. A systematic review uses predefined criteria to identify all the research on a given topic; meta-analysis is a statistical method for combining the results of several studies.
What Did the Researchers Do and Find?
The researchers identified 32 observational studies (investigations that record a population's baseline characteristics and subsequent disease development) that provided data on smoking and VTE. Together, the studies involved nearly 4 million participants and recorded 35,151 VTE events. Compared with never smokers, ever smokers (current and former smokers combined) had a relative risk (RR) of developing VTE of 1.17. That is, ever smokers were 17% more likely to develop VTE than never smokers. For current smokers and former smokers, RRs were 1.23 and 1.10, respectively. Analysis of only studies that adjusted for body mass index (a measure of body fat and a known risk factor for conditions that affect the heart and circulation) yielded a slightly higher RR (1.30) for current smokers compared with never smokers. For ever smokers, the population attributable fraction (the proportional reduction in VTE that would accrue in the population if no one smoked) was 8.7%. Notably, the risk of VTE increased by 10.2% for every additional ten cigarettes smoked per day and by 6.1% for every additional ten pack-years. Thus, an individual who smoked one pack of cigarettes per day for 40 years had a 26.7% higher risk of developing VTE than someone who had never smoked. Finally, smoking was associated with an absolute risk increase of 24.3 cases of VTE per 100,000 person-years.
What Do These Findings Mean?
These findings indicate that cigarette smoking is associated with a statistically significant, slightly increased risk for VTE among the general population and reveal a dose-relationship between smoking and VTE risk. They cannot prove that smoking causes VTE—people who smoke may share other unknown characteristics (confounding factors) that are actually responsible for their increased risk of VTE. Indeed, these findings identify body mass index as a potential confounding factor that might affect the accuracy of estimates of the association between smoking and VTE risk. Although the risk of VTE associated with smoking is smaller than the risk associated with some well-established VTE risk factors, smoking is more common (globally, there are 1.1 billion smokers) and may act synergistically with some of these risk factors. Thus, smoking behavior should be considered when screening individuals for VTE and in the prevention of first and subsequent VTE events.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001515.
The US National Heart Lung and Blood Institute provides information on deep vein thrombosis (including an animation about how DVT causes pulmonary embolism), and information on pulmonary embolism
The UK National Health Service Choices website has information on deep vein thrombosis, including personal stories, and on pulmonary embolism; SmokeFree is a website provided by the UK National Health Service that offers advice on quitting smoking
The non-profit organization US National Blood Clot Alliance provides detailed information about deep vein thrombosis and pulmonary embolism for patients and professionals and includes a selection of personal stories about these conditions
The World Health Organization provides information about the dangers of tobacco (in several languages)
Smokefree.gov, from the US National Cancer Institute, offers online tools and resources to help people quit smoking
MedlinePlus has links to further information about deep vein thrombosis, pulmonary embolism, and the dangers of smoking (in English and Spanish)
doi:10.1371/journal.pmed.1001515
PMCID: PMC3775725  PMID: 24068896
10.  The Brazil SimSmoke Policy Simulation Model: The Effect of Strong Tobacco Control Policies on Smoking Prevalence and Smoking-Attributable Deaths in a Middle Income Nation 
PLoS Medicine  2012;9(11):e1001336.
David Levy and colleagues use the SimSmoke model to estimate the effect of Brazil's recent stronger tobacco control policies on smoking prevalence and associated premature mortality, and the effect that additional policies may have.
Background
Brazil has reduced its smoking rate by about 50% in the last 20 y. During that time period, strong tobacco control policies were implemented. This paper estimates the effect of these stricter policies on smoking prevalence and associated premature mortality, and the effect that additional policies may have.
Methods and Findings
The model was developed using the SimSmoke tobacco control policy model. Using policy, population, and smoking data for Brazil, the model assesses the effect on premature deaths of cigarette taxes, smoke-free air laws, mass media campaigns, marketing restrictions, packaging requirements, cessation treatment programs, and youth access restrictions. We estimate the effect of past policies relative to a counterfactual of policies kept to 1989 levels, and the effect of stricter future policies. Male and female smoking prevalence in Brazil have fallen by about half since 1989, which represents a 46% (lower and upper bounds: 28%–66%) relative reduction compared to the 2010 prevalence under the counterfactual scenario of policies held to 1989 levels. Almost half of that 46% reduction is explained by price increases, 14% by smoke-free air laws, 14% by marketing restrictions, 8% by health warnings, 6% by mass media campaigns, and 10% by cessation treatment programs. As a result of the past policies, a total of almost 420,000 (260,000–715,000) deaths had been averted by 2010, increasing to almost 7 million (4.5 million–10.3 million) deaths projected by 2050. Comparing future implementation of a set of stricter policies to a scenario with 2010 policies held constant, smoking prevalence by 2050 could be reduced by another 39% (29%–54%), and 1.3 million (0.9 million–2.0 million) out of 9 million future premature deaths could be averted.
Conclusions
Brazil provides one of the outstanding public health success stories in reducing deaths due to smoking, and serves as a model for other low and middle income nations. However, a set of stricter policies could further reduce smoking and save many additional lives.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Tobacco kills up to half its users—more than 5 million smokers die every year from tobacco-related causes. It also kills more than half a million non-smokers annually who have been exposed to second-hand smoke. If current trends continue, annual tobacco-related deaths could increase to more than 8 million by 2030. In response to this global tobacco epidemic, the World Health Organization has developed an international instrument for tobacco control called the Framework Convention on Tobacco Control (FCTC). Since it came into force in February 2005, 176 countries have become parties to the FCTC. As such, they agree to implement comprehensive bans on tobacco advertizing, promotion, and sponsorship; to ban misleading and deceptive terms on tobacco packaging; to protect people from exposure to cigarette smoke in public spaces and indoor workplaces; to implement tax policies aimed at reducing tobacco consumption; and to combat illicit trade in tobacco products.
Why Was This Study Done?
Brazil has played a pioneering role in providing support for tobacco control measures in low and middle income countries. It introduced its first cigarette-specific tax in 1990 and, in 1996, it placed the first warnings on cigarette packages and introduced smoke-free air laws. Many of these measures have subsequently been strengthened. Over the same period, the prevalence of smoking among adults (the proportion of the population that smokes) has halved in Brazil, falling from 34.8% in 1989 to 18.5% in 2008. But did the introduction of tobacco control policies contribute to this decline, and if so, which were the most effective policies? In this study, the researchers use a computational model called the SimSmoke tobacco control policy model to investigate this question and to examine the possible effect of introducing additional control policies consistent with the FCTC, which Brazil has been a party to since 2006.
What Did the Researchers Do and Find?
The researchers developed Brazil SimSmoke by incorporating policy, population, and smoking data for Brazil into the SimSmoke simulation model; Brazil SimSmoke estimates smoking prevalence and smoking-attributable deaths from 1989 forwards. They then compared smoking prevalences and smoking-attributable deaths estimated by Brazil SimSmoke for 2010 with and without the inclusion of the tobacco control policies that were introduced between 1989 and 2010. The model estimated that the smoking prevalence in Brazil in 2010 was reduced by 46% by the introduction of tobacco control measures. Almost half of this reduction was explained by price increases, 14% by smoke-free laws, 14% by marketing restrictions, 8% by health warnings, 6% by anti-smoking media campaigns, and 10% by cessation treatment programs. Moreover, as a result of past policies, the model estimated that almost 420,000 tobacco-related deaths had been averted by 2010 and that almost 7 million deaths will have been averted by 2050. Finally, using the model to compare the effects of a scenario that includes stricter policies (for example, an increase in tobacco tax) with a scenario that includes the 2010 policies only, indicated that stricter control policies would reduce the estimated smoking prevalence by an extra 39% between 2010 and 2050 and avert about 1.3 million additional premature deaths.
What Do These Findings Mean?
These findings indicate that the introduction of tobacco control policies has been a critical factor in the rapid decline in smoking prevalence in Brazil over the past 20 years. They also suggest that the introduction of stricter policies that are fully consistent with the FCTC has the potential to reduce the prevalence of smoking further and save many additional lives. Although the reduction in smoking prevalence in Brazil between 1989 and 2010 predicted by the Brazil SimSmoke model is close to the recorded reduction over that period, these findings need to be interpreted with caution because of the many assumptions incorporated in the model. Moreover, the accuracy of the model's predictions depends on the accuracy of the data fed into it, some of which was obtained from other countries and may not accurately reflect the situation in Brazil. Importantly, however, these findings show that, even for a middle income nation, reducing tobacco use is a “winnable battle” that carries huge dividends in terms of reducing illness and death without requiring unlimited resources.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001336.
The World Health Organization provides information about the dangers of tobacco (in several languages), about the Framework Convention on Tobacco Control, and about tobacco control in Brazil
The Framework Convention Alliance provides more information about the FCTC
The Brazilian National Cancer Institute (INCA) provides information on tobacco control policies in Brazil; additional information about tobacco control laws in Brazil is available on the Tobacco Control Laws interactive website, which provides information about tobacco control legislation worldwide
More information on the SimSmoke model of tobacco control policies is available in document or slideshow form
SmokeFree, a website provided by the UK National Health Service, offers advice on quitting smoking and includes personal stories from people who have stopped smoking
doi:10.1371/journal.pmed.1001336
PMCID: PMC3491001  PMID: 23139643
11.  Environmental tobacco smoke and tobacco related mortality in a prospective study of Californians, 1960-98 
BMJ : British Medical Journal  2003;326(7398):1057.
Objective To measure the relation between environmental tobacco smoke, as estimated by smoking in spouses, and long term mortality from tobacco related disease.
Design Prospective cohort study covering 39 years.
Setting Adult population of California, United States.
Participants 118 094 adults enrolled in late 1959 in the American Cancer Society cancer prevention study (CPS I), who were followed until 1998. Particular focus is on the 35 561 never smokers who had a spouse in the study with known smoking habits.
Main outcome measures Relative risks and 95% confidence intervals for deaths from coronary heart disease, lung cancer, and chronic obstructive pulmonary disease related to smoking in spouses and active cigarette smoking.
Results For participants followed from 1960 until 1998 the age adjusted relative risk (95% confidence interval) for never smokers married to ever smokers compared with never smokers married to never smokers was 0.94 (0.85 to 1.05) for coronary heart disease, 0.75 (0.42 to 1.35) for lung cancer, and 1.27 (0.78 to 2.08) for chronic obstructive pulmonary disease among 9619 men, and 1.01 (0.94 to 1.08), 0.99 (0.72 to 1.37), and 1.13 (0.80 to 1.58), respectively, among 25 942 women. No significant associations were found for current or former exposure to environmental tobacco smoke before or after adjusting for seven confounders and before or after excluding participants with pre-existing disease. No significant associations were found during the shorter follow up periods of 1960-5, 1966-72, 1973-85, and 1973-98.
Conclusions The results do not support a causal relation between environmental tobacco smoke and tobacco related mortality, although they do not rule out a small effect. The association between exposure to environmental tobacco smoke and coronary heart disease and lung cancer may be considerably weaker than generally believed.
PMCID: PMC155687  PMID: 12750205
12.  Lung cancer and environmental tobacco smoke: occupational risk to nonsmokers. 
Environmental Health Perspectives  1999;107(Suppl 6):885-890.
The principal epidemiologic evidence that environmental tobacco smoke (ETS) increases the risk of lung cancer in (lifelong) nonsmokers is from studies of nonsmoking women married to smokers. This article estimates exposure-response curves for 14 studies (1, 249+ cases, 7 countries) with data on lung cancer categorized by the number of cigarettes/day smoked by the husband. The pooled results from the five U.S. studies alone are extrapolated to ETS levels in the workplace using measures of serum cotinine and nicotine samples from personal monitors as markers of exposure to ETS. It is predicted that the increase in lung cancer risk for nonsmoking women from average ETS exposure at work (among those exposed at work) is on the order of 25% (95% confidence interval (CI) = 8, 41) relative to background risk (i.e., with no ETS exposure from any source). This compares to an estimate of 39% (95% CI = 5, 65) for nonsmoking women whose husbands smoke at the adult male smoker's average of 25 cigarettes/day. At the 95th percentiles of exposure, the estimate from spousal smoking is 85% (95% CI = 32, 156), compared to 91% (95% CI = 34, 167) from workplace ETS exposure. Subject to the validity of the assumptions required in this approach, the outcome supports the conclusion that there is a significant excess risk from occupational exposure to ETS. The excess risk from ETS at work is typically lower than that from spousal smoking, but may be higher at the 95th percentiles of exposure.
PMCID: PMC1566198  PMID: 10592148
13.  Exposure to environmental tobacco smoke (ETS) and risk of lung cancer in Montreal: a case–control study 
Environmental Health  2013;12:112.
Background
The objective of the present study was to examine the association between environmental tobacco smoke (ETS) and risk of lung cancer among never smokers, defined as subjects who smoked less than 100 cigarettes in their lifetime.
Methods
We conducted a population-based case–control study on lung cancer in Montreal, Canada (1996–2000) including 1,203 cases and 1513 controls. The present analysis is restricted to the 44 cases and 436 population controls who reported never smoking and completed the questionnaire on lifetime ETS exposure. Collected information included duration and intensity of exposure from multiple sources: inside home (parents, spouses, roommates and any other co-resident) and outside homes (in vehicles, social settings, and workplace). Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated between ETS and lung cancer, adjusting for age, sex, socioeconomic status (SES), and proxy respondent.
Results
Overall there was no association between ETS cumulative exposure from all sources (measured in pack-years) and lung cancer: OR = 0.98 (95%CI: 0.40-2.38), comparing upper with lower tertiles of exposure. While there were no elevated ORs associated with ever having lived with parents who smoked (OR = 0.62; 95%CI: 0.32-1.21) or with spouses who smoked (OR = 0.39; 95%CI: 0.18-0.85), ETS exposure from sources outside homes was associated with a slight, although non-significant increased risk: OR = 2.30 (95%CI: 0.85-6.19) for the upper 50% exposed. There were no clear differences in ORs by age at exposure to ETS or by histologic type of tumour, though numbers of subjects in subgroup analyses were too small to provide reliable estimates.
Conclusion
No clear association between lifetime ETS exposure from all sources and increased risk of lung cancer was found in the current study.
doi:10.1186/1476-069X-12-112
PMCID: PMC3881495  PMID: 24345091
Environmental tobacco smoke; Lung cancer; Case–control study
14.  Adult Mortality Attributable to Preventable Risk Factors for Non-Communicable Diseases and Injuries in Japan: A Comparative Risk Assessment 
PLoS Medicine  2012;9(1):e1001160.
Using a combination of published data and modeling, Nayu Ikeda and colleagues identify tobacco smoking and high blood pressure as major risk factors for death from noncommunicable diseases among adults in Japan.
Background
The population of Japan has achieved the longest life expectancy in the world. To further improve population health, consistent and comparative evidence on mortality attributable to preventable risk factors is necessary for setting priorities for health policies and programs. Although several past studies have quantified the impact of individual risk factors in Japan, to our knowledge no study has assessed and compared the effects of multiple modifiable risk factors for non-communicable diseases and injuries using a standard framework. We estimated the effects of 16 risk factors on cause-specific deaths and life expectancy in Japan.
Methods and Findings
We obtained data on risk factor exposures from the National Health and Nutrition Survey and epidemiological studies, data on the number of cause-specific deaths from vital records adjusted for ill-defined codes, and data on relative risks from epidemiological studies and meta-analyses. We applied a comparative risk assessment framework to estimate effects of excess risks on deaths and life expectancy at age 40 y. In 2007, tobacco smoking and high blood pressure accounted for 129,000 deaths (95% CI: 115,000–154,000) and 104,000 deaths (95% CI: 86,000–119,000), respectively, followed by physical inactivity (52,000 deaths, 95% CI: 47,000–58,000), high blood glucose (34,000 deaths, 95% CI: 26,000–43,000), high dietary salt intake (34,000 deaths, 95% CI: 27,000–39,000), and alcohol use (31,000 deaths, 95% CI: 28,000–35,000). In recent decades, cancer mortality attributable to tobacco smoking has increased in the elderly, while stroke mortality attributable to high blood pressure has declined. Life expectancy at age 40 y in 2007 would have been extended by 1.4 y for both sexes (men, 95% CI: 1.3–1.6; women, 95% CI: 1.2–1.7) if exposures to multiple cardiovascular risk factors had been reduced to their optimal levels as determined by a theoretical-minimum-risk exposure distribution.
Conclusions
Tobacco smoking and high blood pressure are the two major risk factors for adult mortality from non-communicable diseases and injuries in Japan. There is a large potential population health gain if multiple risk factors are jointly controlled.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Worldwide, a small number of modifiable risk factors are responsible for many premature or preventable deaths. For example, having high blood pressure (hypertension) increases a person's risk of developing life-threatening heart problems and stroke (cardiovascular disease). Similarly, having a high blood sugar level increases the risk of developing diabetes, a chronic (long-term) disease that can lead to cardiovascular problems and kidney failure, and half of all long-term tobacco smokers in Western populations will die prematurely from diseases related to smoking, such as lung cancer. Importantly, the five major risk factors for death globally—high blood pressure, tobacco use, high blood sugar, physical inactivity, and overweight and obesity—are all modifiable. That is, lifestyle changes and dietary changes such as exercising more, reducing salt intake, and increasing fruit and vegetable intake can reduce an individual's exposure to these risk factors and one's chances of premature death. Moreover, public health programs designed to reduce a population's exposure to modifiable risk factors should reduce preventable deaths in that population.
Why Was This Study Done?
In 2000, the Japanese government initiated Health Japan 21, a ten-year national health promotion campaign designed to prevent premature death from non-communicable (noninfectious) diseases and injuries. This campaign set 59 goals to monitor and improve risk factor management in the Japanese population, which has one of the longest life expectancies at birth in the world (the life expectancy of a person born in Japan in 2009 was 83.1 years). Because the campaign's final evaluation revealed deterioration or no improvement on some of these goals, the Japanese government recently released new guidelines that stress the importance of simultaneously controlling multiple risk factors for chronic diseases. However, although several studies have quantified the impacts on life expectancy and cause-specific death of individual modifiable risk factors in Japan, the effects of multiple risk factors have not been assessed. In this study, the researchers use a “comparative risk assessment” framework to estimate the effects of 16 risk factors on cause-specific deaths and life expectancy in Japan. Comparative risk assessment estimates the number of deaths that would be prevented if current distributions of risk factor exposures were changed to hypothetical optimal distributions.
What Did the Researchers Do and Find?
The researchers obtained data on exposure to the selected risk factors from the 2007 Japanese National Health and Nutrition Survey and from epidemiological studies, and information on the number of deaths in 2007 from different diseases from official records. They used published studies to estimate how much each factor increases the risk of death from each disease and then used a mathematical formula to estimate the effects of the risk factors on the number of deaths in Japan and on life expectancy at age 40. In 2007, tobacco smoking and high blood pressure accounted for 129,000 and 104,000 deaths, respectively, in Japan. Physical inactivity accounted for 52,000 deaths, high blood glucose and high dietary salt intake accounted for 34,000 deaths each, and alcohol use for 31,000 deaths. Life expectancy at age 40 in 2007 would have been extended by 1.4 years for both sexes, the researchers estimate, if exposure to multiple cardiovascular risk factors had been reduced to calculated optimal distributions, or by 0.7 years if these risk factors had been reduced to the distributions defined by national guidelines and goals.
What Do These Findings Mean?
These findings identify tobacco smoking and high blood pressure as the major risk factors for death from non-communicable diseases among adults in Japan, a result consistent with previous findings from the US. They also indicate that simultaneous control of multiple risk factors has great potential for producing health gains among the Japanese population. Although the researchers focused on estimating the effect of these risk factors on mortality and did not include illness and disability in this study, these findings nevertheless identify two areas of public health policy that need to be strengthened to improve health, reduce death rates, and increase life expectancy among the Japanese population. First, they highlight the need to reduce tobacco smoking, particularly among men. Second and most importantly, these findings emphasize the need to improve ongoing programs designed to help people manage multiple cardiovascular risk factors, including high blood pressure.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001160.
The US Centers for Disease Control and Prevention provides information on all aspects of healthy living
The World Health Report 2002—Reducing Risks, Promoting Healthy Life provides a global analysis of how healthy life expectancy could be increased
The American Heart Association and the American Cancer Society provide information on many important risk factors for noncommunicable diseases and include some personal stories about keeping healthy
Details about Health Japan 21 are provided by the Japanese Ministry of Health, Labour and Welfare. Further details about this campaign are available from the World Health Organization
MedlinePlus provides links to further resources on healthy living and on healthy aging (in English and Spanish)
doi:10.1371/journal.pmed.1001160
PMCID: PMC3265534  PMID: 22291576
15.  Association of Secondhand Smoke Exposure with Pediatric Invasive Bacterial Disease and Bacterial Carriage: A Systematic Review and Meta-analysis 
PLoS Medicine  2010;7(12):e1000374.
Majid Ezzati and colleagues report the findings of a systematic review and meta-analysis that probes the association between environmental exposure to secondhand smoke and the epidemiology of pediatric invasive bacterial disease.
Background
A number of epidemiologic studies have observed an association between secondhand smoke (SHS) exposure and pediatric invasive bacterial disease (IBD) but the evidence has not been systematically reviewed. We carried out a systematic review and meta-analysis of SHS exposure and two outcomes, IBD and pharyngeal carriage of bacteria, for Neisseria meningitidis (N. meningitidis), Haemophilus influenzae type B (Hib), and Streptococcus pneumoniae (S. pneumoniae).
Methods and Findings
Two independent reviewers searched Medline, EMBASE, and selected other databases, and screened articles for inclusion and exclusion criteria. We identified 30 case-control studies on SHS and IBD, and 12 cross-sectional studies on SHS and bacterial carriage. Weighted summary odd ratios (ORs) were calculated for each outcome and for studies with specific design and quality characteristics. Tests for heterogeneity and publication bias were performed. Compared with those unexposed to SHS, summary OR for SHS exposure was 2.02 (95% confidence interval [CI] 1.52–2.69) for invasive meningococcal disease, 1.21 (95% CI 0.69–2.14) for invasive pneumococcal disease, and 1.22 (95% CI 0.93–1.62) for invasive Hib disease. For pharyngeal carriage, summary OR was 1.68 (95% CI, 1.19–2.36) for N. meningitidis, 1.66 (95% CI 1.33–2.07) for S. pneumoniae, and 0.96 (95% CI 0.48–1.95) for Hib. The association between SHS exposure and invasive meningococcal and Hib diseases was consistent regardless of outcome definitions, age groups, study designs, and publication year. The effect estimates were larger in studies among children younger than 6 years of age for all three IBDs, and in studies with the more rigorous laboratory-confirmed diagnosis for invasive meningococcal disease (summary OR 3.24; 95% CI 1.72–6.13).
Conclusions
When considered together with evidence from direct smoking and biological mechanisms, our systematic review and meta-analysis indicates that SHS exposure may be associated with invasive meningococcal disease. The epidemiologic evidence is currently insufficient to show an association between SHS and invasive Hib disease or pneumococcal disease. Because the burden of IBD is highest in developing countries where SHS is increasing, there is a need for high-quality studies to confirm these results, and for interventions to reduce exposure of children to SHS.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The deleterious health effects of smoking on smokers are well established, but smoking also seriously damages the health of nonsmokers. Secondhand smoke (SHS), which is released by burning cigarettes and exhaled by smokers, contains hundreds of toxic chemicals that increase the risk of adults developing lung cancer and heart disease. Children, however, are particularly vulnerable to the effects of SHS exposure (also known as passive smoking) because they are still developing physically. In addition, children have little control over their indoor environment and thus can be heavily exposed to SHS. Exposure to SHS increases the risk of ear infections, asthma, respiratory symptoms (coughing, sneezing, and breathlessness), and lung infections such as pneumonia and bronchitis in young children and the risk of sudden infant death syndrome during the first year of life.
Why Was This Study Done?
Several studies have also shown an association between SHS exposure (which damages the lining of the mouth, throat, and lungs and decreases immune defenses) and potentially fatal invasive bacterial disease (IBD) in children. In IBD, bacteria invade the body and grow in normally sterile sites such as the blood (bacteremia) and the covering of the brain (meningitis). Three organisms are mainly responsible for IBD in children—Streptococcus pneumoniae, Haemophilus influenzae type B (Hib), and Neisseria meningitidis. In 2000, S. pneumonia (pneumococcal disease) alone killed nearly one million children. Here, the researchers undertake a systematic review and meta-analysis of the association between SHS exposure in children and two outcomes—IBD and the presence of IBD-causing organisms in the nose and throat (bacterial carriage). A systematic review uses predefined criteria to identify all the research on a given topic; meta-analysis is a statistical method that combines the results of several studies. By combining data, it is possible to get a clearer view of the causes of a disease than is possible from individual studies.
What Did the Researchers Do and Find?
The researchers identified 30 case-control studies that compared the occurrence of IBD over time in children exposed to SHS with its occurrence in children not exposed to SHS. They also identified 12 cross-sectional studies that measured bacterial carriage at a single time point in children exposed and not exposed to SHS. The researchers used the data from these studies to calculate a “summary odds ratio” (OR) for each outcome—a measure of how SHS exposure affected the likelihood of each outcome. Compared with children unexposed to SHS, exposure to SHS doubled the likelihood of invasive meningococcal disease (a summary OR for SHS exposure of 2.02). Summary ORs for invasive pneumococcal disease and Hib diseases were 1.21 and 1.22, respectively. However, these small increases in the risk of developing these IBDs were not statistically significant unlike the increase in the risk of developing meningococcal disease. That is, they might have occurred by chance. For bacterial carriage, summary ORs for SHS exposure were 1.68 for N. meningitidis, 1.66 for S. pneumonia (both these ORs were statistically significant), and 0.96 for Hib (a nonsignificant decrease in risk).
What Do These Findings Mean?
These findings indicate that SHS exposure is significantly associated with invasive meningococcal disease among children. However, the evidence that SHS exposure is associated with invasive pneumococcal and Hib disease is only suggestive. These findings also indicate that exposure to SHS is associated with an increased carriage of N. meningitidis and S. pneumoniae. The accuracy and generalizability of these findings is limited by the small number of studies identified, by the lack of studies from developing countries where SHS exposure is increasing and the burden of IBD is high, and by large variations between the studies in how SHS exposure was measured and IBD diagnosed. Nevertheless, they suggest that, by reducing children's exposure to SHS (by, for example, persuading parents not to smoke at home), the illness and death caused by IBDs among children could be greatly reduced. Such a reduction would be particularly welcome in developing countries where vaccination against IBDs is low.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000374.
The US Centers for Disease Control and Prevention provides information on secondhand smoke, on children and secondhand smoke exposure, on meningitis, and on Hib infection
The US Environmental Protection Agency also provides information on the health effects of exposure to secondhand smoke (in English and Spanish) and a leaflet (also in English and Spanish) entitled Secondhand Tobacco Smoke and the Health of Your Family
The US Office of the Surgeon General provides information on the health consequences of involuntary exposure to tobacco smoke
The World Health Organization provides a range of information on the global tobacco epidemic
The World Health Organization has information on meningococcal disease (in English only) and on Hib (in several languages)
The US National Foundation for Infectious Diseases provides a fact sheet on pneumococcal disease
doi:10.1371/journal.pmed.1000374
PMCID: PMC2998445  PMID: 21151890
16.  Environmental tobacco smoke and risk of respiratory cancer and chronic obstructive pulmonary disease in former smokers and never smokers in the EPIC prospective study 
BMJ : British Medical Journal  2005;330(7486):277.
Objectives To investigate the association between environmental tobacco smoke, plasma cotinine concentration, and respiratory cancer or death.
Design Nested case-control study within the European prospective investigation into cancer and nutrition (EPIC).
Participants 303 020 people from the EPIC cohort (total 500 000) who had never smoked or who had stopped smoking for at least 10 years, 123 479 of whom provided information on exposure to environmental tobacco smoke. Cases were people who developed respiratory cancers or died from respiratory conditions. Controls were matched for sex, age (plus or minus 5 years), smoking status, country of recruitment, and time elapsed since recruitment.
Main outcome measures Newly diagnosed cancer of lung, pharynx, and larynx; deaths from chronic obstructive pulmonary disease or emphysema. Plasma cotinine concentration was measured in 1574 people.
Results Over seven years of follow up, 97 people had newly diagnosed lung cancer, 20 had upper respiratory cancers (pharynx, larynx), and 14 died from chronic obstructive pulmonary disease or emphysema. In the whole cohort exposure to environmental tobacco smoke was associated with increased risks (hazard ratio 1.30, 95% confidence interval 0.87 to 1.95, for all respiratory diseases; 1.34, 0.85 to 2.13, for lung cancer alone). Higher results were found in the nested case-control study (odds ratio 1.70, 1.02 to 2.82, for respiratory diseases; 1.76, 0.96 to 3.23, for lung cancer alone). Odds ratios were consistently higher in former smokers than in those who had never smoked; the association was limited to exposure related to work. Cotinine concentration was clearly associated with self reported exposure (3.30, 2.07 to 5.23, for detectable/non-detectable cotinine), but it was not associated with the risk of respiratory diseases or lung cancer. Frequent exposure to environmental tobacco smoke during childhood was associated with lung cancer in adulthood (hazard ratio 3.63, 1.19 to 11.11, for daily exposure for many hours).
Conclusions This large prospective study, in which the smoking status was supported by cotinine measurements, confirms that environmental tobacco smoke is a risk factor for lung cancer and other respiratory diseases, particularly in ex-smokers.
doi:10.1136/bmj.38327.648472.82
PMCID: PMC548173  PMID: 15681570
17.  A case-control study of malignant and non-malignant respiratory disease among employees of a fiberglass manufacturing facility. II. Exposure assessment. 
A case-control study of malignant and non-malignant respiratory disease among employees of the Owens-Corning Fiberglas Corporation's Newark, Ohio plant was undertaken. The aim was to determine the extent to which exposures to substances in the Newark plant environment, to non-workplace factors, or to a combination may play a part in the risk of mortality from respiratory disease among workers in this plant. A historical environmental reconstruction of the plant was undertaken to characterise the exposure profile for workers in this plant from its beginnings in 1934 to the end of 1987. The exposure profile provided estimates of cumulative exposure to respirable fibres, fine fibres, asbestos, talc, formaldehyde, silica, and asphalt fumes. Employment histories from Owens-Corning Fiberglas provided information on employment characteristics (duration of employment, year of hire, age at first hire) and an interview survey obtained information on demographic characteristics (birthdate, race, education, marital state, parent's ethnic background, and place of birth), lifetime residence, occupational and smoking histories, hobbies, and personal and family medical history. Matched, unadjusted odds ratios (ORs) were used to assess the association between lung cancer or non-malignant respiratory disease and the cumulative exposure history, demographic characteristics, and employment variables. Only the smoking variables and employment characteristics (year of hire and age at first hire) were statistically significant for lung cancer. For non-malignant respiratory disease, only the smoking variables were statistically significant in the univariate analysis. Of the variables entered into a conditional logistic regression model for lung cancer, only smoking (smoked for six months or more v never smoked: OR = 26.17, 95% confidence interval (95% CI) 3.316-206.5) and age at first hire (35 and over v less than 35: OR = 0.244, 95% CI 0.083-0.717) were statistically significant. There were, however, increased ORs for year of employment (first hired before 1945 v first hire after 1945: OR = 1.944, 95% CI 0.850-4.445), talc (cumulative exposure >1000 fibres/ml days v never exposed: OR = 1.355, 95% CI 0.407-5.515), and asphalt fumes (cumulative exposure >0.01 mg/m(3) days v never exposed: OR 1.131, 95% CI 0.468-2.730). For non-malignant respiratory disease, only the smoking variable was significant in the conditional logistic regression analysis (OR = 2.637, 95% CI 1.146-6.069). There were raised ORs for the higher cumulative exposure categories for respirable fibres, asbestos, silica, and asphalt fumes. For both silica and asphalt fumes, ORs were more than double the reference groups for all exposure categories. A limited number of subjects were exposed to fine fibres. The scarcity of cases and controls limits the extent to which analyses for fine fibre may be carried out. Within those limitations, among those who had worked with fine fibre, the unadjusted, unmatched OR for lung cancer was (1.0 (95% CI 0.229-4.373) and for non-malignant respiratory disease, the OR was 1.5 (95% CI 0.336-6.702). The unadjusted OR for lung cancer for exposure to fine fibre was consistent with that for all respirable fibre and does not suggest an association. For non-malignant respiratory disease, the unadjusted OR for fine fibre was opposite in direction from that for all respirable fibres. Within the limitations of the available data on fibre, there is o suggestion that exposure to fine fibre has resulted in an increase in risk of lung cancer. The increased OR for non-malignant respiratory disease is inconclusive. The results of this population, in this place and time, neither respirable fibres nor any of the substances investigated as part of the plant environment are statistically significant factors for lung cancer risk although there are increased ORs for exposure to talc and asphalt fumes. Smoking is the most important factors in risk for lung cancer in this population. The situation is less clear for non-malignant respiratory disease. Unlike lung cancer, non-malignant respiratory represents a constellation of outcomes and not a single well defined end point. Although smoking was the only statistically significant factor for non-malignant respiratory disease in this analysis, the ORs for respirable fibres, asbestos, silica, and asphalt fumes were greater than unity for the highest exposure categories. Although the raised ORs for these substances may represent the results of a random process, they may be suggestive of an increased risk and require further investigation.
PMCID: PMC1012175  PMID: 8398858
18.  Risk Prediction for Breast, Endometrial, and Ovarian Cancer in White Women Aged 50 y or Older: Derivation and Validation from Population-Based Cohort Studies 
PLoS Medicine  2013;10(7):e1001492.
Ruth Pfeiffer and colleagues describe models to calculate absolute risks for breast, endometrial, and ovarian cancers for white, non-Hispanic women over 50 years old using easily obtainable risk factors.
Please see later in the article for the Editors' Summary
Background
Breast, endometrial, and ovarian cancers share some hormonal and epidemiologic risk factors. While several models predict absolute risk of breast cancer, there are few models for ovarian cancer in the general population, and none for endometrial cancer.
Methods and Findings
Using data on white, non-Hispanic women aged 50+ y from two large population-based cohorts (the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial [PLCO] and the National Institutes of Health–AARP Diet and Health Study [NIH-AARP]), we estimated relative and attributable risks and combined them with age-specific US-population incidence and competing mortality rates. All models included parity. The breast cancer model additionally included estrogen and progestin menopausal hormone therapy (MHT) use, other MHT use, age at first live birth, menopausal status, age at menopause, family history of breast or ovarian cancer, benign breast disease/biopsies, alcohol consumption, and body mass index (BMI); the endometrial model included menopausal status, age at menopause, BMI, smoking, oral contraceptive use, MHT use, and an interaction term between BMI and MHT use; the ovarian model included oral contraceptive use, MHT use, and family history or breast or ovarian cancer. In independent validation data (Nurses' Health Study cohort) the breast and ovarian cancer models were well calibrated; expected to observed cancer ratios were 1.00 (95% confidence interval [CI]: 0.96–1.04) for breast cancer and 1.08 (95% CI: 0.97–1.19) for ovarian cancer. The number of endometrial cancers was significantly overestimated, expected/observed = 1.20 (95% CI: 1.11–1.29). The areas under the receiver operating characteristic curves (AUCs; discriminatory power) were 0.58 (95% CI: 0.57–0.59), 0.59 (95% CI: 0.56–0.63), and 0.68 (95% CI: 0.66–0.70) for the breast, ovarian, and endometrial models, respectively.
Conclusions
These models predict absolute risks for breast, endometrial, and ovarian cancers from easily obtainable risk factors and may assist in clinical decision-making. Limitations are the modest discriminatory ability of the breast and ovarian models and that these models may not generalize to women of other races.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
In 2008, just three types of cancer accounted for 10% of global cancer-related deaths. That year, about 460,000 women died from breast cancer (the most frequently diagnosed cancer among women and the fifth most common cause of cancer-related death). Another 140,000 women died from ovarian cancer, and 74,000 died from endometrial (womb) cancer (the 14th and 20th most common causes of cancer-related death, respectively). Although these three cancers originate in different tissues, they nevertheless share many risk factors. For example, current age, age at menarche (first period), and parity (the number of children a woman has had) are all strongly associated with breast, ovarian, and endometrial cancer risk. Because these cancers share many hormonal and epidemiological risk factors, a woman with a high breast cancer risk is also likely to have an above-average risk of developing ovarian or endometrial cancer.
Why Was This Study Done?
Several statistical models (for example, the Breast Cancer Risk Assessment Tool) have been developed that estimate a woman's absolute risk (probability) of developing breast cancer over the next few years or over her lifetime. Absolute risk prediction models are useful in the design of cancer prevention trials and can also help women make informed decisions about cancer prevention and treatment options. For example, a woman at high risk of breast cancer might decide to take tamoxifen for breast cancer prevention, but ideally she needs to know her absolute endometrial cancer risk before doing so because tamoxifen increases the risk of this cancer. Similarly, knowledge of her ovarian cancer risk might influence a woman's decision regarding prophylactic removal of her ovaries to reduce her breast cancer risk. There are few absolute risk prediction models for ovarian cancer, and none for endometrial cancer, so here the researchers develop models to predict the risk of these cancers and of breast cancer.
What Did the Researchers Do and Find?
Absolute risk prediction models are constructed by combining estimates for risk factors from cohorts with population-based incidence rates from cancer registries. Models are validated in an independent cohort by testing their ability to identify people with the disease in an independent cohort and their ability to predict the observed numbers of incident cases. The researchers used data on white, non-Hispanic women aged 50 years or older that were collected during two large prospective US cohort studies of cancer screening and of diet and health, and US cancer incidence and mortality rates provided by the Surveillance, Epidemiology, and End Results Program to build their models. The models all included parity as a risk factor, as well as other factors. The model for endometrial cancer, for example, also included menopausal status, age at menopause, body mass index (an indicator of the amount of body fat), oral contraceptive use, menopausal hormone therapy use, and an interaction term between menopausal hormone therapy use and body mass index. Individual women's risk for endometrial cancer calculated using this model ranged from 1.22% to 17.8% over the next 20 years depending on their exposure to various risk factors. Validation of the models using data from the US Nurses' Health Study indicated that the endometrial cancer model overestimated the risk of endometrial cancer but that the breast and ovarian cancer models were well calibrated—the predicted and observed risks for these cancers in the validation cohort agreed closely. Finally, the discriminatory power of the models (a measure of how well a model separates people who have a disease from people who do not have the disease) was modest for the breast and ovarian cancer models but somewhat better for the endometrial cancer model.
What Do These Findings Mean?
These findings show that breast, ovarian, and endometrial cancer can all be predicted using information on known risk factors for these cancers that is easily obtainable. Because these models were constructed and validated using data from white, non-Hispanic women aged 50 years or older, they may not accurately predict absolute risk for these cancers for women of other races or ethnicities. Moreover, the modest discriminatory power of the breast and ovarian cancer models means they cannot be used to decide which women should be routinely screened for these cancers. Importantly, however, these well-calibrated models should provide realistic information about an individual's risk of developing breast, ovarian, or endometrial cancer that can be used in clinical decision-making and that may assist in the identification of potential participants for research studies.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001492.
This study is further discussed in a PLOS Medicine Perspective by Lars Holmberg and Andrew Vickers
The US National Cancer Institute provides comprehensive information about cancer (in English and Spanish), including detailed information about breast cancer, ovarian cancer, and endometrial cancer;
Information on the Breast Cancer Risk Assessment Tool, the Surveillance, Epidemiology, and End Results Program, and on the prospective cohort study of screening and the diet and health study that provided the data used to build the models is also available on the NCI site
Cancer Research UK, a not-for-profit organization, provides information about cancer, including detailed information on breast cancer, ovarian cancer, and endometrial cancer
The UK National Health Service Choices website has information and personal stories about breast cancer, ovarian cancer, and endometrial cancer; the not-for-profit organization Healthtalkonline also provides personal stories about dealing with breast cancer and ovarian cancer
doi:10.1371/journal.pmed.1001492
PMCID: PMC3728034  PMID: 23935463
19.  Mortality attributable to passive smoking in Spain, 2002 
Tobacco Control  2007;16(6):373-377.
Objective
Exposure to environmental tobacco smoke (ETS) is associated with a variety of health effects, including lung cancer and ischaemic heart disease. The objective of this study was to estimate the number of deaths caused by exposure to ETS among non‐smokers in Spain during the year 2002
Methods
Prevalence of ETS exposure among never smokers was gathered from three region based health interview surveys. The relative risks of lung cancer and ichaemic heart diseases were selected from three meta‐analyses. Population attributable risk (PAR) was computed using a range of prevalences (minimum‐maximum). The number of deaths attributable to ETS was calculated by applying PARs to mortality not attributable to active smoking in 2002. The analyses were stratified by sex, age and source of exposure (home, workplace and both combined). In addition, a sensitivity analysis was performed for different scenarios.
Results
Among men, deaths attributable to ETS ranged from 408 to 1703. From 247 to 1434 of these deaths would be caused by the exposure only at home, 136–196 by exposure only in the workplace and 25–73 by exposure at both home and the workplace. Among women, the number of attributable deaths ranged from 820 to 1534. Between 807 and 1477 of these deaths would be caused by exposure only at home, 9–32 by exposure only in the workplace and 4–25 by exposure both at home and in the workplace.
Conclusion
Exposure to ETS at home and at work in Spain could be responsible for 1228–3237 of deaths from lung cancer and ischaemic heart disease. These data confirm that passive smoking is an important public health problem in Spain that needs urgent attention.
doi:10.1136/tc.2006.019679
PMCID: PMC2807185  PMID: 18048612
environmental tobacco smoke; cancer; Spain
20.  Cigarette tar yields in relation to mortality from lung cancer in the cancer prevention study II prospective cohort, 1982-8 
BMJ : British Medical Journal  2004;328(7431):72.
Objective To assess the risk of lung cancer in smokers of medium tar filter cigarettes compared with smokers of low tar and very low tar filter cigarettes.
Design Analysis of the association between the tar rating of the brand of cigarette smoked in 1982 and mortality from lung cancer over the next six years. Multivariate proportional hazards analyses used to assess hazard ratios, with adjustment for age at enrolment, race, educational level, marital status, blue collar employment, occupational exposure to asbestos, intake of vegetables, citrus fruits, and vitamins, and, in analyses of current and former smokers, for age when they started to smoke and number of cigarettes smoked per day.
Setting Cancer prevention study II (CPS-II).
Participants 364 239 men and 576 535 women, aged ≥ 30 years, who had either never smoked, were former smokers, or were currently smoking a specific brand of cigarette when they were enrolled in the cancer prevention study.
Main outcome measure Death from primary cancer of the lung among participants who had never smoked, former smokers, smokers of very low tar (≤ 7 mg tar/cigarette) filter, low tar (8-14 mg) filter, high tar (≥ 22 mg) non-filter brands and medium tar conventional filter brands (15-21 mg).
Results Irrespective of the tar level of their current brand, all current smokers had a far greater risk of lung cancer than people who had stopped smoking or had never smoked. Compared with smokers of medium tar (15-21 mg) filter cigarettes, risk was higher among men and women who smoked high tar (≥ 22 mg) non-filter brands (hazard ratio 1.44, 95% confidence interval 1.20 to 1.73, and 1.64, 1.26 to 2.15, respectively). There was no difference in risk among men who smoked brands rated as very low tar (1.17, 0.95 to 1.45) or low tar (1.02, 0.90 to 1.16) compared with those who smoked medium tar brands. The same was seen for women (0.98, 0.80 to 1.21, and 0.95, 0.82 to 1.11, respectively).
Conclusion The increase in lung cancer risk is similar in people who smoke medium tar cigarettes (15-21 mg), low tar cigarettes (8-14 mg), or very low tar cigarettes (≤ 7 mg). Men and women who smoke non-filtered cigarettes with tar ratings ≥ 22 mg have an even higher risk of lung cancer.
doi:10.1136/bmj.37936.585382.44
PMCID: PMC314045  PMID: 14715602
21.  Tobacco use and its contribution to early cancer mortality with a special emphasis on cigarette smoking. 
Environmental Health Perspectives  1995;103(Suppl 8):131-142.
This paper provides an overview of the relationship between tobacco use and early cancer mortality. It presents a retrospective examination of trends in smoking behavior and how these trends affected the national lung cancer mortality pattern during this century. Information on smoking prevalence is presented for black and white men and women for each 5-year birth cohort between 1885 and 1969. The author argues that the lung cancer mortality pattern observed in the United States since 1950 is entirely compatible with changes in smoking behavior among the various birth cohorts examined. The paper also reviews our current scientific knowledge about the etiological relationship between cigarette smoking and site-specific cancer mortality, with particular emphasis on lung cancer. Data on other forms of tobacco use and cancer mortality risks are included as are data on environmental tobacco smoke exposures and nonsmokers' lung cancer risk. Data are presented to demonstrate that cigarette use alone will be responsible for nearly one-third of the U.S. cancer deaths expected in the United States in 1995, or 168,000 premature cancer deaths. Among males, 38% of all cancer deaths are cigarette related, while among women 23% of all cancer deaths are due to cigarettes. These totals, however, include neither the cancer deaths that could reasonably be attributed to pipe, cigar, and smokeless tobacco use among males nor the estimated 3000 to 6000 environmental tobacco smoke-related lung cancer deaths that occur annually in nonsmokers. It is concluded that tobacco use, particularly the practice of cigarette smoking, is the single greatest cause of excess cancer mortality in U.S. populations.
PMCID: PMC1518977  PMID: 8741773
22.  Emerging tobacco hazards in China: 1. Retrospective proportional mortality study of one million deaths 
BMJ : British Medical Journal  1998;317(7170):1411-1422.
Objective
To assess the hazards at an early phase of the growing epidemic of deaths from tobacco in China.
Design
Smoking habits before 1980 (obtained from family or other informants) of 0.7 million adults who had died of neoplastic, respiratory, or vascular causes were compared with those of a reference group of 0.2 million who had died of other causes.
Setting
24 urban and 74 rural areas of China.
Subjects
One million people who had died during 1986-8 and whose families could be interviewed.
Main outcome measures
Tobacco attributable mortality in middle or old age from neoplastic, respiratory, or vascular disease.
Results
Among male smokers aged 35-69 there was a 51% (SE 2) excess of neoplastic deaths, a 31% (2) excess of respiratory deaths, and a 15% (2) excess of vascular deaths. All three excesses were significant (P<0.0001). Among male smokers aged ⩾70 there was a 39% (3) excess of neoplastic deaths, a 54% (2) excess of respiratory deaths, and a 6% (2) excess of vascular deaths. Fewer women smoked, but those who did had tobacco attributable risks of lung cancer and respiratory disease about the same as men. For both sexes, the lung cancer rates at ages 35-69 were about three times as great in smokers as in non-smokers, but because the rates among non-smokers in different parts of China varied widely the absolute excesses of lung cancer in smokers also varied. Of all deaths attributed to tobacco, 45% were due to chronic obstructive pulmonary disease and 15% to lung cancer; oesophageal cancer, stomach cancer, liver cancer, tuberculosis, stroke, and ischaemic heart disease each caused 5-8%. Tobacco caused about 0.6 million Chinese deaths in 1990 (0.5 million men). This will rise to 0.8 million in 2000 (0.4 million at ages 35-69) or to more if the tobacco attributed fractions increase.
Conclusions
At current age specific death rates in smokers and non-smokers one in four smokers would be killed by tobacco, but as the epidemic grows this proportion will roughly double. If current smoking uptake rates persist in China (where about two thirds of men but few women become smokers) tobacco will kill about 100 million of the 0.3 billion males now aged 0-29, with half these deaths in middle age and half in old age.
Key messagesOf the Chinese deaths now being caused by tobacco, 45% are from chronic lung disease, 15% from lung cancer, and 5-8% from each of oesophageal cancer, stomach cancer, liver cancer, stroke, ischaemic heart disease, and tuberculosisTobacco now causes 13% (and will probably eventually cause about 33%) of deaths in men but only 3% (and perhaps eventually about 1%) of deaths in women as the proportion of young women who smoke has become smallTwo thirds of men now become smokers before age 25; few give up, and about half of those who persist will be killed by tobacco in middle or old ageIf present smoking patterns continue about 100 million of the 0.3 billion Chinese males now aged 0-29 will eventually be killed by tobaccoTobacco caused 0.6 million deaths in 1990 and will cause at least 0.8 million in 2000 (0.7 million in men) and about 3 million a year by the middle of the century on the basis of current smoking patterns
PMCID: PMC28719  PMID: 9822393
23.  Socioeconomic Inequalities in Lung Cancer Treatment: Systematic Review and Meta-Analysis 
PLoS Medicine  2013;10(2):e1001376.
In a systematic review and meta-analysis, Lynne Forrest and colleagues find that patients with lung cancer who are more socioeconomically deprived are less likely to receive surgical treatment, chemotherapy, or any type of treatment combined, compared with patients who are more socioeconomically well off, regardless of cancer stage or type of health care system.
Background
Intervention-generated inequalities are unintended variations in outcome that result from the organisation and delivery of health interventions. Socioeconomic inequalities in treatment may occur for some common cancers. Although the incidence and outcome of lung cancer varies with socioeconomic position (SEP), it is not known whether socioeconomic inequalities in treatment occur and how these might affect mortality. We conducted a systematic review and meta-analysis of existing research on socioeconomic inequalities in receipt of treatment for lung cancer.
Methods and Findings
MEDLINE, EMBASE, and Scopus were searched up to September 2012 for cohort studies of participants with a primary diagnosis of lung cancer (ICD10 C33 or C34), where the outcome was receipt of treatment (rates or odds of receiving treatment) and where the outcome was reported by a measure of SEP. Forty-six papers met the inclusion criteria, and 23 of these papers were included in meta-analysis. Socioeconomic inequalities in receipt of lung cancer treatment were observed. Lower SEP was associated with a reduced likelihood of receiving any treatment (odds ratio [OR] = 0.79 [95% CI 0.73 to 0.86], p<0.001), surgery (OR = 0.68 [CI 0.63 to 0.75], p<0.001) and chemotherapy (OR = 0.82 [95% CI 0.72 to 0.93], p = 0.003), but not radiotherapy (OR = 0.99 [95% CI 0.86 to 1.14], p = 0.89), for lung cancer. The association remained when stage was taken into account for receipt of surgery, and was found in both universal and non-universal health care systems.
Conclusions
Patients with lung cancer living in more socioeconomically deprived circumstances are less likely to receive any type of treatment, surgery, and chemotherapy. These inequalities cannot be accounted for by socioeconomic differences in stage at presentation or by differences in health care system. Further investigation is required to determine the patient, tumour, clinician, and system factors that may contribute to socioeconomic inequalities in receipt of lung cancer treatment.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lung cancer is the most commonly occurring cancer worldwide and the commonest cause of cancer-related death. Like all cancers, lung cancer occurs when cells begin to grow uncontrollably because of changes in their genes. The most common trigger for these changes in lung cancer is exposure to cigarette smoke. Most cases of lung cancer are non-small cell lung cancer, the treatment for which depends on the “stage” of the disease when it is detected. Stage I tumors, which are confined to the lung, can be removed surgically. Stage II tumors, which have spread to nearby lymph nodes, are usually treated with surgery plus chemotherapy or radiotherapy. For more advanced tumors, which have spread throughout the chest (stage III) or throughout the body (stage IV), surgery generally does not help to slow tumor growth and the cancer is treated with chemotherapy and radiotherapy. Small cell lung cancer, the other main type of lung cancer, is nearly always treated with chemotherapy and radiotherapy but sometimes with surgery as well. Overall, because most lung cancers are not detected until they are quite advanced, less than 10% of people diagnosed with lung cancer survive for 5 years.
Why Was This Study Done?
As with many other cancers, socioeconomic inequalities have been reported for both the incidence of and the survival from lung cancer in several countries. It is thought that the incidence of lung cancer is higher among people of lower socioeconomic position than among wealthier people, in part because smoking rates are higher in poorer populations. Similarly, it has been suggested that survival is worse among poorer people because they tend to present with more advanced disease, which has a worse prognosis (predicted outcome) than early disease. But do socioeconomic inequalities in treatment exist for lung cancer and, if they do, could these inequalities contribute to the poor survival rates among populations of lower socioeconomic position? In this systematic review and meta-analysis, the researchers investigate the first of these questions. A systematic review uses predefined criteria to identify all the research on a given topic; a meta-analysis is a statistical approach that combines the results of several studies.
What Did the Researchers Do and Find?
The researchers identified 46 published papers that studied people with lung cancer in whom receipt of treatment was reported in terms of an indicator of socioeconomic position, such as a measure of income or deprivation. Twenty-three of these papers were suitable for inclusion in a meta-analysis. Lower socioeconomic position was associated with a reduced likelihood of receiving any treatment. Specifically, the odds ratio (chance) of people in the lowest socioeconomic group receiving any treatment was 0.79 compared to people in the highest socioeconomic group. Lower socioeconomic position was also associated with a reduced chance of receiving surgery (OR = 0.68) and chemotherapy (OR = 0.82), but not radiotherapy. The association between socioeconomic position and surgery remained after taking cancer stage into account. That is, when receipt of surgery was examined in early-stage patients only, low socioeconomic position remained associated with reduced likelihood of surgery. Notably, the association between socioeconomic position and receipt of treatment was similar in studies undertaken in countries where health care is free at the point of service for everyone (for example, the UK) and in countries with primarily private insurance health care systems (for example, the US).
What Do These Findings Mean?
These findings suggest that patients in more socioeconomically deprived circumstances are less likely to receive any type of treatment, surgery, and chemotherapy (but not radiotherapy) for lung cancer than people who are less socioeconomically deprived. Importantly, these inequalities cannot be explained by socioeconomic differences in stage at presentation or by differences in health care system. The accuracy of these findings may be affected by several factors. For example, it is possible that only studies that found an association between socioeconomic position and receipt of treatment have been published (publication bias). Moreover, the studies identified did not include information regarding patient preferences, which could help explain at least some of the differences. Nevertheless, these results do suggest that socioeconomic inequalities in receipt of treatment may exacerbate socioeconomic inequalities in the incidence of lung cancer and may contribute to the observed poorer outcomes in lower socioeconomic position groups. Further research is needed to determine the system and patient factors that contribute to socioeconomic inequalities in lung cancer treatment before clear recommendations for changes to policy and practice can be made.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001376.
The US National Cancer Institute provides information about all aspects of lung cancer for patients and health care professionals (in English and Spanish); a monograph entitled Area Socioeconomic Variations in U. S. Cancer Incidence, Mortality, Stage, Treatment, and Survival, 19751999 is available
Cancer Research UK also provides detailed information about lung cancer and links to other resources, such as a policy statement on socioeconomic inequalities in cancer and a monograph detailing cancer and health inequalities in the UK
The UK National Health Service Choices website has a page on lung cancer that includes personal stories about diagnosis and treatment
MedlinePlus provides links to other US sources of information about lung cancer (in English and Spanish)
doi:10.1371/journal.pmed.1001376
PMCID: PMC3564770  PMID: 23393428
24.  Impact of Scotland's Smoke-Free Legislation on Pregnancy Complications: Retrospective Cohort Study 
PLoS Medicine  2012;9(3):e1001175.
An analysis of pregnancy data for the whole of Scotland demonstrates a reduction in small-for-gestational-age births and preterm delivery since the introduction of legislation banning smoking in enclosed public spaces.
Background
Both active smoking and environmental tobacco smoke exposure are associated with pregnancy complications. In March 2006, Scotland implemented legislation prohibiting smoking in all wholly or partially enclosed public spaces. The aim of this study was to determine the impact of this legislation on preterm delivery and small for gestational age.
Methods and Findings
We conducted logistic regression analyses using national administrative pregnancy data covering the whole of Scotland. Of the two breakpoints tested, 1 January 2006 produced a better fit than the date when the legislation came into force (26 March 2006), suggesting an anticipatory effect. Among the 716,941 eligible women who conceived between August 1995 and February 2009 and subsequently delivered a live-born, singleton infant between 24 and 44 wk gestation, the prevalence of current smoking fell from 25.4% before legislation to 18.8% after legislation (p<0.001). Three months prior to the legislation, there were significant decreases in small for gestational age (−4.52%, 95% CI −8.28, −0.60, p = 0.024), overall preterm delivery (−11.72%, 95% CI −15.87, −7.35, p<0.001), and spontaneous preterm labour (−11.35%, 95% CI −17.20, −5.09, p = 0.001). In sub-group analyses, significant reductions were observed among both current and never smokers.
Conclusions
Reductions were observed in the risk of preterm delivery and small for gestational age 3 mo prior to the introduction of legislation, although the former reversed partially following the legislation. There is growing evidence of the potential for tobacco control legislation to have a positive impact on health.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The risks of smoking during pregnancy, both on mother and fetus, are well established: women who smoke during pregnancy are more likely to have a miscarriage. Smoking can cause placental problems, such as placental abruption, which can result in heavy bleeding during pregnancy, which is dangerous for both mother and baby. Other dangers of smoking during pregnancy include the baby being born too early (premature birth), the baby being below average weight (small for gestational age), birth defects, and infant death. Because of the serious damage to health caused by smoking, in 2005, under the auspices of the World Health Organization, countries adopted the Framework Convention on Tobacco Control to protect present and future generations from the devastating health, social, environmental, and economic consequences of tobacco consumption and exposure to tobacco smoke. Article 8 of the treaty obliges member states who have ratified the treaty—168 so far—to protect all people from exposure to tobacco smoke in indoor workplaces, public transport, and indoor public places. As a result, many countries around the world have banned smoking in public places.
Why Was This Study Done?
Scotland was the first country in the United Kingdom to ban smoking in public places, which was implemented as part of the Smoking, Health and Social Care (Scotland) Bill on 26 March 2006. Previous studies have shown that the introduction of the legislation led directly to a reduction in smoking and also a reduction in environmental tobacco smoke exposure in adults and children. Furthermore, the Scottish legislation has been accompanied by significant reductions in both cardiovascular and respiratory disease. Because of the known risks of smoking during pregnancy, the researchers wanted to investigate whether the change in policy on smoking in public places had positive benefits on the health of mothers and babies. They evaluated this by measuring the rates of preterm delivery and small for gestational age before and after the Scottish legislation went into effect.
What Did the Researchers Do and Find?
The researchers collected information on preterm delivery and small for gestational age in all single babies born live at 22–44 weeks gestation between 1 January 1996 and 31 December 2009 by using the Scottish Morbidity Record (SMR2), which collects relevant information on all women discharged from Scottish maternity hospitals, including maternal and infant characteristics and pregnancy complications. The researchers categorized preterm delivery into mild, moderate, and extreme depending on how much before 37 weeks the baby was born. They defined small for gestational age as the smallest 10% (below the 10th centile) for sex-specific birth weight at delivery, and very small for gestational age as the smallest 3% (below the 3rd centile), for all deliveries in Scotland over the study period. As some people may have stopped smoking in anticipation of the smoking ban, in their statistical model, the researchers included two possible breakpoints for the effect of the legislation—the actual date of implementation and 1 January 2006.
The researchers found that of the 716,968 pregnancies (the number eligible for inclusion in the study), 99.9% of women had their smoking status recorded, and among these 23.9% were current smokers, 57.6% never smokers, and 8.7% former smokers. However, following implementation of the legislation the researchers noted that there was a significant reduction in current smokers to 18.8%. In their statistical model, the researchers found that following 1 January 2006, there was a significant drop in overall preterm deliveries, which remained after adjustment for potential confounding factors. Likewise, there was a significant decrease in the number of infants born small, and very small, for gestational age after 1 January 2006. Furthermore, the researchers found that these significant reductions occurred in both mothers who smoked and those who had never smoked.
What Do These Findings Mean?
These findings suggest that the introduction of national, comprehensive smoke-free legislation in Scotland was associated with significant reductions in preterm delivery and babies being born small for gestational age. These findings are plausible and add to the growing evidence of the wide-ranging health benefits of smoke-free legislation, and support the adoption of such legislation in other countries that have yet to implement smoking bans.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001175.
More information is available on the World Health Organization's Framework Convention for Tobacco Control
More information on the Smoking, Health and Social Care (Scotland) Bill is available
The US Centers for Disease Control and Prevention has more information about the risks of smoking in pregnancy, as does the UK National Health Service's smokefree web page
NHS Health Scotland has a website that summarises all the studies to date evaluating the Scottish smoke-free legislation
doi:10.1371/journal.pmed.1001175
PMCID: PMC3295815  PMID: 22412353
25.  The Preventable Causes of Death in the United States: Comparative Risk Assessment of Dietary, Lifestyle, and Metabolic Risk Factors 
PLoS Medicine  2009;6(4):e1000058.
Majid Ezzati and colleagues examine US data on risk factor exposures and disease-specific mortality and find that smoking and hypertension, which both have effective interventions, are responsible for the largest number of deaths.
Background
Knowledge of the number of deaths caused by risk factors is needed for health policy and priority setting. Our aim was to estimate the mortality effects of the following 12 modifiable dietary, lifestyle, and metabolic risk factors in the United States (US) using consistent and comparable methods: high blood glucose, low-density lipoprotein (LDL) cholesterol, and blood pressure; overweight–obesity; high dietary trans fatty acids and salt; low dietary polyunsaturated fatty acids, omega-3 fatty acids (seafood), and fruits and vegetables; physical inactivity; alcohol use; and tobacco smoking.
Methods and Findings
We used data on risk factor exposures in the US population from nationally representative health surveys and disease-specific mortality statistics from the National Center for Health Statistics. We obtained the etiological effects of risk factors on disease-specific mortality, by age, from systematic reviews and meta-analyses of epidemiological studies that had adjusted (i) for major potential confounders, and (ii) where possible for regression dilution bias. We estimated the number of disease-specific deaths attributable to all non-optimal levels of each risk factor exposure, by age and sex. In 2005, tobacco smoking and high blood pressure were responsible for an estimated 467,000 (95% confidence interval [CI] 436,000–500,000) and 395,000 (372,000–414,000) deaths, accounting for about one in five or six deaths in US adults. Overweight–obesity (216,000; 188,000–237,000) and physical inactivity (191,000; 164,000–222,000) were each responsible for nearly 1 in 10 deaths. High dietary salt (102,000; 97,000–107,000), low dietary omega-3 fatty acids (84,000; 72,000–96,000), and high dietary trans fatty acids (82,000; 63,000–97,000) were the dietary risks with the largest mortality effects. Although 26,000 (23,000–40,000) deaths from ischemic heart disease, ischemic stroke, and diabetes were averted by current alcohol use, they were outweighed by 90,000 (88,000–94,000) deaths from other cardiovascular diseases, cancers, liver cirrhosis, pancreatitis, alcohol use disorders, road traffic and other injuries, and violence.
Conclusions
Smoking and high blood pressure, which both have effective interventions, are responsible for the largest number of deaths in the US. Other dietary, lifestyle, and metabolic risk factors for chronic diseases also cause a substantial number of deaths in the US.
Please see later in the article for Editors' Summary
Editors' Summary
Background
A number of modifiable factors are responsible for many premature or preventable deaths. For example, being overweight or obese shortens life expectancy, while half of all long-term tobacco smokers in Western populations will die prematurely from a disease directly related to smoking. Modifiable risk factors fall into three main groups. First, there are lifestyle risk factors. These include tobacco smoking, physical inactivity, and excessive alcohol use (small amounts of alcohol may actually prevent diabetes and some types of heart disease and stroke). Second, there are dietary risk factors such as a high salt intake and a low intake of fruits and vegetables. Finally, there are “metabolic risk factors,” which shorten life expectancy by increasing a person's chances of developing cardiovascular disease (in particular, heart problems and strokes) and diabetes. Metabolic risk factors include having high blood pressure or blood cholesterol and being overweight or obese.
Why Was This Study Done?
It should be possible to reduce preventable deaths by changing modifiable risk factors through introducing public health policies, programs and regulations that reduce exposures to these risk factors. However, it is important to know how many deaths are caused by each risk factor before developing policies and programs that aim to improve a nation's health. Although previous studies have provided some information on the numbers of premature deaths caused by modifiable risk factors, there are two problems with these studies. First, they have not used consistent and comparable methods to estimate the number of deaths attributable to different risk factors. Second, they have rarely considered the effects of dietary and metabolic risk factors. In this new study, the researchers estimate the number of deaths due to 12 different modifiable dietary, lifestyle, and metabolic risk factors for the United States population. They use a method called “comparative risk assessment.” This approach estimates the number of deaths that would be prevented if current distributions of risk factor exposures were changed to hypothetical optimal distributions.
What Did the Researchers Do and Find?
The researchers extracted data on exposures to these 12 selected risk factors from US national health surveys, and they obtained information on deaths from difference diseases for 2005 from the US National Center for Health Statistics. They used previously published studies to estimate how much each risk factor increases the risk of death from each disease. The researchers then used a mathematical formula to estimate the numbers of deaths caused by each risk factor. Of the 2.5 million US deaths in 2005, they estimate that nearly half a million were associated with tobacco smoking and about 400,000 were associated with high blood pressure. These two risk factors therefore each accounted for about 1 in 5 deaths in US adults. Overweight–obesity and physical inactivity were each responsible for nearly 1 in 10 deaths. Among the dietary factors examined, high dietary salt intake had the largest effect, being responsible for 4% of deaths in adults. Finally, while alcohol use prevented 26,000 deaths from ischemic heart disease, ischemic stroke, and diabetes, the researchers estimate that it caused 90,000 deaths from other types of cardiovascular diseases, other medical conditions, and road traffic accidents and violence.
What Do These Findings Mean?
These findings indicate that smoking and high blood pressure are responsible for the largest number of preventable deaths in the US, but that several other modifiable risk factors also cause many deaths. Although the accuracy of some of the estimates obtained in this study will be affected by the quality of the data used, these findings suggest that targeting a handful of risk factors could greatly reduce premature mortality in the US. The findings might also apply to other countries, although the risk factors responsible for most preventable deaths may vary between countries. Importantly, effective individual-level and population-wide interventions are already available to reduce people's exposure to the two risk factors responsible for most preventable deaths in the US. The researchers also suggest that combinations of regulation, pricing, and education have the potential to reduce the exposure of US residents to other risk factors that are likely to shorten their lives.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000058.
The MedlinePlus encyclopedia contains a page on healthy living (in English and Spanish)
The US Centers for Disease Control and Prevention provides information on all aspects of healthy living
Healthy People 2010 is a national framework designed to improve the health of people living in the US. The Healthy People 2020 Framework is due to be launched in January 2010
The World Health Report 2002Reducing Risks, Promoting Healthy Life provides a global analysis of how healthy life expectancy could be increased
The National Health and Nutrition Examination Survey (NHANES) is “a program of studies designed to assess the health and nutritional status of adults and children in the United States”
The US Centers for Disease Control and Prevention's site Smoking and Tobacco Use offers a large number of informational and data resources on this important risk factor
The American Heart Association and American Cancer Society provide a rich resource for patients and caregivers on many important risk factors including diet, sodium intake, and smoking
doi:10.1371/journal.pmed.1000058
PMCID: PMC2667673  PMID: 19399161

Results 1-25 (1316580)