PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (1253212)

Clipboard (0)
None

Related Articles

1.  Does breathing other people's tobacco smoke cause lung cancer? 
The available epidemiological studies of lung cancer and exposure to other people's tobacco smoke, in which exposure was assessed by whether or not a person classified as a non-smoker lived with a smoker, were identified and the results combined. There were 10 case-control studies and three prospective studies. Overall, there was a highly significant 35% increase in the risk of lung cancer among non-smokers living with smokers compared with non-smokers living with non-smokers (relative risk 1.35, 95% confidence interval 1.19 to 1.54). Part of this increase was almost certainly caused by the misclassification of some smokers as non-smokers. As smokers, who are more likely to get lung cancer than non-smokers, tend to live with smokers this misclassification probably exaggerated the estimated increase in risk. Adjustment for this error reduced the estimate to 30% (relative risk 1.30), but as people who live with non-smokers may still be exposed to other people's smoke this estimate was revised again to allow for the fact that a truly unexposed reference group was not used. The increase in risk among non-smokers living with smokers compared with a completely unexposed group was thus estimated as 53% (relative risk of 1.53). This analysis, and the fact that non-smokers breathe environmental tobacco smoke, which contains carcinogens, into their lungs and that the generally accepted view is that there is no safe threshold for the effect of carcinogens, leads to the conclusion that breathing other people's tobacco smoke is a cause of lung cancer. About a third of the cases of lung cancer in non-smokers who live with smokers, and about a quarter of the cases in non-smokers in general, may be attributed to such exposure.
PMCID: PMC1341990  PMID: 3096439
2.  Mortality attributable to passive smoking in Spain, 2002 
Tobacco Control  2007;16(6):373-377.
Objective
Exposure to environmental tobacco smoke (ETS) is associated with a variety of health effects, including lung cancer and ischaemic heart disease. The objective of this study was to estimate the number of deaths caused by exposure to ETS among non‐smokers in Spain during the year 2002
Methods
Prevalence of ETS exposure among never smokers was gathered from three region based health interview surveys. The relative risks of lung cancer and ichaemic heart diseases were selected from three meta‐analyses. Population attributable risk (PAR) was computed using a range of prevalences (minimum‐maximum). The number of deaths attributable to ETS was calculated by applying PARs to mortality not attributable to active smoking in 2002. The analyses were stratified by sex, age and source of exposure (home, workplace and both combined). In addition, a sensitivity analysis was performed for different scenarios.
Results
Among men, deaths attributable to ETS ranged from 408 to 1703. From 247 to 1434 of these deaths would be caused by the exposure only at home, 136–196 by exposure only in the workplace and 25–73 by exposure at both home and the workplace. Among women, the number of attributable deaths ranged from 820 to 1534. Between 807 and 1477 of these deaths would be caused by exposure only at home, 9–32 by exposure only in the workplace and 4–25 by exposure both at home and in the workplace.
Conclusion
Exposure to ETS at home and at work in Spain could be responsible for 1228–3237 of deaths from lung cancer and ischaemic heart disease. These data confirm that passive smoking is an important public health problem in Spain that needs urgent attention.
doi:10.1136/tc.2006.019679
PMCID: PMC2807185  PMID: 18048612
environmental tobacco smoke; cancer; Spain
3.  Indirectly estimated absolute lung cancer mortality rates by smoking status and histological type based on a systematic review 
BMC Cancer  2013;13:189.
Background
National smoking-specific lung cancer mortality rates are unavailable, and studies presenting estimates are limited, particularly by histology. This hinders interpretation. We attempted to rectify this by deriving estimates indirectly, combining data from national rates and epidemiological studies.
Methods
We estimated study-specific absolute mortality rates and variances by histology and smoking habit (never/ever/current/former) based on relative risk estimates derived from studies published in the 20th century, coupled with WHO mortality data for age 70–74 for the relevant country and period. Studies with populations grossly unrepresentative nationally were excluded. 70–74 was chosen based on analyses of large cohort studies presenting rates by smoking and age. Variations by sex, period and region were assessed by meta-analysis and meta-regression.
Results
148 studies provided estimates (Europe 59, America 54, China 22, other Asia 13), 54 providing estimates by histology (squamous cell carcinoma, adenocarcinoma). For all smoking habits and lung cancer types, mortality rates were higher in males, the excess less evident for never smokers. Never smoker rates were clearly highest in China, and showed some increasing time trend, particularly for adenocarcinoma. Ever smoker rates were higher in parts of Europe and America than in China, with the time trend very clear, especially for adenocarcinoma. Variations by time trend and continent were clear for current smokers (rates being higher in Europe and America than Asia), but less clear for former smokers. Models involving continent and trend explained much variability, but non-linearity was sometimes seen (with rates lower in 1991–99 than 1981–90), and there was regional variation within continent (with rates in Europe often high in UK and low in Scandinavia, and higher in North than South America).
Conclusions
The indirect method may be questioned, because of variations in definition of smoking and lung cancer type in the epidemiological database, changes over time in diagnosis of lung cancer types, lack of national representativeness of some studies, and regional variation in smoking misclassification. However, the results seem consistent with the literature, and provide additional information on variability by time and region, including evidence of a rise in never smoker adenocarcinoma rates relative to squamous cell carcinoma rates.
doi:10.1186/1471-2407-13-189
PMCID: PMC3639928  PMID: 23570286
Lung cancer; Absolute rates; Squamous cell carcinoma; Adenocarcinoma; Smoking
4.  Lung Cancer Occurrence in Never-Smokers: An Analysis of 13 Cohorts and 22 Cancer Registry Studies  
PLoS Medicine  2008;5(9):e185.
Background
Better information on lung cancer occurrence in lifelong nonsmokers is needed to understand gender and racial disparities and to examine how factors other than active smoking influence risk in different time periods and geographic regions.
Methods and Findings
We pooled information on lung cancer incidence and/or death rates among self-reported never-smokers from 13 large cohort studies, representing over 630,000 and 1.8 million persons for incidence and mortality, respectively. We also abstracted population-based data for women from 22 cancer registries and ten countries in time periods and geographic regions where few women smoked. Our main findings were: (1) Men had higher death rates from lung cancer than women in all age and racial groups studied; (2) male and female incidence rates were similar when standardized across all ages 40+ y, albeit with some variation by age; (3) African Americans and Asians living in Korea and Japan (but not in the US) had higher death rates from lung cancer than individuals of European descent; (4) no temporal trends were seen when comparing incidence and death rates among US women age 40–69 y during the 1930s to contemporary populations where few women smoke, or in temporal comparisons of never-smokers in two large American Cancer Society cohorts from 1959 to 2004; and (5) lung cancer incidence rates were higher and more variable among women in East Asia than in other geographic areas with low female smoking.
Conclusions
These comprehensive analyses support claims that the death rate from lung cancer among never-smokers is higher in men than in women, and in African Americans and Asians residing in Asia than in individuals of European descent, but contradict assertions that risk is increasing or that women have a higher incidence rate than men. Further research is needed on the high and variable lung cancer rates among women in Pacific Rim countries.
Michael Thun and colleagues pooled and analyzed comprehensive data on lung cancer incidence and death rates among never-smokers to examine what factors other than active smoking affect lung cancer risk.
Editors' Summary
Background.
Every year, more than 1.4 million people die from lung cancer, a leading cause of cancer deaths worldwide. In the US alone, more than 161,000 people will die from lung cancer this year. Like all cancers, lung cancer occurs when cells begin to divide uncontrollably because of changes in their genes. The main trigger for these changes in lung cancer is exposure to the chemicals in cigarette smoke—either directly through smoking cigarettes or indirectly through exposure to secondhand smoke. Eighty-five to 90% of lung cancer deaths are caused by exposure to cigarette smoke and, on average, current smokers are 15 times more likely to die from lung cancer than lifelong nonsmokers (never smokers). Furthermore, a person's cumulative lifetime risk of developing lung cancer is related to how much they smoke, to how many years they are a smoker, and—if they give up smoking—to the age at which they stop smoking.
Why Was This Study Done?
Because lung cancer is so common, even the small fraction of lung cancer that occurs in lifelong nonsmokers represents a large number of people. For example, about 20,000 of this year's US lung cancer deaths will be in never-smokers. However, very little is known about how age, sex, or race affects the incidence (the annual number of new cases of diseases in a population) or death rates from lung cancer among never-smokers. A better understanding of the patterns of lung cancer incidence and death rates among never-smokers could provide useful information about the factors other than cigarette smoke that increase the likelihood of not only never-smokers, but also former smokers and current smokers developing lung cancer. In this study, therefore, the researchers pooled and analyzed a large amount of information about lung cancer incidence and death rates among never smokers to examine what factors other than active smoking affect lung cancer risk.
What Did the Researchers Do and Find?
The researchers analyzed information on lung cancer incidence and/or death rates among nearly 2.5 million self-reported never smokers (men and women) from 13 large studies investigating the health of people in North America, Europe, and Asia. They also analyzed similar information for women taken from cancer registries in ten countries at times when very few women were smokers (for example, the US in the late 1930s). The researchers' detailed statistical analyses reveal, for example, that lung cancer death rates in African Americans and in Asians living in Korea and Japan (but not among Asians living in the US) are higher than those in people of the European continental ancestry group. They also show that men have higher death rates from lung cancer than women irrespective of racial group, but that women aged 40–59 years have a slightly higher incidence of lung cancer than men of a similar age. This difference disappears at older ages. Finally, an analysis of lung cancer incidence and death rates at different times during the past 70 years shows no evidence of an increase in the lung cancer burden among never smokers over time.
What Do These Findings Mean?
Although some of the findings described above have been hinted at in previous, smaller studies, these and other findings provide a much more accurate picture of lung cancer incidence and death rates among never smokers. Most importantly the underlying data used in these analyses are now freely available and should provide an excellent resource for future studies of lung cancer in never smokers.
Additional Information.
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.0050185.
The US National Cancer Institute provides detailed information for patients and health professionals about all aspects of lung cancer and information on smoking and cancer (in English and Spanish)
Links to other US-based resources dealing with lung cancer are provided by MedlinePlus (in English and Spanish)
Cancer Research UK provides key facts about the link between lung cancer and smoking and information about all other aspects of lung cancer
doi:10.1371/journal.pmed.0050185
PMCID: PMC2531137  PMID: 18788891
5.  Exposure to environmental tobacco smoke (ETS) and risk of lung cancer in Montreal: a case–control study 
Environmental Health  2013;12:112.
Background
The objective of the present study was to examine the association between environmental tobacco smoke (ETS) and risk of lung cancer among never smokers, defined as subjects who smoked less than 100 cigarettes in their lifetime.
Methods
We conducted a population-based case–control study on lung cancer in Montreal, Canada (1996–2000) including 1,203 cases and 1513 controls. The present analysis is restricted to the 44 cases and 436 population controls who reported never smoking and completed the questionnaire on lifetime ETS exposure. Collected information included duration and intensity of exposure from multiple sources: inside home (parents, spouses, roommates and any other co-resident) and outside homes (in vehicles, social settings, and workplace). Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated between ETS and lung cancer, adjusting for age, sex, socioeconomic status (SES), and proxy respondent.
Results
Overall there was no association between ETS cumulative exposure from all sources (measured in pack-years) and lung cancer: OR = 0.98 (95%CI: 0.40-2.38), comparing upper with lower tertiles of exposure. While there were no elevated ORs associated with ever having lived with parents who smoked (OR = 0.62; 95%CI: 0.32-1.21) or with spouses who smoked (OR = 0.39; 95%CI: 0.18-0.85), ETS exposure from sources outside homes was associated with a slight, although non-significant increased risk: OR = 2.30 (95%CI: 0.85-6.19) for the upper 50% exposed. There were no clear differences in ORs by age at exposure to ETS or by histologic type of tumour, though numbers of subjects in subgroup analyses were too small to provide reliable estimates.
Conclusion
No clear association between lifetime ETS exposure from all sources and increased risk of lung cancer was found in the current study.
doi:10.1186/1476-069X-12-112
PMCID: PMC3881495  PMID: 24345091
Environmental tobacco smoke; Lung cancer; Case–control study
6.  The accumulated evidence on lung cancer and environmental tobacco smoke. 
BMJ : British Medical Journal  1997;315(7114):980-988.
OBJECTIVE: To estimate the risk of lung cancer in lifelong non-smokers exposed to environmental tobacco smoke. DESIGN: Analysis of 37 published epidemiological studies of the risk of lung cancer (4626 cases) in non-smokers who did and did not live with a smoker. The risk estimate was compared with that from linear extrapolation of the risk in smokers using seven studies of biochemical markers of tobacco smoke intake. MAIN OUTCOME MEASURE: Relative risk of lung cancer in lifelong non-smokers according to whether the spouse currently smoked or had never smoked. RESULTS: The excess risk of lung cancer was 24% (95% confidence interval 13% to 36%) in non-smokers who lived with a smoker (P < 0.001). Adjustment for the effects of bias (positive and negative) and dietary confounding had little overall effect; the adjusted excess risk was 26% (7% to 47%). The dose-response relation of the risk of lung cancer with both the number of cigarettes smoked by the spouse and the duration of exposure was significant. The excess risk derived by linear extrapolation from that in smokers was 19%, similar to the direct estimate of 26%. CONCLUSION: The epidemiological and biochemical evidence on exposure to environmental tobacco smoke, with the supporting evidence of tobacco specific carcinogens in the blood and urine of non-smokers exposed to environmental tobacco smoke, provides compelling confirmation that breathing other people's tobacco smoke is a cause of lung cancer.
PMCID: PMC2127653  PMID: 9365295
7.  Lung cancer and diesel exhaust: an updated critical review of the occupational epidemiology literature 
Critical Reviews in Toxicology  2012;42(7):549-598.
A recent review concluded that the evidence from epidemiology studies was indeterminate and that additional studies were required to support the diesel exhaust-lung cancer hypothesis. This updated review includes seven recent studies. Two population-based studies concluded that significant exposure-response (E-R) trends between cumulative diesel exhaust and lung cancer were unlikely to be entirely explained by bias or confounding. Those studies have quality data on life-style risk factors, but do not allow definitive conclusions because of inconsistent E-R trends, qualitative exposure estimates and exposure misclassification (insufficient latency based on job title), and selection bias from low participation rates. Non-definitive results are consistent with the larger body of population studies. An NCI/NIOSH cohort mortality and nested case-control study of non-metal miners have some surrogate-based quantitative diesel exposure estimates (including highest exposure measured as respirable elemental carbon (REC) in the workplace) and smoking histories. The authors concluded that diesel exhaust may cause lung cancer. Nonetheless, the results are non-definitive because the conclusions are based on E-R patterns where high exposures were deleted to achieve significant results, where a posteriori adjustments were made to augment results, and where inappropriate adjustments were made for the “negative confounding” effects of smoking even though current smoking was not associated with diesel exposure and therefore could not be a confounder. Three cohort studies of bus drivers and truck drivers are in effect air pollution studies without estimates of diesel exhaust exposure and so are not sufficient for assessing the lung cancer-diesel exhaust hypothesis. Results from all occupational cohort studies with quantitative estimates of exposure have limitations, including weak and inconsistent E-R associations that could be explained by bias, confounding or chance, exposure misclassification, and often inadequate latency. In sum, the weight of evidence is considered inadequate to confirm the diesel-lung cancer hypothesis.
doi:10.3109/10408444.2012.690725
PMCID: PMC3441149  PMID: 22656672
Cumulative exposure; diesel exhaust; elemental carbon; epidemiology; exposure-response; latency; lung cancer; odds ratio
8.  Current and Former Smoking and Risk for Venous Thromboembolism: A Systematic Review and Meta-Analysis 
PLoS Medicine  2013;10(9):e1001515.
In a meta-analysis of 32 observational studies involving 3,966,184 participants and 35,151 events, Suhua Wu and colleagues found that current, ever, and former smoking was associated with risk of venous thromboembolism.
Please see later in the article for the Editors' Summary
Background
Smoking is a well-established risk factor for atherosclerotic disease, but its role as an independent risk factor for venous thromboembolism (VTE) remains controversial. We conducted a meta-analysis to summarize all published prospective studies and case-control studies to update the risk for VTE in smokers and determine whether a dose–response relationship exists.
Methods and Findings
We performed a literature search using MEDLINE (source PubMed, January 1, 1966 to June 15, 2013) and EMBASE (January 1, 1980 to June 15, 2013) with no restrictions. Pooled effect estimates were obtained by using random-effects meta-analysis. Thirty-two observational studies involving 3,966,184 participants and 35,151 VTE events were identified. Compared with never smokers, the overall combined relative risks (RRs) for developing VTE were 1.17 (95% CI 1.09–1.25) for ever smokers, 1.23 (95% CI 1.14–1.33) for current smokers, and 1.10 (95% CI 1.03–1.17) for former smokers, respectively. The risk increased by 10.2% (95% CI 8.6%–11.8%) for every additional ten cigarettes per day smoked or by 6.1% (95% CI 3.8%–8.5%) for every additional ten pack-years. Analysis of 13 studies adjusted for body mass index (BMI) yielded a relatively higher RR (1.30; 95% CI 1.24–1.37) for current smokers. The population attributable fractions of VTE were 8.7% (95% CI 4.8%–12.3%) for ever smoking, 5.8% (95% CI 3.6%–8.2%) for current smoking, and 2.7% (95% CI 0.8%–4.5%) for former smoking. Smoking was associated with an absolute risk increase of 24.3 (95% CI 15.4–26.7) cases per 100,000 person-years.
Conclusions
Cigarette smoking is associated with a slightly increased risk for VTE. BMI appears to be a confounding factor in the risk estimates. The relationship between VTE and smoking has clinical relevance with respect to individual screening, risk factor modification, and the primary and secondary prevention of VTE.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Blood normally flows throughout the human body, supplying its organs and tissues with oxygen and nutrients. But, when an injury occurs, proteins called clotting factors make the blood gel (coagulate) at the injury site. The resultant clot (thrombus) plugs the wound and prevents blood loss. Occasionally, a thrombus forms inside an uninjured blood vessel and partly or completely blocks the blood flow. Clot formation inside one of the veins deep within the body, usually in a leg, is called deep vein thrombosis (DVT) and can cause pain, swelling, and redness in the affected limb. DVT can be treated with drugs that stop the blood clot from getting larger (anticoagulants) but, if left untreated, part of the clot can break off and travel to the lungs, where it can cause a life-threatening pulmonary embolism. DVT and pulmonary embolism are collectively known as venous thromboembolism (VTE). Risk factors for VTE include having an inherited blood clotting disorder, oral contraceptive use, prolonged inactivity (for example, during a long-haul plane flight), and having surgery. VTEs are present in about a third of all people who die in hospital and, in non-bedridden populations, about 10% of people die within 28 days of a first VTE event.
Why Was This Study Done?
Some but not all studies have reported that smoking is also a risk factor for VTE. A clear demonstration of a significant association (a relationship unlikely to have occurred by chance) between smoking and VTE might help to reduce the burden of VTE because smoking can potentially be reduced by encouraging individuals to quit smoking and through taxation policies and other measures designed to reduce tobacco consumption. In this systematic review and meta-analysis, the researchers examine the link between smoking and the risk of VTE in the general population and investigate whether heavy smokers have a higher risk of VTE than light smokers. A systematic review uses predefined criteria to identify all the research on a given topic; meta-analysis is a statistical method for combining the results of several studies.
What Did the Researchers Do and Find?
The researchers identified 32 observational studies (investigations that record a population's baseline characteristics and subsequent disease development) that provided data on smoking and VTE. Together, the studies involved nearly 4 million participants and recorded 35,151 VTE events. Compared with never smokers, ever smokers (current and former smokers combined) had a relative risk (RR) of developing VTE of 1.17. That is, ever smokers were 17% more likely to develop VTE than never smokers. For current smokers and former smokers, RRs were 1.23 and 1.10, respectively. Analysis of only studies that adjusted for body mass index (a measure of body fat and a known risk factor for conditions that affect the heart and circulation) yielded a slightly higher RR (1.30) for current smokers compared with never smokers. For ever smokers, the population attributable fraction (the proportional reduction in VTE that would accrue in the population if no one smoked) was 8.7%. Notably, the risk of VTE increased by 10.2% for every additional ten cigarettes smoked per day and by 6.1% for every additional ten pack-years. Thus, an individual who smoked one pack of cigarettes per day for 40 years had a 26.7% higher risk of developing VTE than someone who had never smoked. Finally, smoking was associated with an absolute risk increase of 24.3 cases of VTE per 100,000 person-years.
What Do These Findings Mean?
These findings indicate that cigarette smoking is associated with a statistically significant, slightly increased risk for VTE among the general population and reveal a dose-relationship between smoking and VTE risk. They cannot prove that smoking causes VTE—people who smoke may share other unknown characteristics (confounding factors) that are actually responsible for their increased risk of VTE. Indeed, these findings identify body mass index as a potential confounding factor that might affect the accuracy of estimates of the association between smoking and VTE risk. Although the risk of VTE associated with smoking is smaller than the risk associated with some well-established VTE risk factors, smoking is more common (globally, there are 1.1 billion smokers) and may act synergistically with some of these risk factors. Thus, smoking behavior should be considered when screening individuals for VTE and in the prevention of first and subsequent VTE events.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001515.
The US National Heart Lung and Blood Institute provides information on deep vein thrombosis (including an animation about how DVT causes pulmonary embolism), and information on pulmonary embolism
The UK National Health Service Choices website has information on deep vein thrombosis, including personal stories, and on pulmonary embolism; SmokeFree is a website provided by the UK National Health Service that offers advice on quitting smoking
The non-profit organization US National Blood Clot Alliance provides detailed information about deep vein thrombosis and pulmonary embolism for patients and professionals and includes a selection of personal stories about these conditions
The World Health Organization provides information about the dangers of tobacco (in several languages)
Smokefree.gov, from the US National Cancer Institute, offers online tools and resources to help people quit smoking
MedlinePlus has links to further information about deep vein thrombosis, pulmonary embolism, and the dangers of smoking (in English and Spanish)
doi:10.1371/journal.pmed.1001515
PMCID: PMC3775725  PMID: 24068896
9.  Epidemiologic studies of fatal and nonfatal cardiovascular disease and ETS exposure from spousal smoking. 
Environmental Health Perspectives  1999;107(Suppl 6):841-846.
This article reviews the epidemiologic studies of the association of ischemic heart disease risk and environmental tobacco smoke (ETS) exposure from a spouse who smokes. Seventeen studies (nine cohort, eight case-control) comprising more than 485,000 lifelong nonsmokers and 7,345 coronary heart disease (CHD) events were included in a meta-analysis. Together, these studies include 36% more CHD events and 58% more study subjects than were available for review by the U. S. Occupational Safety and Health Administration (OSHA) in 1994. The relative risk (RR) for fatal or nonfatal coronary events among never smokers married to smokers, compared to those whose spouses did not smoke, was RR = 1.25 (95% confidence interval [95% CI], 1.17-1.33) across the combined studies. This association was statistically similar in men (RR = 1.24; 95% CI, 1.15-1.32) and women (RR = 1.23; 95% CI, 1.15-1.32); in studies of cohort (RR = 1.23; 95% CI, 1.15-1. 31) and case-control (RR = 1.47; 95% CI, 1.19-1.81) design; in the United States (RR =1.22; 95% CI, 1.13-1.30) and other countries (RR = 1.41; 95% CI, 1.21-1.65); and in studies of fatal (RR = 1.22; 95% CI, 1.14-1.30) and nonfatal (RR = 1.32; 95% CI, 1.04-1.67) heart disease. In three studies that presented data separately for nonsmokers married to current or former smokers, the association was stronger when the spouses continued to smoke (RR = 1.16, 1.06-1.28) than with former smokers (RR = 0.98; 95% CI, 0.89-1.08). The aggregate data are unlikely to be attributable to chance, publication bias, confounding, or misclassification of exposure. The evidence linking heart disease and ETS exposure from a spouse has become substantially stronger since OSHA first proposed including heart disease in its risk assessment of ETS in 1994.
PMCID: PMC1566204  PMID: 10592140
10.  Burden of Total and Cause-Specific Mortality Related to Tobacco Smoking among Adults Aged ≥45 Years in Asia: A Pooled Analysis of 21 Cohorts 
PLoS Medicine  2014;11(4):e1001631.
Wei Zheng and colleagues quantify the burden of tobacco-smoking-related deaths for adults in Asia.
Please see later in the article for the Editors' Summary
Background
Tobacco smoking is a major risk factor for many diseases. We sought to quantify the burden of tobacco-smoking-related deaths in Asia, in parts of which men's smoking prevalence is among the world's highest.
Methods and Findings
We performed pooled analyses of data from 1,049,929 participants in 21 cohorts in Asia to quantify the risks of total and cause-specific mortality associated with tobacco smoking using adjusted hazard ratios and their 95% confidence intervals. We then estimated smoking-related deaths among adults aged ≥45 y in 2004 in Bangladesh, India, mainland China, Japan, Republic of Korea, Singapore, and Taiwan—accounting for ∼71% of Asia's total population. An approximately 1.44-fold (95% CI = 1.37–1.51) and 1.48-fold (1.38–1.58) elevated risk of death from any cause was found in male and female ever-smokers, respectively. In 2004, active tobacco smoking accounted for approximately 15.8% (95% CI = 14.3%–17.2%) and 3.3% (2.6%–4.0%) of deaths, respectively, in men and women aged ≥45 y in the seven countries/regions combined, with a total number of estimated deaths of ∼1,575,500 (95% CI = 1,398,000–1,744,700). Among men, approximately 11.4%, 30.5%, and 19.8% of deaths due to cardiovascular diseases, cancer, and respiratory diseases, respectively, were attributable to tobacco smoking. Corresponding proportions for East Asian women were 3.7%, 4.6%, and 1.7%, respectively. The strongest association with tobacco smoking was found for lung cancer: a 3- to 4-fold elevated risk, accounting for 60.5% and 16.7% of lung cancer deaths, respectively, in Asian men and East Asian women aged ≥45 y.
Conclusions
Tobacco smoking is associated with a substantially elevated risk of mortality, accounting for approximately 2 million deaths in adults aged ≥45 y throughout Asia in 2004. It is likely that smoking-related deaths in Asia will continue to rise over the next few decades if no effective smoking control programs are implemented.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Every year, more than 5 million smokers die from tobacco-related diseases. Tobacco smoking is a major risk factor for cardiovascular disease (conditions that affect the heart and the circulation), respiratory disease (conditions that affect breathing), lung cancer, and several other types of cancer. All told, tobacco smoking kills up to half its users. The ongoing global “epidemic” of tobacco smoking and tobacco-related diseases initially affected people living in the US and other Western countries, where the prevalence of smoking (the proportion of the population that smokes) in men began to rise in the early 1900s, peaking in the 1960s. A similar epidemic occurred in women about 40 years later. Smoking-related deaths began to increase in the second half of the 20th century, and by the 1990s, tobacco smoking accounted for a third of all deaths and about half of cancer deaths among men in the US and other Western countries. More recently, increased awareness of the risks of smoking and the introduction of various tobacco control measures has led to a steady decline in tobacco use and in smoking-related diseases in many developed countries.
Why Was This Study Done?
Unfortunately, less well-developed tobacco control programs, inadequate public awareness of smoking risks, and tobacco company marketing have recently led to sharp increases in the prevalence of smoking in many low- and middle-income countries, particularly in Asia. More than 50% of men in many Asian countries are now smokers, about twice the prevalence in many Western countries, and more women in some Asian countries are smoking than previously. More than half of the world's billion smokers now live in Asia. However, little is known about the burden of tobacco-related mortality (deaths) in this region. In this study, the researchers quantify the risk of total and cause-specific mortality associated with tobacco use among adults aged 45 years or older by undertaking a pooled statistical analysis of data collected from 21 Asian cohorts (groups) about their smoking history and health.
What Did the Researchers Do and Find?
For their study, the researchers used data from more than 1 million participants enrolled in studies undertaken in Bangladesh, India, mainland China, Japan, the Republic of Korea, Singapore, and Taiwan (which together account for 71% of Asia's total population). Smoking prevalences among male and female participants were 65.1% and 7.1%, respectively. Compared with never-smokers, ever-smokers had a higher risk of death from any cause in pooled analyses of all the cohorts (adjusted hazard ratios [HRs] of 1.44 and 1.48 for men and women, respectively; an adjusted HR indicates how often an event occurs in one group compared to another group after adjustment for other characteristics that affect an individual's risk of the event). Compared with never smoking, ever smoking was associated with a higher risk of death due to cardiovascular disease, cancer (particularly lung cancer), and respiratory disease among Asian men and among East Asian women. Moreover, the researchers estimate that, in the countries included in this study, tobacco smoking accounted for 15.8% of all deaths among men and 3.3% of deaths among women in 2004—a total of about 1.5 million deaths, which scales up to 2 million deaths for the population of the whole of Asia. Notably, in 2004, tobacco smoking accounted for 60.5% of lung-cancer deaths among Asian men and 16.7% of lung-cancer deaths among East Asian women.
What Do These Findings Mean?
These findings provide strong evidence that tobacco smoking is associated with a substantially raised risk of death among adults aged 45 years or older throughout Asia. The association between smoking and mortality risk in Asia reported here is weaker than that previously reported for Western countries, possibly because widespread tobacco smoking started several decades later in most Asian countries than in Europe and North America and the deleterious effects of smoking take some years to become evident. The researchers note that certain limitations of their analysis are likely to affect the accuracy of its findings. For example, because no data were available to estimate the impact of secondhand smoke, the estimate of deaths attributable to smoking is likely to be an underestimate. However, the finding that nearly 45% of the global deaths from active tobacco smoking occur in Asia highlights the urgent need to implement comprehensive tobacco control programs in Asia to reduce the burden of tobacco-related disease.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001631.
The World Health Organization provides information about the dangers of tobacco (in several languages) and about the WHO Framework Convention on Tobacco Control, an international instrument for tobacco control that came into force in February 2005 and requires parties to implement a set of core tobacco control provisions including legislation to ban tobacco advertising and to increase tobacco taxes; its 2013 report on the global tobacco epidemic is available
The US Centers for Disease Control and Prevention provides detailed information about all aspects of smoking and tobacco use
The UK National Health Services Choices website provides information about the health risks associated with smoking
MedlinePlus has links to further information about the dangers of smoking (in English and Spanish)
SmokeFree, a website provided by the UK National Health Service, offers advice on quitting smoking and includes personal stories from people who have stopped smoking
Smokefree.gov, from the US National Cancer Institute, offers online tools and resources to help people quit smoking
doi:10.1371/journal.pmed.1001631
PMCID: PMC3995657  PMID: 24756146
11.  Bayesian sensitivity analysis methods to evaluate bias due to misclassification and missing data using informative priors and external validation data 
Cancer epidemiology  2013;37(2):10.1016/j.canep.2012.11.006.
Background
Recent research suggests that the Bayesian paradigm may be useful for modeling biases in epidemiological studies, such as those due to misclassification and missing data. We used Bayesian methods to perform sensitivity analyses for assessing the robustness of study findings to the potential effect of these two important sources of bias.
Methods
We used data from a study of the joint associations of radiotherapy and smoking with primary lung cancer among breast cancer survivors. We used Bayesian methods to provide an operational way to combine both validation data and expert opinion to account for misclassification of the two risk factors and missing data. For comparative purposes we considered a “full model” that allowed for both misclassification and missing data, along with alternative models that considered only misclassification or missing data, and the naïve model that ignored both sources of bias.
Results
We identified noticeable differences between the four models with respect to the posterior distributions of the odds ratios that described the joint associations of radiotherapy and smoking with primary lung cancer. Despite those differences we found that the general conclusions regarding the pattern of associations were the same regardless of the model used. Overall our results indicate a nonsignificantly decreased lung cancer risk due to radiotherapy among nonsmokers, and a mildly increased risk among smokers.
Conclusions
We described easy to implement Bayesian methods to perform sensitivity analyses for assessing the robustness of study findings to misclassification and missing data.
doi:10.1016/j.canep.2012.11.006
PMCID: PMC3834354  PMID: 23290580
Bayesian methods; sensitivity analysis; bias; misclassification; missing data
12.  An alternative approach for investigating the carcinogenicity of indoor air pollution: pets as sentinels of environmental cancer risk. 
Environmental Health Perspectives  1997;105(12):1312-1319.
Traditionally, the cancer risks associated with radon,environmental tobacco smoke (ETS), and similar indoor residential exposures have been evaluated through either laboratory experiments in rodents or epidemiology studies in people. Laboratory studies have the advantage of being controlled experiments, but their utility as estimators of human risk is limited by the uncertainties of extrapolating from rodents to people and from high doses to those typically experienced in the home. These experiments also subject animals to noxious exposures, causing suffering that may be considered cruel. Traditional epidemiology studies evaluate human risk directly, at the exposure levels present in residences; however, these studies are limited by their potential for misclassification, biased recall, and uncontrolled confounding. The long time intervals involved between exposure and disease (often 30 years or more) make accurate recall particularly problematic. In this paper we discuss the limitations of these traditional approaches, especially as they relate to residential studies of radon and ETS. The problems associated with the maximum tolerated dose in rodent bioassays and exposure misclassification in traditional epidemiology are particularly examined. A third approach that supplements the traditional approaches and overcomes some of their limitations is suggested. This approach, dubbed pet epidemiology, estimates residential cancer risk by examining the exposure experience of pet dogs with naturally occurring cancers. The history of pet epidemiology is reviewed and its strengths and limitations are examined.
Images
PMCID: PMC1470413  PMID: 9405322
13.  Association of Secondhand Smoke Exposure with Pediatric Invasive Bacterial Disease and Bacterial Carriage: A Systematic Review and Meta-analysis 
PLoS Medicine  2010;7(12):e1000374.
Majid Ezzati and colleagues report the findings of a systematic review and meta-analysis that probes the association between environmental exposure to secondhand smoke and the epidemiology of pediatric invasive bacterial disease.
Background
A number of epidemiologic studies have observed an association between secondhand smoke (SHS) exposure and pediatric invasive bacterial disease (IBD) but the evidence has not been systematically reviewed. We carried out a systematic review and meta-analysis of SHS exposure and two outcomes, IBD and pharyngeal carriage of bacteria, for Neisseria meningitidis (N. meningitidis), Haemophilus influenzae type B (Hib), and Streptococcus pneumoniae (S. pneumoniae).
Methods and Findings
Two independent reviewers searched Medline, EMBASE, and selected other databases, and screened articles for inclusion and exclusion criteria. We identified 30 case-control studies on SHS and IBD, and 12 cross-sectional studies on SHS and bacterial carriage. Weighted summary odd ratios (ORs) were calculated for each outcome and for studies with specific design and quality characteristics. Tests for heterogeneity and publication bias were performed. Compared with those unexposed to SHS, summary OR for SHS exposure was 2.02 (95% confidence interval [CI] 1.52–2.69) for invasive meningococcal disease, 1.21 (95% CI 0.69–2.14) for invasive pneumococcal disease, and 1.22 (95% CI 0.93–1.62) for invasive Hib disease. For pharyngeal carriage, summary OR was 1.68 (95% CI, 1.19–2.36) for N. meningitidis, 1.66 (95% CI 1.33–2.07) for S. pneumoniae, and 0.96 (95% CI 0.48–1.95) for Hib. The association between SHS exposure and invasive meningococcal and Hib diseases was consistent regardless of outcome definitions, age groups, study designs, and publication year. The effect estimates were larger in studies among children younger than 6 years of age for all three IBDs, and in studies with the more rigorous laboratory-confirmed diagnosis for invasive meningococcal disease (summary OR 3.24; 95% CI 1.72–6.13).
Conclusions
When considered together with evidence from direct smoking and biological mechanisms, our systematic review and meta-analysis indicates that SHS exposure may be associated with invasive meningococcal disease. The epidemiologic evidence is currently insufficient to show an association between SHS and invasive Hib disease or pneumococcal disease. Because the burden of IBD is highest in developing countries where SHS is increasing, there is a need for high-quality studies to confirm these results, and for interventions to reduce exposure of children to SHS.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
The deleterious health effects of smoking on smokers are well established, but smoking also seriously damages the health of nonsmokers. Secondhand smoke (SHS), which is released by burning cigarettes and exhaled by smokers, contains hundreds of toxic chemicals that increase the risk of adults developing lung cancer and heart disease. Children, however, are particularly vulnerable to the effects of SHS exposure (also known as passive smoking) because they are still developing physically. In addition, children have little control over their indoor environment and thus can be heavily exposed to SHS. Exposure to SHS increases the risk of ear infections, asthma, respiratory symptoms (coughing, sneezing, and breathlessness), and lung infections such as pneumonia and bronchitis in young children and the risk of sudden infant death syndrome during the first year of life.
Why Was This Study Done?
Several studies have also shown an association between SHS exposure (which damages the lining of the mouth, throat, and lungs and decreases immune defenses) and potentially fatal invasive bacterial disease (IBD) in children. In IBD, bacteria invade the body and grow in normally sterile sites such as the blood (bacteremia) and the covering of the brain (meningitis). Three organisms are mainly responsible for IBD in children—Streptococcus pneumoniae, Haemophilus influenzae type B (Hib), and Neisseria meningitidis. In 2000, S. pneumonia (pneumococcal disease) alone killed nearly one million children. Here, the researchers undertake a systematic review and meta-analysis of the association between SHS exposure in children and two outcomes—IBD and the presence of IBD-causing organisms in the nose and throat (bacterial carriage). A systematic review uses predefined criteria to identify all the research on a given topic; meta-analysis is a statistical method that combines the results of several studies. By combining data, it is possible to get a clearer view of the causes of a disease than is possible from individual studies.
What Did the Researchers Do and Find?
The researchers identified 30 case-control studies that compared the occurrence of IBD over time in children exposed to SHS with its occurrence in children not exposed to SHS. They also identified 12 cross-sectional studies that measured bacterial carriage at a single time point in children exposed and not exposed to SHS. The researchers used the data from these studies to calculate a “summary odds ratio” (OR) for each outcome—a measure of how SHS exposure affected the likelihood of each outcome. Compared with children unexposed to SHS, exposure to SHS doubled the likelihood of invasive meningococcal disease (a summary OR for SHS exposure of 2.02). Summary ORs for invasive pneumococcal disease and Hib diseases were 1.21 and 1.22, respectively. However, these small increases in the risk of developing these IBDs were not statistically significant unlike the increase in the risk of developing meningococcal disease. That is, they might have occurred by chance. For bacterial carriage, summary ORs for SHS exposure were 1.68 for N. meningitidis, 1.66 for S. pneumonia (both these ORs were statistically significant), and 0.96 for Hib (a nonsignificant decrease in risk).
What Do These Findings Mean?
These findings indicate that SHS exposure is significantly associated with invasive meningococcal disease among children. However, the evidence that SHS exposure is associated with invasive pneumococcal and Hib disease is only suggestive. These findings also indicate that exposure to SHS is associated with an increased carriage of N. meningitidis and S. pneumoniae. The accuracy and generalizability of these findings is limited by the small number of studies identified, by the lack of studies from developing countries where SHS exposure is increasing and the burden of IBD is high, and by large variations between the studies in how SHS exposure was measured and IBD diagnosed. Nevertheless, they suggest that, by reducing children's exposure to SHS (by, for example, persuading parents not to smoke at home), the illness and death caused by IBDs among children could be greatly reduced. Such a reduction would be particularly welcome in developing countries where vaccination against IBDs is low.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000374.
The US Centers for Disease Control and Prevention provides information on secondhand smoke, on children and secondhand smoke exposure, on meningitis, and on Hib infection
The US Environmental Protection Agency also provides information on the health effects of exposure to secondhand smoke (in English and Spanish) and a leaflet (also in English and Spanish) entitled Secondhand Tobacco Smoke and the Health of Your Family
The US Office of the Surgeon General provides information on the health consequences of involuntary exposure to tobacco smoke
The World Health Organization provides a range of information on the global tobacco epidemic
The World Health Organization has information on meningococcal disease (in English only) and on Hib (in several languages)
The US National Foundation for Infectious Diseases provides a fact sheet on pneumococcal disease
doi:10.1371/journal.pmed.1000374
PMCID: PMC2998445  PMID: 21151890
14.  Estimating lung cancer risk with exposure to environmental tobacco smoke. 
Environmental Health Perspectives  1999;107(Suppl 6):879-883.
Estimates of lung cancer in nonsmokers due to exposure to environmental tobacco smoke (ETS) in the workplace or in the home may be developed in several ways. Estimates may be based on (italic)a(/italic)) models developed using the full range of data in smokers; (italic)b(/italic)) models developed using data restricted to smokers with a low smoking rate, for example, (3/4) 10 cigarettes per day; (italic)c(/italic)) models developed using data from studies of residential exposure to ETS of nonsmokers, with exposures based on smoking rates of spouses; and (italic)d(/italic)) models using data from studies of occupational exposure to ETS of nonsmokers. Methods (italic)a(/italic) and (italic)b(/italic) require an estimate of cigarette equivalent exposure for ETS as well as assumptions on the cigarette equivalent dose to target cells from ETS and on the comparability of lung cancer risk per unit dose from smokers and nonsmokers. Summary relative risks (RRs) and 95% confidence intervals (CI) from ETS studies of nonsmokers with exposures based on smoking patterns of spouses are 1.24 (1.1, 1.4) for females and 1.34 (1.0, 1.8) for males, whereas the RR estimate for occupational ETS exposure and its 95% CI is 1.39 (1.2, 1.7). Using RR estimates for ETS exposure, cigarette equivalents for ETS range from 0.1 to 1.0, based on a range of descriptive and biologically motivated models in active smokers; a cigarette equivalent is 0.2 based on a comparison of log-linear trends in RR with number of cigarettes smoked per day in active smokers and in spouses of nonsmokers.
PMCID: PMC1566203  PMID: 10592146
15.  Comparison of parental reports of smoking and residential air nicotine concentrations in children 
Background
Using questionnaires to assess children's residential exposure to environmental tobacco smoke (ETS) may result in misclassification from recall and response bias. Questionnaire data have frequently been validated against urinary cotinine measurements, but rarely against actual measurements of residential air nicotine.
Objective
To compare questionnaire reported smoking with air nicotine concentrations in a large population of children and with urinary cotinine levels in a subpopulation; and to assess the potential impact of the symptom status of the children on the agreement between different measures of exposure.
Methods
The authors assessed residential exposure to ETS in 347 German, 335 Dutch, and 354 Swedish preschool and schoolchildren by questionnaire and air nicotine measurements, and in a subset of 307 German children by urinary cotinine measurements. They then compared the different measures of ETS exposure.
Results
In all countries, air nicotine concentrations increased with increasing questionnaire reported smoking in a dose‐response fashion. Specificity and negative predictive values of questionnaire reports for nicotine concentrations were excellent. Sensitivity and positive predictive values were moderate to good. Excluding occasional smokers, the overall percentage of homes misclassified was 6.9%, 6.7%, and 5.1% in Germany, the Netherlands, and Sweden, respectively. Similar results were found for the agreement of urinary cotinine concentrations with questionnaire reports and air nicotine levels. There was no indication of underreporting by parents of symptomatic children.
Conclusion
Despite some misclassification, questionnaire reports are an inexpensive and valid estimate of residential ETS exposure among preschool and school children.
doi:10.1136/oem.2006.027151
PMCID: PMC2077986  PMID: 16912089
environmental tobacco smoke; questionnaire; air nicotine; urinary cotinine
16.  Lung cancer risk in never-smokers: a population-based case-control study of epidemiologic risk factors 
BMC Cancer  2010;10:285.
Background
We conducted a case-control study in the greater Toronto area to evaluate potential lung cancer risk factors including environmental tobacco smoke (ETS) exposure, family history of cancer, indoor air pollution, workplace exposures and history of previous respiratory diseases with special consideration given to never smokers.
Methods
445 cases (35% of which were never smokers oversampled by design) between the ages of 20-84 were identified through four major tertiary care hospitals in metropolitan Toronto between 1997 and 2002 and were frequency matched on sex and ethnicity with 425 population controls and 523 hospital controls. Unconditional logistic regression models were used to estimate adjusted odds ratios (OR) and 95% confidence intervals (CI) for the associations between exposures and lung cancer risk.
Results
Any previous exposure to occupational exposures (OR total population 1.6, 95% CI 1.4-2.1, OR never smokers 2.1, 95% CI 1.3-3.3), a previous diagnosis of emphysema in the total population (OR 4.8, 95% CI 2.0-11.1) or a first degree family member with a previous cancer diagnosis before age 50 among never smokers (OR 1.8, 95% CI 1.0-3.2) were associated with increased lung cancer risk.
Conclusions
Occupational exposures and family history of cancer with young onset were important risk factors among never smokers.
doi:10.1186/1471-2407-10-285
PMCID: PMC2927994  PMID: 20546590
17.  Lung cancers attributable to environmental tobacco smoke and air pollution in non-smokers in different European countries: a prospective study 
Background
Several countries are discussing new legislation on the ban of smoking in public places, and on the acceptable levels of traffic-related air pollutants. It is therefore useful to estimate the burden of disease associated with indoor and outdoor air pollution.
Methods
We have estimated exposure to Environmental Tobacco Smoke (ETS) and to air pollution in never smokers and ex-smokers in a large prospective study in 10 European countries (European Prospective Investigation into Cancer and Nutrition)(N = 520,000). We report estimates of the proportion of lung cancers attributable to ETS and air pollution in this population.
Results
The proportion of lung cancers in never- and ex-smokers attributable to ETS was estimated as between 16 and 24%, mainly due to the contribution of work-related exposure. We have also estimated that 5–7% of lung cancers in European never smokers and ex-smokers are attributable to high levels of air pollution, as expressed by NO2 or proximity to heavy traffic roads. NO2 is the expression of a mixture of combustion (traffic-related) particles and gases, and is also related to power plants and waste incinerator emissions.
Discussion
We have estimated risks of lung cancer attributable to ETS and traffic-related air pollution in a large prospective study in Europe. Information bias can be ruled out due to the prospective design, and we have thoroughly controlled for potential confounders, including restriction to never smokers and long-term ex-smokers. Concerning traffic-related air pollution, the thresholds for indicators of exposure we have used are rather strict, i.e. they correspond to the high levels of exposure that characterize mainly Southern European countries (levels of NO2 in Denmark and Sweden are closer to 10–20 ug/m3, whereas levels in Italy are around 30 or 40, or higher).
Therefore, further reduction in exposure levels below 30 ug/m3 would correspond to additional lung cancer cases prevented, and our estimate of 5–7% is likely to be an underestimate. Overall, our prospective study draws attention to the need for strict legislation concerning the quality of air in Europe.
doi:10.1186/1476-069X-6-7
PMCID: PMC1803768  PMID: 17302981
18.  GST-omega genes interact with environmental tobacco smoke on adult level of lung function 
Respiratory Research  2013;14(1):83.
Background
Lung growth in utero and lung function loss during adulthood can be affected by exposure to environmental tobacco smoke (ETS). The underlying mechanisms have not been fully elucidated. Both ETS exposure and single nucleotide polymorphisms (SNPs) in Glutathione S-Transferase (GST) Omega genes have been associated with the level of lung function. This study aimed to assess if GSTO SNPs interact with ETS exposure in utero and during adulthood on the level of lung function during adulthood.
Methods
We used cross-sectional data of 8,128 genotyped participants from the LifeLines cohort study. Linear regression models (adjusted for age, sex, height, weight, current smoking, ex-smoking and packyears smoked) were used to analyze the associations between in utero, daily and workplace ETS exposure, GSTO SNPs, the interaction between ETS and GSTOs, and level of lung function (FEV1, FEV1/FVC). Since the interactions between ETS and GSTOs may be modified by active tobacco smoking we additionally assessed associations in never and ever smokers separately. A second sample of 5,308 genotyped LifeLines participants was used to verify our initial findings.
Results
Daily and workplace ETS exposure was associated with significantly lower FEV1 levels. GSTO SNPs (recessive model) interacted with in utero ETS and were associated with higher levels of FEV1, whereas the interactions with daily and workplace ETS exposure were associated with lower levels of FEV1, effects being more pronounced in never smokers. The interaction of GSTO2 SNP rs156697 with in utero ETS associated with a higher level of FEV1 was significantly replicated in the second sample. Overall, the directions of the interactions of in utero and workplace ETS exposure with the SNPs found in the second (verification) sample were in line with the first sample.
Conclusions
GSTO genotypes interact with in utero and adulthood ETS exposure on adult lung function level, but in opposite directions.
doi:10.1186/1465-9921-14-83
PMCID: PMC3751364  PMID: 23937118
Genes; Environmental tobacco smoke; Lung function
19.  Association of marijuana smoking with oropharyngeal and oral tongue cancers: Pooled analysis from the INHANCE Consortium 
Background
The incidence of oropharyngeal and oral tongue cancers have increased over the last twenty years which parallels increased use of marijuana among individuals born after 1950.
Methods
Pooled analysis of individual-level data from nine case-control studies from the U.S. and Latin America in the INHANCE consortium. Self-reported information on marijuana smoking, demographic, and behavioral factors was obtained from 1,921 oropharyngeal cases, 356 oral tongue cases, and 7,639 controls.
Results
Compared with never marijuana smokers, ever marijuana smokers had an elevated risk of oropharyngeal (adjusted odds ratio [aOR]: 1.24; 95% confidence interval [CI]: 1.06, 1.47) and a reduced risk of oral tongue cancer (aOR: 0.47; 95% CI: 0.29, 0.75). The risk of oropharyngeal cancer remained elevated among never tobacco and alcohol users. The risk of oral tongue cancer decreased with increasing frequency (ptrend=0.005), duration (ptrend=0.002), and joint-years of marijuana use (ptrend=0.004), and was reduced among never users tobacco and alcohol users. Sensitivity analysis adjusting for potential confounding by HPV exposure attenuated the association of marijuana use with oropharyngeal cancer (aOR: 0.99; 95% CI: 0.71, 1.25), but had no effect on the oral tongue cancer association.
Conclusions
These results suggest that the association of marijuana use with Head and Neck Carcinoma may differ by tumor site.
Impact
The associations of marijuana use with oropharyngeal and oral tongue cancer are consistent with both possible pro- and anti-carcinogenic effects of cannabinoids. Additional work is needed to rule out various sources of bias, including residual confounding by HPV infection and misclassification of marijuana exposure.
doi:10.1158/1055-9965.EPI-13-0181
PMCID: PMC3947141  PMID: 24351902
marijuana; oropharynx; oral tongue; INHANCE; human papillomavirus
20.  Evaluation of the Lung Cancer Risks at Which to Screen Ever- and Never-Smokers: Screening Rules Applied to the PLCO and NLST Cohorts 
PLoS Medicine  2014;11(12):e1001764.
Martin Tammemägi and colleagues evaluate which risk groups of individuals, including nonsmokers and high-risk individuals from 65 to 80 years of age, should be screened for lung cancer using computed tomography.
Please see later in the article for the Editors' Summary
Background
Lung cancer risks at which individuals should be screened with computed tomography (CT) for lung cancer are undecided. This study's objectives are to identify a risk threshold for selecting individuals for screening, to compare its efficiency with the U.S. Preventive Services Task Force (USPSTF) criteria for identifying screenees, and to determine whether never-smokers should be screened. Lung cancer risks are compared between smokers aged 55–64 and ≥65–80 y.
Methods and Findings
Applying the PLCOm2012 model, a model based on 6-y lung cancer incidence, we identified the risk threshold above which National Lung Screening Trial (NLST, n = 53,452) CT arm lung cancer mortality rates were consistently lower than rates in the chest X-ray (CXR) arm. We evaluated the USPSTF and PLCOm2012 risk criteria in intervention arm (CXR) smokers (n = 37,327) of the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). The numbers of smokers selected for screening, and the sensitivities, specificities, and positive predictive values (PPVs) for identifying lung cancers were assessed. A modified model (PLCOall2014) evaluated risks in never-smokers. At PLCOm2012 risk ≥0.0151, the 65th percentile of risk, the NLST CT arm mortality rates are consistently below the CXR arm's rates. The number needed to screen to prevent one lung cancer death in the 65th to 100th percentile risk group is 255 (95% CI 143 to 1,184), and in the 30th to <65th percentile risk group is 963 (95% CI 291 to −754); the number needed to screen could not be estimated in the <30th percentile risk group because of absence of lung cancer deaths. When applied to PLCO intervention arm smokers, compared to the USPSTF criteria, the PLCOm2012 risk ≥0.0151 threshold selected 8.8% fewer individuals for screening (p<0.001) but identified 12.4% more lung cancers (sensitivity 80.1% [95% CI 76.8%–83.0%] versus 71.2% [95% CI 67.6%–74.6%], p<0.001), had fewer false-positives (specificity 66.2% [95% CI 65.7%–66.7%] versus 62.7% [95% CI 62.2%–63.1%], p<0.001), and had higher PPV (4.2% [95% CI 3.9%–4.6%] versus 3.4% [95% CI 3.1%–3.7%], p<0.001). In total, 26% of individuals selected for screening based on USPSTF criteria had risks below the threshold PLCOm2012 risk ≥0.0151. Of PLCO former smokers with quit time >15 y, 8.5% had PLCOm2012 risk ≥0.0151. None of 65,711 PLCO never-smokers had PLCOm2012 risk ≥0.0151. Risks and lung cancers were significantly greater in PLCO smokers aged ≥65–80 y than in those aged 55–64 y. This study omitted cost-effectiveness analysis.
Conclusions
The USPSTF criteria for CT screening include some low-risk individuals and exclude some high-risk individuals. Use of the PLCOm2012 risk ≥0.0151 criterion can improve screening efficiency. Currently, never-smokers should not be screened. Smokers aged ≥65–80 y are a high-risk group who may benefit from screening.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Lung cancer is the most commonly occurring cancer in the world and the most common cause of cancer-related deaths. Like all cancers, lung cancer occurs when cells acquire genetic changes that allow them to grow uncontrollably and to move around the body (metastasize). The most common trigger for these genetic changes in lung cancer is exposure to cigarette smoke. Symptoms of lung cancer include a persistent cough and breathlessness. If lung cancer is diagnosed when it is confined to the lung (stage I), the tumor can often be removed surgically. Stage II tumors, which have spread into nearby lymph nodes, are usually treated with surgery plus chemotherapy or radiotherapy. For more advanced lung cancers that have spread throughout the chest (stage III) or the body (stage IV), surgery is rarely helpful and these tumors are treated with chemotherapy and radiotherapy alone. Overall, because most lung cancers are not detected until they are advanced, less than 17% of people diagnosed with lung cancer survive for five years.
Why Was This Study Done?
Screening for lung cancer—looking for early disease in healthy people—could save lives. In the US National Lung Screening Trial (NLST), annual screening with computed tomography (CT) reduced lung cancer mortality by 20% among smokers at high risk of developing cancer compared with screening with a chest X-ray. But what criteria should be used to decide who is screened for lung cancer? The US Preventive Services Task Force (USPSTF), for example, recommends annual CT screening of people who are 55–80 years old, have smoked 30 or more pack-years (one pack-year is defined as a pack of cigarettes per day for one year), and—if they are former smokers—quit smoking less than 15 years ago. However, some experts think lung cancer risk prediction models—statistical models that estimate risk based on numerous personal characteristics—should be used to select people for screening. Here, the researchers evaluate PLCOm2012, a lung cancer risk prediction model based on the incidence of lung cancer among smokers enrolled in the US Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO). Specifically, the researchers use NLST and PLCO screening trial data to identify a PLCOm2012 risk threshold for selecting people for screening and to compare the efficiency of the PLCOm2012 model and the USPSTF criteria for identifying “screenees.”
What Did the Researchers Do and Find?
By analyzing NLST data, the researchers calculated that at PLCOm2012 risk ≥0.0151, mortality (death) rates among NLST participants screened with CT were consistently below mortality rates among NLST participants screened with chest X-ray and that 255 people with a PLCOm2012 risk ≥0.0151 would need to be screened to prevent one lung cancer death. Next, they used data collected from smokers in the screened arm of the PLCO trial to compare the efficiency of the PLCOm2012 and USPSTF criteria for identifying screenees. They found that 8.8% fewer people had a PLCOm2012 risk ≥0.0151 than met USPSTF criteria for screening, but 12.4% more lung cancers were identified. Thus, using PLCOm2012 improved the sensitivity and specificity of the selection of individuals for lung cancer screening over using UPSTF criteria. Notably, 8.5% of PLCO former smokers with quit times of more than 15 years had PLCOm2012 risk ≥0.0151, none of the PLCO never-smokers had PLCOm2012 risk ≥0.0151, and the calculated risks and incidence of lung cancer were greater among PLCO smokers aged ≥65–80 years than among those aged 55–64 years.
What Do These Findings Mean?
Despite the absence of a cost-effectiveness analysis in this study, these findings suggest that the use of the PLCOm2012 risk ≥0.0151 threshold rather than USPSTF criteria for selecting individuals for lung cancer screening could improve screening efficiency. The findings have several other important implications. First, these findings suggest that screening may be justified in people who stopped smoking more than 15 years ago; USPSTF currently recommends that screening stop once an individual's quit time exceeds 15 years. Second, these findings do not support lung cancer screening among never-smokers. Finally, these findings suggest that smokers aged ≥65–80 years might benefit from screening, although the presence of additional illnesses and reduced life expectancy need to be considered before recommending the provision of routine lung cancer screening to this section of the population.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001764.
The US National Cancer Institute provides information about all aspects of lung cancer for patients and health-care professionals, including information on lung cancer screening (in English and Spanish)
Cancer Research UK also provides detailed information about lung cancer and about lung cancer screening
The UK National Health Service Choices website has a page on lung cancer that includes personal stories
MedlinePlus provides links to other sources of information about lung cancer (in English and Spanish)
Information about the USPSTF recommendations for lung cancer screening is available
doi:10.1371/journal.pmed.1001764
PMCID: PMC4251899  PMID: 25460915
21.  Tobacco Company Efforts to Influence the Food and Drug Administration-Commissioned Institute of Medicine Report Clearing the Smoke: An Analysis of Documents Released through Litigation 
PLoS Medicine  2013;10(5):e1001450.
Stanton Glantz and colleagues investigate efforts by tobacco companies to influence Clearing the Smoke, a 2001 Institute of Medicine report on harm reduction tobacco products.
Please see later in the article for the Editors' Summary
Background
Spurred by the creation of potential modified risk tobacco products, the US Food and Drug Administration (FDA) commissioned the Institute of Medicine (IOM) to assess the science base for tobacco “harm reduction,” leading to the 2001 IOM report Clearing the Smoke. The objective of this study was to determine how the tobacco industry organized to try to influence the IOM committee that prepared the report.
Methods and Findings
We analyzed previously secret tobacco industry documents in the University of California, San Francisco Legacy Tobacco Documents Library, and IOM public access files. (A limitation of this method includes the fact that the tobacco companies have withheld some possibly relevant documents.) Tobacco companies considered the IOM report to have high-stakes regulatory implications. They developed and implemented strategies with consulting and legal firms to access the IOM proceedings. When the IOM study staff invited the companies to provide information on exposure and disease markers, clinical trial design for safety and efficacy, and implications for initiation and cessation, tobacco company lawyers, consultants, and in-house regulatory staff shaped presentations from company scientists. Although the available evidence does not permit drawing cause-and-effect conclusions, and the IOM may have come to the same conclusions without the influence of the tobacco industry, the companies were pleased with the final report, particularly the recommendations for a tiered claims system (with separate tiers for exposure and risk, which they believed would ease the process of qualifying for a claim) and license to sell products comparable to existing conventional cigarettes (“substantial equivalence”) without prior regulatory approval. Some principles from the IOM report, including elements of the substantial equivalence recommendation, appear in the 2009 Family Smoking Prevention and Tobacco Control Act.
Conclusions
Tobacco companies strategically interacted with the IOM to win several favored scientific and regulatory recommendations.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Up to half of tobacco users will die of cancer, lung disease, heart disease, stroke, or another tobacco-related disease. Cigarettes and other tobacco products cause disease because they expose their users to nicotine and numerous other toxic chemicals. Tobacco companies have been working to develop a “safe” cigarette for more than half a century. Initially, their attention focused on cigarettes that produced lower tar and nicotine yields in machine-smoking tests. These products were perceived as “safer” products by the public and scientists for many years, but it is now known that the use of low-yield cigarettes can actually expose smokers to higher levels of toxins than standard cigarettes. More recently, the tobacco companies have developed other products (for example, products that heat aerosols of nicotine, rather than burning the tobacco) that claim to reduce harm and the risk of tobacco-related disease, but they can only market these modified risk tobacco products in the US after obtaining Food and Drug Administration (FDA) approval. In 1999, the FDA commissioned the US Institute of Medicine (IOM, an influential source of independent expert advice on medical issues) to assess the science base for tobacco “harm reduction.” In 2001, the IOM published its report Clearing the Smoke: Assessing the Science Base for Tobacco Harm and Reduction, which, although controversial, set the tone for the development and regulation of tobacco products in the US, particularly those claiming to be less dangerous, in subsequent years.
Why Was This Study Done?
Tobacco companies have a long history of working to shape scientific discussions and agendas. For example, they have produced research results designed to “create controversy” about the dangers of smoking and secondhand smoke. In this study, the researchers investigate how tobacco companies organized to try to influence the IOM committee that prepared the Clearing the Smoke report on modified risk tobacco products by analyzing tobacco industry and IOM documents.
What Did the Researchers Do and Find?
The researchers searched the Legacy Tobacco Documents Library (a collection of internal tobacco industry documents released as a result of US litigation cases) for documents outlining how tobacco companies tried to influence the IOM Committee to Assess the Science Base for Tobacco Harm Reduction and created a timeline of events from the 1,000 or so documents they retrieved. They confirmed and supplemented this timeline using information in 80 files that detailed written interactions between the tobacco companies and the IOM committee, which they obtained through a public records access request. Analysis of these documents indicates that the tobacco companies considered the IOM report to have important regulatory implications, that they developed and implemented strategies with consulting and legal firms to access the IOM proceedings, and that tobacco company lawyers, consultants, and regulatory staff shaped presentations to the IOM committee by company scientists on various aspects of tobacco harm reduction products. The analysis also shows that tobacco companies were pleased with the final report, particularly its recommendation that tobacco products can be marketed with exposure or risk reduction claims provided the products substantially reduce exposure and provided the behavioral and health consequences of these products are determined in post-marketing surveillance and epidemiological studies (“tiered testing”) and its recommendation that, provided no claim of reduced exposure or risk is made, new products comparable to existing conventional cigarettes (“substantial equivalence”) can be marketed without prior regulatory approval.
What Do These Findings Mean?
These findings suggest that tobacco companies used their legal and regulatory staff to access the IOM committee that advised the FDA on modified risk tobacco products and that they used this access to deliver specific, carefully formulated messages designed to serve their business interests. Although these findings provide no evidence that the efforts of tobacco companies influenced the IOM committee in any way, they show that the companies were satisfied with the final IOM report and its recommendations, some of which have policy implications that continue to reverberate today. The researchers therefore call for the FDA and other regulatory bodies to remember that they are dealing with companies with a long history of intentionally misleading the public when assessing the information presented by tobacco companies as part of the regulatory process and to actively protect their public-health policies from the commercial interests of the tobacco industry.
Additional Information
Please access these Web sites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001450.
This study is further discussed in a PLOS Medicine Perspective by Thomas Novotny
The World Health Organization provides information about the dangers of tobacco (in several languages); for information about the tobacco industry's influence on policy, see the 2009 World Health Organization report Tobacco interference with tobacco control
A PLOS Medicine Research Article by Heide Weishaar and colleagues describes tobacco company efforts to undermine the Framework Convention on Tobacco Control, an international instrument for tobacco control
Wikipedia has a page on tobacco harm reduction (note: Wikipedia is a free online encyclopedia that anyone can edit; available in several languages)
The IOM report Clearing the Smoke: Assessing the Science Base for Tobacco Harm Reduction is available to read online
The Legacy Tobacco Documents Library is a public, searchable database of tobacco company internal documents detailing their advertising, manufacturing, marketing, sales, and scientific activities
The University of California, San Francisco Center for Tobacco Control Research and Education is the focal point for University of California, San Francisco (UCSF) scientists in disciplines ranging from the molecular biology of nicotine addiction through political science who combine their efforts to eradicate the use of tobacco and tobacco-induced cancer and other diseases worldwide
SmokeFree, a website provided by the UK National Health Service, offers advice on quitting smoking and includes personal stories from people who have stopped smoking
Smokefree.gov, from the US National Cancer Institute, offers online tools and resources to help people quit smoking
doi:10.1371/journal.pmed.1001450
PMCID: PMC3665841  PMID: 23723740
22.  LUNG CANCER IN NEVER SMOKERS: CLINICAL EPIDEMIOLOGY AND ENVIRONMENTAL RISK FACTORS 
More than 161,000 lung cancer deaths are projected to occur in the U.S. in 2008. Of these, an estimated 10–15% will be caused by factors other than active smoking, corresponding to 16,000–24,000 deaths annually. Thus lung cancer in never smokers would rank among the most common causes of cancer mortality in the U.S. if considered to be a separate category. Slightly more than half of the lung cancers caused by factors other than active smoking occur in never smokers. As summarized in the accompanying article, lung cancers that occur in never smokers differ from those that occur in smokers in their molecular profile and response to targeted therapy. These recent laboratory and clinical observations highlight the importance of defining the genetic and environmental factors responsible for the development of lung cancer in never-smokers. This article summarizes available data on the clinical epidemiology of lung cancer in never smokers, and the several environmental risk factors that population-based research has implicated in the etiology of these cancers. Primary factors closely tied to lung cancer in never smokers include exposure to known and suspected carcinogens including radon, second-hand tobacco smoke, and other indoor air pollutants. Several other exposures have been implicated. However, a large fraction of lung cancers occurring in never-smokers cannot be definitively associated with established environmental risk factors, highlighting the need for additional epidemiologic research in this area.
doi:10.1158/1078-0432.CCR-09-0376
PMCID: PMC3170525  PMID: 19755391
23.  Smoking and high-risk mammographic parenchymal patterns: a case-control study 
Breast Cancer Research  1999;2(1):59-63.
Current smoking was strongly and inversely associated with high-risk patterns, after adjustment for concomitant risk factors. Relative to never smokers, current smokers were significantly less likely to have a high-risk pattern. Similar results were obtained when the analysis was confined to postmenopausal women. Past smoking was not related to the mammographic parenchymal patterns. The overall effect in postmenopausal women lost its significance when adjusted for other risk factors for P2/DY patterns that were found to be significant in the present study, although the results are still strongly suggestive. The present data indicate that adjustment for current smoking status is important when evaluating the relationship between mammographic parenchymal pattern and breast cancer risk. They also indicate that smoking is a prominent potential confounder when analyzing effects of other risk factors such as obesity-related variables. It appears that parenchymal patterns may act as an informative biomarker of the effect of cigarette smoking on breast cancer risk.
Introduction:
Overall, epidemiological studies [1,2,3,4] have reported no substantial association between cigarette smoking and the risk of breast cancer. Some studies [5,6,7] reported a significant increase of breast cancer risk among smokers. In recent studies that addressed the association between breast cancer and cigarette smoking, however, there was some suggestion of a decreased risk [8,9,10], especially among current smokers, ranging from approximately 10 to 30% [9,10]. Brunet et al [11] reported that smoking might reduce the risk of breast cancer by 44% in carriers of BRCA1 or BRCA2 gene mutations. Wolfe [12] described four different mammographic patterns created by variations in the relative amounts of fat, epithelial and connective tissue in the breast, designated N1, P1, P2 and DY. Women with either P2 or DY pattern are considered at greater risk for breast cancer than those with N1 or P1 pattern [12,13,14,15]. There are no published studies that assessed the relationship between smoking and mammographic parenchymal patterns.
Aims:
To evaluate whether mammographic parenchymal patterns as classified by Wolfe, which have been positively associated with breast cancer risk, are affected by smoking. In this case-control study, nested within the European Prospective Investigation on Cancer in Norfolk (EPIC-Norfolk) cohort [16], the association between smoking habits and mammographic parenchymal patterns are examined. The full results will be published elsewhere.
Methods:
Study subjects were members of the EPIC cohort in Norwich who also attended the prevalence screening round at the Norwich Breast Screening Centre between November 1989 and December 1997, and were free of breast cancer at that screening. Cases were defined as women with a P2/DY Wolfe's mammographic parenchymal pattern on the prevalence screen mammograms. A total of 203 women with P2/DY patterns were identified as cases and were individually matched by date of birth (within 1 year) and date of prevalence screening (within 3 months) with 203 women with N1/P1 patterns who served as control individuals.
Two views, the mediolateral and craniocaudal mammograms, of both breasts were independently reviewed by two of the authors (ES and RW) to determine the Wolfe mammographic parenchymal pattern.
Considerable information on health and lifestyle factors was available from the EPIC Health and Lifestyle Questionnaire [16]. In the present study we examined the subjects' personal history of benign breast diseases, menstrual and reproductive factors, oral contraception and hormone replacement therapy, smoking, and anthropometric information such as body mass index and waist:hip ratio.
Odds ratios (ORs) and their 95% confidence intervals (CIs) were calculated by conditional logistic regression [17], and were adjusted for possible confounding factors.
Results:
The characteristics of the cases and controls are presented in Table 1. Cases were leaner than controls. A larger percentage of cases were nulliparous, premenopausal, current hormone replacement therapy users, had a personal history of benign breast diseases, and had had a hysterectomy. A larger proportion of controls had more than three births and were current smokers.
Table 2 shows the unadjusted and adjusted OR estimates for Wolfe's high-risk mammographic parenchymal patterns and smoking in the total study population and in postmenopausal women separately. Current smoking was strongly and inversely associated with high-risk patterns, after adjustment for concomitant risk factors. Relative to never smokers, current smokers were significantly less likely to have a high-risk pattern (OR 0.37, 95% CI 0.14-0.94). Similar results were obtained when the analysis was confined to postmenopausal women. Past smoking was not related to mammographic parenchymal patterns. The overall effect in postmenopausal women lost its significance when adjusted for other risk factors for P2/DY patterns that were found to be significant in the present study, although the results were still strongly suggestive. There was no interaction between cigarette smoking and body mass index.
Discussion:
In the present study we found a strong inverse relationship between current smoking and high-risk mammographic parenchymal patterns of breast tissue as classified by Wolfe [12]. These findings are not completely unprecedented; Greendale et al [18] found a reduced risk of breast density in association with smoking, although the magnitude of the reduction was unclear. The present findings suggest that this reduction is large.
Recent studies [9,10] have suggested that breast cancer risk may be reduced among current smokers. In a multicentre Italian case-control study, Braga et al [10] found that, relative to nonsmokers, current smokers had a reduced risk of breast cancer (OR 0.84, 95% CI 0.7-1.0). These findings were recently supported by Gammon et al [9], who reported that breast cancer risk in younger women (younger than 45 years) may be reduced among current smokers who began smoking at an early age (OR 0.59, 95% CI 0.41-0.85 for age 15 years or younger) and among long-term smokers (OR 0.70, 95% CI 0.52-0.94 for those who had smoked for 21 years or more).
The possible protective effect of smoking might be due to its anti-oestrogenic effect [1,2,19]. Recently there has been renewed interest in the potential effect of smoking on breast cancer risk, and whether individuals may respond differently on the basis of differences in metabolism of bioproducts of smoking [20,21]. Different relationships between smoking and breast cancer risk have been suggested that are dependent on the rapid or slow status of acetylators of aromatic amines [20,21]. More recent studies [22,23], however, do not support these findings.
The present study design minimized the opportunity for bias to influence the findings. Because subjects were unaware of their own case-control status, the possibility of recall bias in reporting smoking status was minimized. Systematic error in the assessment of mammograms was avoided because reading was done without knowledge of the risk factor data. Furthermore, the associations observed are unlikely to be explained by the confounding effect of other known breast cancer risk factors, because we adjusted for these in the analysis. We did not have information on passive smoking status, however, which has recently been reported to be a possible confounder [5,6,21,24].
The present data indicate that adjustment for current smoking status is important when evaluating the relationship between mammographic parenchymal pattern and breast cancer risk. They also indicate smoking as a prominent potential confounder when analyzing effects of other risk factors such as obesity-related variables. It seems that parenchymal patterns may act as an informative biomarker of the effect of cigarette smoking on breast cancer risk.
PMCID: PMC13911  PMID: 11056684
mammography; screening; smoking; Wolfe's parenchymal patterns
24.  Environmental tobacco smoke and tobacco related mortality in a prospective study of Californians, 1960-98 
BMJ : British Medical Journal  2003;326(7398):1057.
Objective To measure the relation between environmental tobacco smoke, as estimated by smoking in spouses, and long term mortality from tobacco related disease.
Design Prospective cohort study covering 39 years.
Setting Adult population of California, United States.
Participants 118 094 adults enrolled in late 1959 in the American Cancer Society cancer prevention study (CPS I), who were followed until 1998. Particular focus is on the 35 561 never smokers who had a spouse in the study with known smoking habits.
Main outcome measures Relative risks and 95% confidence intervals for deaths from coronary heart disease, lung cancer, and chronic obstructive pulmonary disease related to smoking in spouses and active cigarette smoking.
Results For participants followed from 1960 until 1998 the age adjusted relative risk (95% confidence interval) for never smokers married to ever smokers compared with never smokers married to never smokers was 0.94 (0.85 to 1.05) for coronary heart disease, 0.75 (0.42 to 1.35) for lung cancer, and 1.27 (0.78 to 2.08) for chronic obstructive pulmonary disease among 9619 men, and 1.01 (0.94 to 1.08), 0.99 (0.72 to 1.37), and 1.13 (0.80 to 1.58), respectively, among 25 942 women. No significant associations were found for current or former exposure to environmental tobacco smoke before or after adjusting for seven confounders and before or after excluding participants with pre-existing disease. No significant associations were found during the shorter follow up periods of 1960-5, 1966-72, 1973-85, and 1973-98.
Conclusions The results do not support a causal relation between environmental tobacco smoke and tobacco related mortality, although they do not rule out a small effect. The association between exposure to environmental tobacco smoke and coronary heart disease and lung cancer may be considerably weaker than generally believed.
PMCID: PMC155687  PMID: 12750205
25.  Risk Adjustment for Smoking Identified through Tobacco Use Diagnoses in Hospital Data: A Validation Study 
PLoS ONE  2014;9(4):e95029.
Adjustment for the differing risk profiles of patients is essential to the use of administrative hospital data for epidemiological research. Smoking is an important factor to include in such adjustments, but the accuracy of the diagnostic codes denoting smoking in hospital records is unknown. The aims of this study were to measure the validity of current smoking and ever smoked status identified from diagnoses in hospital records using a range of algorithms, relative to self-reported smoking status; and to examine whether the misclassification of smoking identified through hospital data is differential or non-differential with respect to common exposures and outcomes. Data from the baseline questionnaire of the 45 and Up Study, completed by 267,153 residents of New South Wales (NSW), Australia, aged 45 years and older, were linked to the NSW Admitted Patient Data Collection. Patients who had been admitted to hospital for an overnight stay between 1 July 2005 and the date of completion of the questionnaire (1 January 2006 to 2 March 2009) were included. Smokers were identified by applying a range of algorithms to hospital admission histories, and compared against self-reported smoking in the questionnaire (‘gold standard’). Sensitivities for current smoking ranged from 59% to 84%, while specificities were 94% to 98%. Sensitivities for ever smoked ranged from 45% to 74% and specificities were 93% to 97%. For the majority of algorithms, sensitivities and/or specificities differed significantly according to principal diagnosis, number of comorbidities, socioeconomic status, residential remoteness, Indigenous status, 28 day readmission and 365 day mortality. The identification of smoking through diagnoses in hospital data results in differential misclassification. Risk adjustment based on smoking identified from these data will yield potentially misleading results. Systematic capture of information about smoking in hospital records using a mandatory item would increase the utility of administrative data for epidemiological research.
doi:10.1371/journal.pone.0095029
PMCID: PMC3988140  PMID: 24736621

Results 1-25 (1253212)