PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (679416)

Clipboard (0)
None

Related Articles

1.  Establishing a community network for recruitment of African Americans into a clinical trial. The African-American antiplatelet stroke Prevention Study (AAASPS) experience. 
A major aspect of a clinical trial is the ability to successfully recruit patients. There is a paucity of information concerning the nuances of recruiting study patients, especially those from minority communities. As minorities generally have been underrepresented in the health-care system, they may be less likely to participate in clinical trials or other studies. Thus, a strategy is needed to overcome this potential shortfall. One of our solutions has been the development of a community network to help disseminate information about our program. We believe that a key aspect has been the involvement of community members during pre-trial planning, community awareness programs, and our Community Advisory Panel. We also believe that it may be a major error to bring a health-care initiative unannounced into a targeted community without extensive pre-program planning in cooperation with that community. As our community awareness scheme suggests (Figure), there are many possible avenues to heighten awareness about a health-care program. While the church remains an important institution for religious and cultural activities in the African-American community, we have found that the news, television, and radio media also can be a powerful source for spreading awareness. Thus, we recommend creating awareness about an initiative through a "grassroots" approach of church and community organizations, along with a global approach through news, television, and radio media. As part of the awareness promotion campaign, it must be emphasized that the study is safe and provides benefits to enrollees. The success of health programs is largely dependent on community acceptance, which must be established in the pre-program planning stages of the initiative. This concept of obtaining community approval and acceptance prior to program initiation is not a new one, nor does it exclusively apply to the African-American community. Community leaders and members need to have a vested interest in such a program and a sense of empowerment. Through this type of communication, patient enrollment and community satisfaction can be substantial. Such success can serve as a springboard for other targeted health-care studies or programs in high-risk communities.
PMCID: PMC2608181  PMID: 8961687
2.  Global Health: A Successful Context for Precollege Training and Advocacy 
PLoS ONE  2010;5(11):e13814.
Despite a flourishing biomedical and global health industry [1] too few of Washington state's precollege students are aware of this growing sector and emerging ideas on bacteria, fungi, parasites and viruses. Against the backdrop of numerous reports regarding declining precollege student interest in science [2], a precollege program was envisioned at Seattle Biomedical Research Institute (as of 2010, Seattle BioMed) to increase youth engagement in biomedical research and global health, increase community interest in infectious diseases and mobilize a future biomedical workforce. Since 2005, 169 rising high school juniors have participated in the BioQuest Academy precollege immersion program at Seattle BioMed. Assembling in groups of 12, students conduct laboratory experiments (e.g., anopheline mosquito dissection, gene expression informed tuberculosis drug design and optimizing HIV immunization strategies) related to global health alongside practicing scientific mentors, all within the footprint the institute. Laudable short-term impacts of the program include positive influences on student interest in global health (as seen in the students' subsequent school projects and their participation in Seattle BioMed community events), biomedical careers and graduate school (e.g., 16.9% of teens departing 2008–2009 Academy report revised goals of attaining a doctorate rather than a baccalaureate diploma). Long-term, 97% of alumni (2005–2008) are attending postsecondary schools throughout North America; eight graduates have already published scientific articles in peer-reviewed journals and/or presented their scientific data at national and international meetings, and 26 have been retained by Seattle BioMed researchers as compensated technicians and interns. Providing precollege students with structured access to practicing scientists and authentic research environments within the context of advancing global health has been a robust means of both building a future pool of talented leaders and engaged citizenry and increasing the visibility of health disparities within the community.
doi:10.1371/journal.pone.0013814
PMCID: PMC2972213  PMID: 21072198
3.  The Need for Veterinarians in Biomedical Research 
The number of veterinarians in the United States is inadequate to meet societal needs in biomedical research and public health. Areas of greatest need include translational medical research, veterinary pathology, laboratory-animal medicine, emerging infectious diseases, public health, academic medicine, and production-animal medicine. Veterinarians have unique skill sets that enable them to serve as leaders or members of interdisciplinary research teams involved in basic science and biomedical research with applications to animal or human health. There are too few graduate veterinarians to serve broad national needs in private practice; academia; local, state, and federal government agencies; and private industry. There are no easy solutions to the problem of increasing the number of veterinarians in biomedical research. Progress will require creativity, modification of priorities, broad-based communication, support from faculty and professional organizations, effective mentoring, education in research and alternative careers as part of the veterinary professional curriculum, and recognition of the value of research experience among professional schools’ admissions committees. New resources should be identified to improve communication and education, professional and graduate student programs in biomedical research, and support to junior faculty. These actions are necessary for the profession to sustain its viability as an integral part of biomedical research.
doi:10.3138/jvme.36.1.70
PMCID: PMC2852242  PMID: 19435992
biomedical research; veterinarian; laboratory animal; pathology; public health
4.  Experiences with community engagement and informed consent in a genetic cohort study of severe childhood diseases in Kenya 
BMC Medical Ethics  2010;11:13.
Background
The potential contribution of community engagement to addressing ethical challenges for international biomedical research is well described, but there is relatively little documented experience of community engagement to inform its development in practice. This paper draws on experiences around community engagement and informed consent during a genetic cohort study in Kenya to contribute to understanding the strengths and challenges of community engagement in supporting ethical research practice, focusing on issues of communication, the role of field workers in 'doing ethics' on the ground and the challenges of community consultation.
Methods
The findings are based on action research methods, including analysis of community engagement documentation and the observations of the authors closely involved in their development and implementation. Qualitative and quantitative content analysis has been used for documentation of staff meetings and trainings, a meeting with 24 community leaders, and 40 large public and 70 small community group meetings. Meeting minutes from a purposive sample of six community representative groups have been analysed using a thematic framework approach.
Results
Field workers described challenges around misunderstandings about research, perceived pressure for recruitment and challenges in explaining the study. During consultation, leaders expressed support for the study and screening for sickle cell disease. In community meetings, there was a common interpretation of research as medical care. Concerns centred on unfamiliar procedures. After explanations of study procedures to leaders and community members, few questions were asked about export of samples or the archiving of samples for future research.
Conclusions
Community engagement enabled researchers to take account of staff and community opinions and issues during the study and adapt messages and methods to address emerging ethical challenges. Field workers conducting informed consent faced complex issues and their understanding, attitudes and communication skills were key influences on ethical practice. Community consultation was a challenging concept to put into practice, illustrating the complexity of assessing information needs and levels of deliberation that are appropriate to a given study.
doi:10.1186/1472-6939-11-13
PMCID: PMC2918624  PMID: 20633282
5.  The Impact of eHealth on the Quality and Safety of Health Care: A Systematic Overview 
PLoS Medicine  2011;8(1):e1000387.
Aziz Sheikh and colleagues report the findings of their systematic overview that assessed the impact of eHealth solutions on the quality and safety of health care.
Background
There is considerable international interest in exploiting the potential of digital solutions to enhance the quality and safety of health care. Implementations of transformative eHealth technologies are underway globally, often at very considerable cost. In order to assess the impact of eHealth solutions on the quality and safety of health care, and to inform policy decisions on eHealth deployments, we undertook a systematic review of systematic reviews assessing the effectiveness and consequences of various eHealth technologies on the quality and safety of care.
Methods and Findings
We developed novel search strategies, conceptual maps of health care quality, safety, and eHealth interventions, and then systematically identified, scrutinised, and synthesised the systematic review literature. Major biomedical databases were searched to identify systematic reviews published between 1997 and 2010. Related theoretical, methodological, and technical material was also reviewed. We identified 53 systematic reviews that focused on assessing the impact of eHealth interventions on the quality and/or safety of health care and 55 supplementary systematic reviews providing relevant supportive information. This systematic review literature was found to be generally of substandard quality with regards to methodology, reporting, and utility. We thematically categorised eHealth technologies into three main areas: (1) storing, managing, and transmission of data; (2) clinical decision support; and (3) facilitating care from a distance. We found that despite support from policymakers, there was relatively little empirical evidence to substantiate many of the claims made in relation to these technologies. Whether the success of those relatively few solutions identified to improve quality and safety would continue if these were deployed beyond the contexts in which they were originally developed, has yet to be established. Importantly, best practice guidelines in effective development and deployment strategies are lacking.
Conclusions
There is a large gap between the postulated and empirically demonstrated benefits of eHealth technologies. In addition, there is a lack of robust research on the risks of implementing these technologies and their cost-effectiveness has yet to be demonstrated, despite being frequently promoted by policymakers and “techno-enthusiasts” as if this was a given. In the light of the paucity of evidence in relation to improvements in patient outcomes, as well as the lack of evidence on their cost-effectiveness, it is vital that future eHealth technologies are evaluated against a comprehensive set of measures, ideally throughout all stages of the technology's life cycle. Such evaluation should be characterised by careful attention to socio-technical factors to maximise the likelihood of successful implementation and adoption.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
There is considerable international interest in exploiting the potential of digital health care solutions, often referred to as eHealth—the use of information and communication technologies—to enhance the quality and safety of health care. Often accompanied by large costs, any large-scale expenditure on eHealth—such as electronic health records, picture archiving and communication systems, ePrescribing, associated computerized provider order entry systems, and computerized decision support systems—has tended to be justified on the grounds that these are efficient and cost-effective means for improving health care. In 2005, the World Health Assembly passed an eHealth resolution (WHA 58.28) that acknowledged, “eHealth is the cost-effective and secure use of information and communications technologies in support of health and health-related fields, including health-care services, health surveillance, health literature, and health education, knowledge and research,” and urged member states to develop and implement eHealth technologies. Since then, implementing eHealth technologies has become a main priority for many countries. For example, England has invested at least £12.8 billion in a National Programme for Information Technology for the National Health Service, and the Obama administration in the United States has committed to a US$38 billion eHealth investment in health care.
Why Was This Study Done?
Despite the wide endorsement of and support for eHealth, the scientific basis of its benefits—which are repeatedly made and often uncritically accepted—remains to be firmly established. A robust evidence-based perspective on the advantages on eHealth could help to suggest priority areas that have the greatest potential for benefit to patients and also to inform international eHealth deliberations on costs. Therefore, in order to better inform the international community, the authors systematically reviewed the published systematic review literature on eHealth technologies and evaluated the impact of these technologies on the quality and safety of health care delivery.
What Did the Researchers Do and Find?
The researchers divided eHealth technologies into three main categories: (1) storing, managing, and transmission of data; (2) clinical decision support; and (3) facilitating care from a distance. Then, implementing methods based on those developed by the Cochrane Collaboration and the NHS Service Delivery and Organisation Programme, the researchers used detailed search strategies and maps of health care quality, safety, and eHealth interventions to identify relevant systematic reviews (and related theoretical, methodological, and technical material) published between 1997 and 2010. Using these techniques, the researchers retrieved a total of 46,349 references from which they identified 108 reviews. The 53 reviews that the researchers finally selected (and critically reviewed) provided the main evidence base for assessing the impact of eHealth technologies in the three categories selected.
In their systematic review of systematic reviews, the researchers included electronic health records and picture archiving communications systems in their evaluation of category 1, computerized provider (or physician) order entry and e-prescribing in category 2, and all clinical information systems that, when used in the context of eHealth technologies, integrate clinical and demographic patient information to support clinician decision making in category 3.
The researchers found that many of the clinical claims made about the most commonly used eHealth technologies were not substantiated by empirical evidence. The evidence base in support of eHealth technologies was weak and inconsistent and importantly, there was insubstantial evidence to support the cost-effectiveness of these technologies. For example, the researchers only found limited evidence that some of the many presumed benefits could be realized; importantly, they also found some evidence that introducing these new technologies may on occasions also generate new risks such as prescribers becoming over-reliant on clinical decision support for e-prescribing, or overestimate its functionality, resulting in decreased practitioner performance.
What Do These Findings Mean?
The researchers found that despite the wide support for eHealth technologies and the frequently made claims by policy makers when constructing business cases to raise funds for large-scale eHealth projects, there is as yet relatively little empirical evidence to substantiate many of the claims made about eHealth technologies. In addition, even for the eHealth technology tools that have proven to be successful, there is little evidence to show that such tools would continue to be successful beyond the contexts in which they were originally developed. Therefore, in light of the lack of evidence in relation to improvements in patient outcomes, as well as the lack of evidence on their cost-effectiveness, the authors say that future eHealth technologies should be evaluated against a comprehensive set of measures, ideally throughout all stages of the technology's life cycle, and include socio-technical factors to maximize the likelihood of successful implementation and adoption in a given context. Furthermore, it is equally important that eHealth projects that have already been commissioned are subject to rigorous, multidisciplinary, and independent evaluation.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1000387.
The authors' broader study is: Car J, Black A, Anandan C, Cresswell K, Pagliari C, McKinstry B, et al. (2008) The Impact of eHealth on the Quality and Safety of Healthcare. Available at: http://www.haps.bham.ac.uk/publichealth/cfhep/001.shtml
More information is available on the World Health Assembly eHealth resolution
The World Health Organization provides information at the Global Observatory on eHealth, as well as a global insight into eHealth developments
The European Commission provides Information on eHealth in Europe and some examples of good eHealth practice
More information is provided on NHS Connecting for Health
doi:10.1371/journal.pmed.1000387
PMCID: PMC3022523  PMID: 21267058
6.  The organization and implementation of community-based education programs for health worker training institutions in Uganda 
Background
Community-based education (CBE) is part of the training curriculum for most health workers in Uganda. Most programs have a stated purpose of strengthening clinical skills, medical knowledge, communication skills, community orientation of graduates, and encouragement of graduates to work in rural areas. This study was undertaken to assess the scope and nature of community-based education for various health worker cadres in Uganda.
Methods
Curricula and other materials on CBE programs in Uganda were reviewed to assess nature, purpose, intended outcomes and evaluation methods used by CBE programs. In-depth and key informant interviews were conducted with people involved in managing CBE in twenty-two selected training institutions, as well as stakeholders from the community, Ministry of Health, Ministry of Education, civil society organizations and local government. Visits were made to selected sites where CBE training was conducted to assess infrastructure and learning resources being provided.
Results
The CBE curriculum is implemented in the majority of health training institutions in Uganda. CBE is a core course in most health disciplines at various levels – certificate, diploma and degree and for a range of health professionals. The CBE curriculum is systematically planned and implemented with major similarities among institutions. Organization, delivery, managerial strategies, and evaluation methods are also largely similar. Strengths recognized included providing hands-on experience, knowledge and skills generation and the linking learners to the communities. Almost all CBE implementing institutions cited human resource, financial, and material constraints.
Conclusions
The CBE curriculum is a widely used instructional model in Uganda for providing trainee health workers with the knowledge and skills relevant to meet community needs. Strategies to improve curricula and implementation concerns need further development. It is still uncertain whether this approach is increasing the number graduates seeking careers in rural health service, one of the stated program goals, an outcome which requires further study.
doi:10.1186/1472-698X-11-S1-S4
PMCID: PMC3059476  PMID: 21411004
7.  The physician–scientist in Canadian psychiatry 
Objective
The objective of the study was to determine whether physician–scientists in psychiatry in Canada are in decline, as was reported for medicine overall during the 1990s in the United States.
Design
Federal databases were searched to study grant applications in the area of mental health submitted by physician–scientists compared with PhD–scientists for the period 1985–2001. A survey of Canadian Residency Training Program Directors was carried out for the graduating class of 2000.
Setting
The Canadian publicly funded university system.
Participants
Applicants to the Medical Research Council of Canada and its successor, the Canadian Institutes of Health Research, for operating grant support and Residency Training Program Directors.
Interventions
None.
Outcome measures
Comparison over time between MD and PhD applicants regarding the number of grant applications submitted, the proportion of applications funded and the number of new applications submitted, with separation of applications submitted to a predominantly “biomedical” peer review committee and to a predominantly “clinical research” peer review committee. The survey obtained information about a number of variables related to research training.
Results
The situation for physician–scientists in psychiatry in Canada appeared remarkably similar to general findings in US studies. Relative to PhD applicants, fewer grant proposals were being made by physicians (paired t16 = 7.08, p < 0.001) and, in consequence, fewer proposals were funded. The proportion of proposals funded was similar for MD and PhD applicants (paired t16 = 0.27, p = 0.79). Grant applications made to the predominantly biomedical committee were more likely to be funded than applications to the committee with an orientation toward clinical research (paired t7 = 5.53, p < 0.001). Applications by PhD–scientists to the biomedical committee showed the largest increase over time and were the most successful. From the survey of graduating classes, close to one-third of residents had authored or co-authored a publication during residency. Only 7% were proceeding to research fellowship training. The remuneration available for fellowship training was about one-third of what graduating classmates could expect to earn in the first year of practice.
Conclusions
Quantitative data indicate that physician–scientists in psychiatry in Canada are experiencing the same pressures and challenges as physician–scientists in the United States. A plan of action tailored to the needs of the psychiatric community in Canada needs to be developed.
PMCID: PMC305270  PMID: 14719050
education, medical; internship and residency; policy making; research
8.  Using Community-Based Research Methods to Design Cancer Patient Navigation Training 
Background
Cancer mortality continues to be higher in Native Hawaiians than Whites, and research has identified numerous barriers to good cancer care. Cancer navigator programs provide individualized assistance to patients and family members to overcome barriers, promoting early diagnosis and timely and complete treatment.
Objectives
Our purpose was to design a training curriculum to provide community-based outreach workers serving Native Hawaiians with cancer patient navigator skills.
Methods
The Ho`okele i ke Ola (Navigating to Health) curriculum was informed by data gathered from Native Hawaiian cancer patients and their family members, outreach workers in Native Hawaiian communities, and cancer care providers. Based on findings, the 48-hour curriculum focused on cancer knowledge, cancer resources, and cancer communications. Three versions were developed: 1) 6 days of training and on-site tours in urban Honolulu; 2) 4 days of training on a neighbor island, with 2 days of on-site tours in Honolulu; and 3) a 3-credit community college independent study course. Graduates were interviewed after each session and 3 months after graduation about application of navigation skills.
Results
In 18 months, 62 health workers from community-based, clinical and community college settings were trained—31 in Honolulu-based trainings, 29 in neighbor island trainings where earlier graduates served as co-faculty, and 2 through Maui Community College. Follow-up data suggest increased knowledge, skills, capacity, and feelings of competence among trainees.
Conclusions
All three versions of the Ho`okele i ke Ola curriculum, developed with community input, have proven successful in increasing cancer patient navigation skills of trainees.
doi:10.1353/cpr.0.0037
PMCID: PMC2862697  PMID: 20208313
access to health care; cancer patient navigation; case management; community health aides; oncology; Pacific Islander Americans; utilization
9.  Use of Audiovisual Information in Speech Perception by Prelingually Deaf Children with Cochlear Implants: A First Report 
Ear and hearing  2001;22(3):236-251.
Objective
Although there has been a great deal of recent empirical work and new theoretical interest in audiovisual speech perception in both normal-hearing and hearing-impaired adults, relatively little is known about the development of these abilities and skills in deaf children with cochlear implants. This study examined how prelingually deafened children combine visual information available in the talker’s face with auditory speech cues provided by their cochlear implants to enhance spoken language comprehension.
Design
Twenty-seven hearing-impaired children who use cochlear implants identified spoken sentences presented under auditory-alone and audiovisual conditions. Five additional measures of spoken word recognition performance were used to assess auditory-alone speech perception skills. A measure of speech intelligibility was also obtained to assess the speech production abilities of these children.
Results
A measure of audiovisual gain, “Ra,” was computed using sentence recognition scores in auditory-alone and audiovisual conditions. Another measure of audiovisual gain, “Rv,” was computed using scores in visual-alone and audiovisual conditions. The results indicated that children who were better at recognizing isolated spoken words through listening alone were also better at combining the complementary sensory information about speech articulation available under audiovisual stimulation. In addition, we found that children who received more benefit from audiovisual presentation also produced more intelligible speech, suggesting a close link between speech perception and production and a common underlying linguistic basis for audiovisual enhancement effects. Finally, an examination of the distribution of children enrolled in Oral Communication (OC) and Total Communication (TC) indicated that OC children tended to score higher on measures of audiovisual gain, spoken word recognition, and speech intelligibility.
Conclusions
The relationships observed between auditory-alone speech perception, audiovisual benefit, and speech intelligibility indicate that these abilities are not based on independent language skills, but instead reflect a common source of linguistic knowledge, used in both perception and production, that is based on the dynamic, articulatory motions of the vocal tract. The effects of communication mode demonstrate the important contribution of early sensory experience to perceptual development, specifically, language acquisition and the use of phonological processing skills. Intervention and treatment programs that aim to increase receptive and productive spoken language skills, therefore, may wish to emphasize the inherent cross-correlations that exist between auditory and visual sources of information in speech perception.
PMCID: PMC3432941  PMID: 11409859
10.  Graduate Medical Education Leadership Development Curriculum for Program Directors 
Objective
Program director (PD) orientation to roles and responsibilities takes on many forms and processes. This article describes one institution's innovative arm of faculty development directed specifically toward PDs and associate PDs to provide institutional resources and information for those in graduate medical education leadership roles.
Methods
The designated institutional official created a separate faculty development curriculum for leadership development of PDs and associate PDs, modeled on the Association of American Medical Colleges-GRA (Group on Resident Affairs) graduate medical education leadership development course for designated institutional officials. It consists of monthly 90-minute sessions at the end of a working day, for new and experienced PDs alike, with mentoring provided by experienced PDs. We describe 2 iterations of the curriculum. To provide ongoing support a longitudinal curriculum of special topics has followed in the interval between core curriculum offerings.
Results
Communication between PDs across disciplines has improved. The broad, inclusive nature allowed for experienced PDs to take advantage of the learning opportunity while providing exchange and mentorship through sharing of lessons learned. The participants rated the course highly and education process and outcome measures for the programs have been positive, including increased accreditation cycle lengths.
Conclusion
It is important and valuable to provide PDs and associate PDs with administrative leadership development and resources, separate from general faculty development, to meet their role-specific needs for orientation and development and to better equip them to meet graduate medical education leadership challenges. This endeavor provides a foundational platform for designated institutional official and PD interactions to work on program building and improvement.
doi:10.4300/JGME-D-10-00180.1
PMCID: PMC3184915  PMID: 22655147
11.  Eurocan plus report: feasibility study for coordination of national cancer research activities 
Summary
The EUROCAN+PLUS Project, called for by the European Parliament, was launched in October 2005 as a feasibility study for coordination of national cancer research activities in Europe. Over the course of the next two years, the Project process organized over 60 large meetings and countless smaller meetings that gathered in total over a thousand people, the largest Europe–wide consultation ever conducted in the field of cancer research.
Despite a strong tradition in biomedical science in Europe, fragmentation and lack of sustainability remain formidable challenges for implementing innovative cancer research and cancer care improvement. There is an enormous duplication of research effort in the Member States, which wastes time, wastes money and severely limits the total intellectual concentration on the wide cancer problem. There is a striking lack of communication between some of the biggest actors on the European scene, and there are palpable tensions between funders and those researchers seeking funds.
It is essential to include the patients’ voice in the establishment of priority areas in cancer research at the present time. The necessity to have dialogue between funders and scientists to establish the best mechanisms to meet the needs of the entire community is evident. A top priority should be the development of translational research (in its widest form), leading to the development of effective and innovative cancer treatments and preventive strategies. Translational research ranges from bench–to–bedside innovative cancer therapies and extends to include bringing about changes in population behaviours when a risk factor is established.
The EUROCAN+PLUS Project recommends the creation of a small, permanent and independent European Cancer Initiative (ECI). This should be a model structure and was widely supported at both General Assemblies of the project. The ECI should assume responsibility for stimulating innovative cancer research and facilitating processes, becoming the common voice of the cancer research community and serving as an interface between the cancer research community and European citizens, patients’ organizations, European institutions, Member States, industry and small and medium enterprises (SMEs), putting into practice solutions aimed at alleviating barriers to collaboration and coordination of cancer research activities in the European Union, and dealing with legal and regulatory issues. The development of an effective ECI will require time, but this entity should be established immediately. As an initial step, coordination efforts should be directed towards the creation of a platform on translational research that could encompass (1) coordination between basic, clinical and epidemiological research; (2) formal agreements of co–operation between comprehensive cancer centres and basic research laboratories throughout Europe and (3) networking between funding bodies at the European level.
The European Parliament and its instruments have had a major influence in cancer control in Europe, notably in tobacco control and in the implementation of effective population–based screening. To make further progress there is a need for novelty and innovation in cancer research and prevention in Europe, and having a platform such as the ECI, where those involved in all aspects of cancer research can meet, discuss and interact, is a decisive development for Europe.
Executive Summary
Cancer is one of the biggest public health crises facing Europe in the 21st century—one for which Europe is currently not prepared nor preparing itself. Cancer is a major cause of death in Europe with two million casualties and three million new cases diagnosed annually, and the situation is set to worsen as the population ages.
These facts led the European Parliament, through the Research Directorate-General of the European Commission, to call for initiatives for better coordination of cancer research efforts in the European Union. The EUROCAN+PLUS Project was launched in October 2005 as a feasibility study for coordination of national cancer research activities. Over the course of the next two years, the Project process organized over 60 large meetings and countless smaller meetings that gathered in total over a thousand people. In this respect, the Project became the largest Europe-wide consultation ever conducted in the field of cancer research, implicating researchers, cancer centres and hospitals, administrators, healthcare professionals, funding agencies, industry, patients’ organizations and patients.
The Project first identified barriers impeding research and collaboration in research in Europe. Despite a strong tradition in biomedical science in Europe, fragmentation and lack of sustainability remain the formidable challenges for implementing innovative cancer research and cancer care improvement. There is an enormous duplication of research effort in the Member States, which wastes time, wastes money and severely limits the total intellectual concentration on the wide cancer problem. There is a striking lack of communication between some of the biggest actors on the European scene, and there are palpable tensions between funders and those researchers seeking funds.
In addition, there is a shortage of leadership, a multiplicity of institutions each focusing on its own agenda, sub–optimal contact with industry, inadequate training, non–existent career paths, low personnel mobility in research especially among clinicians and inefficient funding—all conspiring against efficient collaboration in cancer care and research. European cancer research today does not have a functional translational research continuum, that is the process that exploits biomedical research innovations and converts them into prevention methods, diagnostic tools and therapies. Moreover, epidemiological research is not integrated with other types of cancer research, and the implementation of the European Directives on Clinical Trials 1 and on Personal Data Protection 2 has further slowed the innovation process in Europe. Furthermore, large inequalities in health and research exist between the EU–15 and the New Member States.
The picture is not entirely bleak, however, as the European cancer research scene presents several strengths, such as excellent basic research and clinical research and innovative etiological research that should be better exploited.
When considering recommendations, several priority dimensions had to be retained. It is essential that proposals include actions and recommendations that can benefit all Member States of the European Union and not just States with the elite centres. It is also essential to have a broader patient orientation to help provide the knowledge to establish cancer control possibilities when we exhaust what can be achieved by the implementation of current knowledge. It is vital that the actions proposed can contribute to the Lisbon Strategy to make Europe more innovative and competitive in (cancer) research.
The Project participants identified six areas for which consensus solutions should be implemented in order to obtain better coordination of cancer research activities. The required solutions are as follows. The proactive management of innovation, detection, facilitation of collaborations and maintenance of healthy competition within the European cancer research community.The establishment of an exchange portal of information for health professionals, patients and policy makers.The provision of guidance for translational and clinical research including the establishment of a translational research platform involving comprehensive cancer centres and cancer research centres.The coordination of calls and financial management of cancer research projects.The construction of a ‘one–stop shop’ as a contact interface between the industry, small and medium enterprises, scientists and other stakeholders.The support of greater involvement of healthcare professionals in translational research and multidisciplinary training.
In the course of the EUROCAN+PLUS consultative process, several key collaborative projects emerged between the various groups and institutes engaged in the consultation. There was a collaboration network established with Europe’s leading Comprehensive Cancer Centres; funding was awarded for a closer collaboration of Owners of Cancer Registries in Europe (EUROCOURSE); there was funding received from FP7 for an extensive network of leading Biological Resource Centres in Europe (BBMRI); a Working Group identified the special needs of Central, Eastern and South–eastern Europe and proposed a remedy (‘Warsaw Declaration’), and the concept of developing a one–stop shop for dealing with academia and industry including the Innovative Medicines Initiative (IMI) was discussed in detail.
Several other dimensions currently lacking were identified. There is an absolute necessity to include the patients’ voice in the establishment of priority areas in cancer research at the present time. It was a salutary lesson when it was recognized that all that is known about the quality of life of the cancer patient comes from the experience of a tiny proportion of cancer patients included in a few clinical trials. The necessity to have dialogue between funders and scientists to establish the best mechanisms to meet the needs of the entire community was evident. A top priority should be the development of translational research (in its widest form) and the development of effective and innovative cancer treatments and preventative strategies in the European Union. Translational research ranges from bench-to-bedside innovative cancer therapies and extends to include bringing about changes in population behaviours when a risk factor is established.
Having taken note of the barriers and the solutions and having examined relevant examples of existing European organizations in the field, it was agreed during the General Assembly of 19 November 2007 that the EUROCAN+PLUS Project had to recommend the creation of a small, permanent and neutral ECI. This should be a model structure and was widely supported at both General Assemblies of the project. The proposal is based on the successful model of the European Molecular Biology Organisation (EMBO), and its principal aims include providing a forum where researchers from all backgrounds and from all countries can meet with members of other specialities including patients, nurses, clinicians, funders and scientific administrators to develop priority programmes to make Europe more competitive in research and more focused on the cancer patient.
The ECI should assume responsibility for: stimulating innovative cancer research and facilitating processes;becoming the common voice of the cancer research community and serving as an interface between the cancer research community and European citizens, patients’ and organizations;European institutions, Member States, industry and small and medium enterprises;putting into practice the aforementioned solutions aimed at alleviating barriers and coordinating cancer research activities in the EU;dealing with legal and regulatory issues.
Solutions implemented through the ECI will lead to better coordination and collaboration throughout Europe, more efficient use of resources, an increase in Europe’s attractiveness to the biomedical industry and better quality of cancer research and education of health professionals.
The Project considered that European legal instruments currently available were inadequate for addressing many aspects of the barriers identified and for the implementation of effective, lasting solutions. Therefore, the legal environment that could shelter an idea like the ECI remains to be defined but should be done so as a priority. In this context, the initiative of the European Commission for a new legal entity for research infrastructure might be a step in this direction. The development of an effective ECI will require time, but this should be established immediately. As an initial step, coordination efforts should be directed towards the creation of a platform on translational research that could encompass: (1) coordination between basic, clinical and epidemiological research; (2) formal agreements of co-operation between comprehensive cancer centres and basic research laboratories throughout Europe; (3) networking between funding bodies at the European level. Another topic deserving immediate attention is the creation of a European database on cancer research projects and cancer research facilities.
Despite enormous progress in cancer control in Europe during the past two decades, there was an increase of 300,000 in the number of new cases of cancer diagnosed between 2004 and 2006. The European Parliament and its instruments have had a major influence in cancer control, notably in tobacco control and in the implementation of effective population–based screening. To make further progress there is a need for novelty and innovation in cancer research and prevention in Europe, and having a platform such as the ECI, where those involved in all aspects of cancer research can meet, discuss and interact, is a decisive development for Europe.
doi:10.3332/ecancer.2011.84
PMCID: PMC3234055  PMID: 22274749
12.  HIV Treatment as Prevention: Systematic Comparison of Mathematical Models of the Potential Impact of Antiretroviral Therapy on HIV Incidence in South Africa 
PLoS Medicine  2012;9(7):e1001245.
Background
Many mathematical models have investigated the impact of expanding access to antiretroviral therapy (ART) on new HIV infections. Comparing results and conclusions across models is challenging because models have addressed slightly different questions and have reported different outcome metrics. This study compares the predictions of several mathematical models simulating the same ART intervention programmes to determine the extent to which models agree about the epidemiological impact of expanded ART.
Methods and Findings
Twelve independent mathematical models evaluated a set of standardised ART intervention scenarios in South Africa and reported a common set of outputs. Intervention scenarios systematically varied the CD4 count threshold for treatment eligibility, access to treatment, and programme retention. For a scenario in which 80% of HIV-infected individuals start treatment on average 1 y after their CD4 count drops below 350 cells/µl and 85% remain on treatment after 3 y, the models projected that HIV incidence would be 35% to 54% lower 8 y after the introduction of ART, compared to a counterfactual scenario in which there is no ART. More variation existed in the estimated long-term (38 y) reductions in incidence. The impact of optimistic interventions including immediate ART initiation varied widely across models, maintaining substantial uncertainty about the theoretical prospect for elimination of HIV from the population using ART alone over the next four decades. The number of person-years of ART per infection averted over 8 y ranged between 5.8 and 18.7. Considering the actual scale-up of ART in South Africa, seven models estimated that current HIV incidence is 17% to 32% lower than it would have been in the absence of ART. Differences between model assumptions about CD4 decline and HIV transmissibility over the course of infection explained only a modest amount of the variation in model results.
Conclusions
Mathematical models evaluating the impact of ART vary substantially in structure, complexity, and parameter choices, but all suggest that ART, at high levels of access and with high adherence, has the potential to substantially reduce new HIV infections. There was broad agreement regarding the short-term epidemiologic impact of ambitious treatment scale-up, but more variation in longer term projections and in the efficiency with which treatment can reduce new infections. Differences between model predictions could not be explained by differences in model structure or parameterization that were hypothesized to affect intervention impact.
Please see later in the article for the Editors' Summary
Editors' Summary
Background
Following the first reported case of AIDS in 1981, the number of people infected with HIV, the virus that causes AIDS, increased rapidly. In recent years, the number of people becoming newly infected has declined slightly, but the virus continues to spread at unacceptably high levels. In 2010 alone, 2.7 million people became HIV-positive. HIV, which is usually transmitted through unprotected sex, destroys CD4 lymphocytes and other immune system cells, leaving infected individuals susceptible to other infections. Early in the AIDS epidemic, half of HIV-infected people died within eleven years of infection. Then, in 1996, antiretroviral therapy (ART) became available, and, for people living in affluent countries, HIV/AIDS gradually became considered a chronic condition. But because ART was expensive, for people living in developing countries HIV/AIDS remained a fatal condition. Roll-out of ART in developing countries first started in the early 2000s. In 2006, the international community set a target of achieving universal ART coverage by 2010. Although this target has still not been reached, by the end of 2010, 6.6 million of the estimated 15 million people in need of ART in developing countries were receiving ART.
Why Was This Study Done?
Several studies suggest that ART, in addition to reducing illness and death among HIV-positive people, reduces HIV transmission. Consequently, there is interest in expanding the provision of ART as a strategy for reducing the spread of HIV (“HIV treatment as prevention"), particularly in sub-Saharan Africa, where one in 20 adults is HIV-positive. It is important to understand exactly how ART might contribute to averting HIV transmission. Several mathematical models that simulate HIV infection and disease progression have been developed to investigate the impact of expanding access to ART on the incidence of HIV (the number of new infections occurring in a population over a year). But, although all these models predict that increased ART coverage will have epidemiologic (population) benefits, they vary widely in their estimates of the magnitude of these benefits. In this study, the researchers systematically compare the predictions of 12 mathematical models of the HIV epidemic in South Africa, simulating the same ART intervention programs to determine the extent to which different models agree about the impact of expanded ART.
What Did the Researchers Do and Find?
The researchers invited groups who had previously developed mathematical models of the epidemiological impact of expanded access to ART in South Africa to participate in a systematic comparison exercise in which their models were used to simulate ART scale-up scenarios in which the CD4 count threshold for treatment eligibility, access to treatment, and retention on treatment were systematically varied. To exclude variation resulting from different model assumptions about the past and current ART program, it was assumed that ART is introduced into the population in the year 2012, with no treatment provision prior to this, and interventions were evaluated in comparison to an artificial counterfactual scenario in which no treatment is provided. A standard scenario based on the World Health Organization's recommended threshold for initiation of ART, although unrepresentative of current provision in South Africa, was used to compare the models. In this scenario, 80% of HIV-infected individuals received treatment, they started treatment on average a year after their CD4 count dropped below 350 cells per microliter of blood, and 85% remained on treatment after three years. The models predicted that, with a start point of 2012, the HIV incidence would be 35%–54% lower in 2020 and 32%–74% lower in 2050 compared to a counterfactual scenario where there was no ART. Estimates of the number of person-years of ART needed per infection averted (the efficiency with which ART reduced new infections) ranged from 6.3–18.7 and from 4.5–20.2 over the periods 2012–2020 and 2012–2050, respectively. Finally, estimates of the impact of ambitious interventions (for example, immediate treatment of all HIV-positive individuals) varied widely across the models.
What Do These Findings Mean?
Although the mathematical models used in this study had different characteristics, all 12 predict that ART, at high levels of access and adherence, has the potential to reduce new HIV infections. However, although the models broadly agree about the short-term epidemiologic impact of treatment scale-up, their longer-term projections (including whether ART alone can eliminate HIV infection) and their estimates of the efficiency with which ART can reduce new infections vary widely. Importantly, it is possible that all these predictions will be wrong—all the models may have excluded some aspect of HIV transmission that will be found in the future to be crucial. Finally, these findings do not aim to indicate which specific ART interventions should be used to reduce the incidence of HIV. Rather, by comparing the models that are being used to investigate the feasibility of “HIV treatment as prevention," these findings should help modelers and policy-makers think critically about how the assumptions underlying these models affect the models' predictions.
Additional Information
Please access these websites via the online version of this summary at http://dx.doi.org/10.1371/journal.pmed.1001245.
This study is part of the July 2012 PLoS Medicine Collection, Investigating the Impact of Treatment on New HIV Infections
Information is available from the US National Institute of Allergy and Infectious Diseases on HIV infection and AIDS
NAM/aidsmap provides basic information about HIV/AIDS and summaries of recent research findings on HIV care and treatment
Information is available from Avert, an international AIDS charity on many aspects of HIV/AIDS, including information on HIV/AIDS treatment and care, on HIV treatment as prevention, and on HIV/AIDS in South Africa (in English and Spanish)
The World Health Organization provides information about universal access to AIDS treatment (in English, French, and Spanish); its 2010 ART guidelines can be downloaded
The HIV Modelling Consortium aims to improve scientific support for decision-making by coordinating mathematical modeling of the HIV epidemic
Patient stories about living with HIV/AIDS are available through Avert; the charity website Healthtalkonline also provides personal stories about living with HIV, including stories about taking anti-HIV drugs and the challenges of anti-HIV drugs
doi:10.1371/journal.pmed.1001245
PMCID: PMC3393664  PMID: 22802730
13.  Implementing the 2009 Institute of Medicine recommendations on resident physician work hours, supervision, and safety 
Long working hours and sleep deprivation have been a facet of physician training in the US since the advent of the modern residency system. However, the scientific evidence linking fatigue with deficits in human performance, accidents and errors in industries from aeronautics to medicine, nuclear power, and transportation has mounted over the last 40 years. This evidence has also spawned regulations to help ensure public safety across safety-sensitive industries, with the notable exception of medicine.
In late 2007, at the behest of the US Congress, the Institute of Medicine embarked on a year-long examination of the scientific evidence linking resident physician sleep deprivation with clinical performance deficits and medical errors. The Institute of Medicine’s report, entitled “Resident duty hours: Enhancing sleep, supervision and safety”, published in January 2009, recommended new limits on resident physician work hours and workload, increased supervision, a heightened focus on resident physician safety, training in structured handovers and quality improvement, more rigorous external oversight of work hours and other aspects of residency training, and the identification of expanded funding sources necessary to implement the recommended reforms successfully and protect the public and resident physicians themselves from preventable harm.
Given that resident physicians comprise almost a quarter of all physicians who work in hospitals, and that taxpayers, through Medicare and Medicaid, fund graduate medical education, the public has a deep investment in physician training. Patients expect to receive safe, high-quality care in the nation’s teaching hospitals. Because it is their safety that is at issue, their voices should be central in policy decisions affecting patient safety. It is likewise important to integrate the perspectives of resident physicians, policy makers, and other constituencies in designing new policies. However, since its release, discussion of the Institute of Medicine report has been largely confined to the medical education community, led by the Accreditation Council for Graduate Medical Education (ACGME).
To begin gathering these perspectives and developing a plan to implement safer work hours for resident physicians, a conference entitled “Enhancing sleep, supervision and safety: What will it take to implement the Institute of Medicine recommendations?” was held at Harvard Medical School on June 17–18, 2010. This White Paper is a product of a diverse group of 26 representative stakeholders bringing relevant new information and innovative practices to bear on a critical patient safety problem. Given that our conference included experts from across disciplines with diverse perspectives and interests, not every recommendation was endorsed by each invited conference participant. However, every recommendation made here was endorsed by the majority of the group, and many were endorsed unanimously. Conference members participated in the process, reviewed the final product, and provided input before publication. Participants provided their individual perspectives, which do not necessarily represent the formal views of any organization.
In September 2010 the ACGME issued new rules to go into effect on July 1, 2011. Unfortunately, they stop considerably short of the Institute of Medicine’s recommendations and those endorsed by this conference. In particular, the ACGME only applied the limitation of 16 hours to first-year resident physicans. Thus, it is clear that policymakers, hospital administrators, and residency program directors who wish to implement safer health care systems must go far beyond what the ACGME will require. We hope this White Paper will serve as a guide and provide encouragement for that effort.
Resident physician workload and supervision
By the end of training, a resident physician should be able to practice independently. Yet much of resident physicians’ time is dominated by tasks with little educational value. The caseload can be so great that inadequate reflective time is left for learning based on clinical experiences. In addition, supervision is often vaguely defined and discontinuous. Medical malpractice data indicate that resident physicians are frequently named in lawsuits, most often for lack of supervision. The recommendations are: The ACGME should adjust resident physicians workload requirements to optimize educational value. Resident physicians as well as faculty should be involved in work redesign that eliminates nonessential and noneducational activity from resident physician dutiesMechanisms should be developed for identifying in real time when a resident physician’s workload is excessive, and processes developed to activate additional providersTeamwork should be actively encouraged in delivery of patient care. Historically, much of medical training has focused on individual knowledge, skills, and responsibility. As health care delivery has become more complex, it will be essential to train resident and attending physicians in effective teamwork that emphasizes collective responsibility for patient care and recognizes the signs, both individual and systemic, of a schedule and working conditions that are too demanding to be safeHospitals should embrace the opportunities that resident physician training redesign offers. Hospitals should recognize and act on the potential benefits of work redesign, eg, increased efficiency, reduced costs, improved quality of care, and resident physician and attending job satisfactionAttending physicians should supervise all hospital admissions. Resident physicians should directly discuss all admissions with attending physicians. Attending physicians should be both cognizant of and have input into the care patients are to receive upon admission to the hospitalInhouse supervision should be required for all critical care services, including emergency rooms, intensive care units, and trauma services. Resident physicians should not be left unsupervised to care for critically ill patients. In settings in which the acuity is high, physicians who have completed residency should provide direct supervision for resident physicians. Supervising physicians should always be physically in the hospital for supervision of resident physicians who care for critically ill patientsThe ACGME should explicitly define “good” supervision by specialty and by year of training. Explicit requirements for intensity and level of training for supervision of specific clinical scenarios should be providedCenters for Medicare and Medicaid Services (CMS) should use graduate medical education funding to provide incentives to programs with proven, effective levels of supervision. Although this action would require federal legislation, reimbursement rules would help to ensure that hospitals pay attention to the importance of good supervision and require it from their training programs
Resident physician work hours
Although the IOM “Sleep, supervision and safety” report provides a comprehensive review and discussion of all aspects of graduate medical education training, the report’s focal point is its recommendations regarding the hours that resident physicians are currently required to work. A considerable body of scientific evidence, much of it cited by the Institute of Medicine report, describes deteriorating performance in fatigued humans, as well as specific studies on resident physician fatigue and preventable medical errors.
The question before this conference was what work redesign and cultural changes are needed to reform work hours as recommended by the Institute of Medicine’s evidence-based report? Extensive scientific data demonstrate that shifts exceeding 12–16 hours without sleep are unsafe. Several principles should be followed in efforts to reduce consecutive hours below this level and achieve safer work schedules. The recommendations are: Limit resident physician work hours to 12–16 hour maximum shiftsA minimum of 10 hours off duty should be scheduled between shiftsResident physician input into work redesign should be actively solicitedSchedules should be designed that adhere to principles of sleep and circadian science; this includes careful consideration of the effects of multiple consecutive night shifts, and provision of adequate time off after night work, as specified in the IOM reportResident physicians should not be scheduled up to the maximum permissible limits; emergencies frequently occur that require resident physicians to stay longer than their scheduled shifts, and this should be anticipated in scheduling resident physicians’ work shiftsHospitals should anticipate the need for iterative improvement as new schedules are initiated; be prepared to learn from the initial phase-in, and change the plan as neededAs resident physician work hours are redesigned, attending physicians should also be considered; a potential consequence of resident physician work hour reduction and increased supervisory requirements may be an increase in work for attending physicians; this should be carefully monitored, and adjustments to attending physician work schedules made as needed to prevent unsafe work hours or working conditions for this group“Home call” should be brought under the overall limits of working hours; work load and hours should be monitored in each residency program to ensure that resident physicians and fellows on home call are getting sufficient sleepMedicare funding for graduate medical education in each hospital should be linked with adherence to the Institute of Medicine limits on resident physician work hours
Moonlighting by resident physicians
The Institute of Medicine report recommended including external as well as internal moonlighting in working hour limits. The recommendation is: All moonlighting work hours should be included in the ACGME working hour limits and actively monitored. Hospitals should formalize a moonlighting policy and establish systems for actively monitoring resident physician moonlighting
Safety of resident physicians
The “Sleep, supervision and safety” report also addresses fatigue-related harm done to resident physicians themselves. The report focuses on two main sources of physical injury to resident physicians impaired by fatigue, ie, needle-stick exposure to blood-borne pathogens and motor vehicle crashes. Providing safe transportation home for resident physicians is a logistical and financial challenge for hospitals. Educating physicians at all levels on the dangers of fatigue is clearly required to change driving behavior so that safe hospital-funded transport home is used effectively. Fatigue-related injury prevention (including not driving while drowsy) should be taught in medical school and during residency, and reinforced with attending physicians; hospitals and residency programs must be informed that resident physicians’ ability to judge their own level of impairment is impaired when they are sleep deprived; hence, leaving decisions about the capacity to drive to impaired resident physicians is not recommendedHospitals should provide transportation to all resident physicians who report feeling too tired to drive safely; in addition, although consecutive work should not exceed 16 hours, hospitals should provide transportation for all resident physicians who, because of unforeseen reasons or emergencies, work for longer than consecutive 24 hours; transportation under these circumstances should be automatically provided to house staff, and should not rely on self-identification or request
Training in effective handovers and quality improvement
Handover practice for resident physicians, attendings, and other health care providers has long been identified as a weak link in patient safety throughout health care settings. Policies to improve handovers of care must be tailored to fit the appropriate clinical scenario, recognizing that information overload can also be a problem. At the heart of improving handovers is the organizational effort to improve quality, an effort in which resident physicians have typically been insufficiently engaged. The recommendations are: Hospitals should train attending and resident physicians in effective handovers of careHospitals should create uniform processes for handovers that are tailored to meet each clinical setting; all handovers should be done verbally and face-to-face, but should also utilize written toolsWhen possible, hospitals should integrate hand-over tools into their electronic medical records (EMR) systems; these systems should be standardized to the extent possible across residency programs in a hospital, but may be tailored to the needs of specific programs and services; federal government should help subsidize adoption of electronic medical records by hospitals to improve signoutWhen feasible, handovers should be a team effort including nurses, patients, and familiesHospitals should include residents in their quality improvement and patient safety efforts; the ACGME should specify in their core competency requirements that resident physicians work on quality improvement projects; likewise, the Joint Commission should require that resident physicians be included in quality improvement and patient safety programs at teaching hospitals; hospital administrators and residency program directors should create opportunities for resident physicians to become involved in ongoing quality improvement projects and root cause analysis teams; feedback on successful quality improvement interventions should be shared with resident physicians and broadly disseminatedQuality improvement/patient safety concepts should be integral to the medical school curriculum; medical school deans should elevate the topics of patient safety, quality improvement, and teamwork; these concepts should be integrated throughout the medical school curriculum and reinforced throughout residency; mastery of these concepts by medical students should be tested on the United States Medical Licensing Examination (USMLE) stepsFederal government should support involvement of resident physicians in quality improvement efforts; initiatives to improve quality by including resident physicians in quality improvement projects should be financially supported by the Department of Health and Human Services
Monitoring and oversight of the ACGME
While the ACGME is a key stakeholder in residency training, external voices are essential to ensure that public interests are heard in the development and monitoring of standards. Consequently, the Institute of Medicine report recommended external oversight and monitoring through the Joint Commission and Centers for Medicare and Medicaid Services (CMS). The recommendations are: Make comprehensive fatigue management a Joint Commission National Patient Safety Goal; fatigue is a safety concern not only for resident physicians, but also for nurses, attending physicians, and other health care workers; the Joint Commission should seek to ensure that all health care workers, not just resident physicians, are working as safely as possibleFederal government, including the Centers for Medicare and Medicaid Services and the Agency for Healthcare Research and Quality, should encourage development of comprehensive fatigue management programs which all health systems would eventually be required to implementMake ACGME compliance with working hours a “ condition of participation” for reimbursement of direct and indirect graduate medical education costs; financial incentives will greatly increase the adoption of and compliance with ACGME standards
Future financial support for implementation
The Institute of Medicine’s report estimates that $1.7 billion (in 2008 dollars) would be needed to implement its recommendations. Twenty-five percent of that amount ($376 million) will be required just to bring hospitals into compliance with the existing 2003 ACGME rules. Downstream savings to the health care system could potentially result from safer care, but these benefits typically do not accrue to hospitals and residency programs, who have been asked historically to bear the burden of residency reform costs. The recommendations are: The Institute of Medicine should convene a panel of stakeholders, including private and public funders of health care and graduate medical education, to lay down the concrete steps necessary to identify and allocate the resources needed to implement the recommendations contained in the IOM “Resident duty hours: Enhancing sleep, supervision and safety” report. Conference participants suggested several approaches to engage public and private support for this initiativeEfforts to find additional funding to implement the Institute of Medicine recommendations should focus more broadly on patient safety and health care delivery reform; policy efforts focused narrowly upon resident physician work hours are less likely to succeed than broad patient safety initiatives that include residency redesign as a key componentHospitals should view the Institute of Medicine recommendations as an opportunity to begin resident physician work redesign projects as the core of a business model that embraces safety and ultimately saves resourcesBoth the Secretary of Health and Human Services and the Director of the Centers for Medicare and Medicaid Services should take the Institute of Medicine recommendations into consideration when promulgating rules for innovation grantsThe National Health Care Workforce Commission should consider the Institute of Medicine recommendations when analyzing the nation’s physician workforce needs
Recommendations for future research
Conference participants concurred that convening the stakeholders and agreeing on a research agenda was key. Some observed that some sectors within the medical education community have been reluctant to act on the data. Several logical funders for future research were identified. But above all agencies, Centers for Medicare and Medicaid Services is the only stakeholder that funds graduate medical education upstream and will reap savings downstream if preventable medical errors are reduced as a result of reform of resident physician work hours.
doi:10.2147/NSS.S19649
PMCID: PMC3630963  PMID: 23616719
resident; hospital; working hours; safety
14.  “Boys Must be Men, and Men Must Have Sex with Women”: A Qualitative CBPR Study to Explore Sexual Risk among African American, Latino, and White Gay Men and MSM 
American Journal of Men's Health  2010;5(2):140-151.
Men who have sex with men (MSM) continue to be disproportionately impacted by HIV and sexually transmitted diseases (STD). This study was designed to explore sexual risk among MSM using community-based participatory research (CBPR). An academic-community partnership conducted nine focus groups with 88 MSM. Participants self-identified as African American/Black (n=28), Hispanic/Latino (n=33), white (n=21), and bi-racial/ethnic (n=6). Mean age was 27 (range 18–60) years. Grounded theory was used. Twelve themes related to HIV risk emerged, including low HIV and STD knowledge particularly among Latino MSM and MSM who use the Internet for sexual networking; stereotyping of African American MSM as sexually “dominant” and Latino MSM as less likely to be HIV infected; and the eroticization of “barebacking.” Twelve intervention approaches also were identified, including developing culturally congruent programming using community-identified assets; harnessing social media used by informal networks of MSM; and promoting protection within the context of intimate relationships. A community forum was held to develop recommendations and move these themes to action.
doi:10.1177/1557988310366298
PMCID: PMC3299539  PMID: 20413391
15.  A Medical Student Elective Promoting Humanism, Communication Skills, Complementary and Alternative Medicine and Physician Self-Care: An Evaluation of the HEART Program 
Explore (New York, N.Y.)  2013;9(5):10.1016/j.explore.2013.06.003.
Objective
In 2002 AMSA created a fourth year medical student elective known as HEART that provided the opportunity for students to explore humanism in medicine, self-care, complementary and alternative medicine modalities, communication, activism, and community building in a four week immersion experience. The educational effects of this elective, and whether it has met its stated goals, are unknown.
Method
The authors conducted a web-based, cross-sectional survey of the first eight cohorts of HEART graduates in 2010. Survey questions assessed respondents’ demographics and perspectives on the educational impact of the elective. Descriptive statistics were used to characterize the sample and qualitative analyses were guided by grounded theory.
Results
Of 168 eligible alumni, 122 (73%), completed the survey. The majority were female (70%), age ≤35 (77%), and trained in primary care specialties (66%). Half were attendings in practice. The majority of respondents felt the elective taught professionalism (89%) and communication skills (92%) well or very well. The majority highly agreed that the elective helped them better cope with stress during residency training (80%), taught them self-care skills (75%), and improved their ability to empathize and connect with patients (71%). Qualitative analysis of the personal and professional impact of the elective identified twelve common themes with self-discovery, self-care, and collegial development/community most frequently cited.
Conclusions
The majority of HEART graduates endorse learning important skills and benefiting from the experience both personally and professionally. Aspects of the HEART curriculum may help training programs teach professionalism and improve trainee well-being.
doi:10.1016/j.explore.2013.06.003
PMCID: PMC3876728  PMID: 24021470
16.  Clinical capabilities of graduates of an outcomes-based integrated medical program 
BMC Medical Education  2012;12:23.
Background
The University of New South Wales (UNSW) Faculty of Medicine replaced its old content-based curriculum with an innovative new 6-year undergraduate entry outcomes-based integrated program in 2004. This paper is an initial evaluation of the perceived and assessed clinical capabilities of recent graduates of the new outcomes-based integrated medical program compared to benchmarks from traditional content-based or process-based programs.
Method
Self-perceived capability in a range of clinical tasks and assessment of medical education as preparation for hospital practice were evaluated in recent graduates after 3 months working as junior doctors. Responses of the 2009 graduates of the UNSW’s new outcomes-based integrated medical education program were compared to those of the 2007 graduates of UNSW’s previous content-based program, to published data from other Australian medical schools, and to hospital-based supervisor evaluations of their clinical competence.
Results
Three months into internship, graduates from UNSW’s new outcomes-based integrated program rated themselves to have good clinical and procedural skills, with ratings that indicated significantly greater capability than graduates of the previous UNSW content-based program. New program graduates rated themselves significantly more prepared for hospital practice in the confidence (reflective practice), prevention (social aspects of health), interpersonal skills (communication), and collaboration (teamwork) subscales than old program students, and significantly better or equivalent to published benchmarks of graduates from other Australian medical schools. Clinical supervisors rated new program graduates highly capable for teamwork, reflective practice and communication.
Conclusions
Medical students from an outcomes-based integrated program graduate with excellent self-rated and supervisor-evaluated capabilities in a range of clinically-relevant outcomes. The program-wide curriculum reform at UNSW has had a major impact in developing capabilities in new graduates that are important for 21st century medical practice.
doi:10.1186/1472-6920-12-23
PMCID: PMC3372445  PMID: 22540877
17.  E-Learning as New Method of Medical Education 
Acta Informatica Medica  2008;16(2):102-117.
CONFLICT OF INTEREST: NONE DECLARED
Distance learning refers to use of technologies based on health care delivered on distance and covers areas such as electronic health, tele-health (e-health), telematics, telemedicine, tele-education, etc. For the need of e-health, telemedicine, tele-education and distance learning there are various technologies and communication systems from standard telephone lines to the system of transmission digitalized signals with modem, optical fiber, satellite links, wireless technologies, etc. Tele-education represents health education on distance, using Information Communication Technologies (ICT), as well as continuous education of a health system beneficiaries and use of electronic libraries, data bases or electronic data with data bases of knowledge. Distance learning (E-learning) as a part of tele-education has gained popularity in the past decade; however, its use is highly variable among medical schools and appears to be more common in basic medical science courses than in clinical education. Distance learning does not preclude traditional learning processes; frequently it is used in conjunction with in-person classroom or professional training procedures and practices. Tele-education has mostly been used in biomedical education as a blended learning method, which combines tele-education technology with traditional instructor-led training, where, for example, a lecture or demonstration is supplemented by an online tutorial. Distance learning is used for self-education, tests, services and for examinations in medicine i.e. in terms of self-education and individual examination services. The possibility of working in the exercise mode with image files and questions is an attractive way of self education. Automated tracking and reporting of learners’ activities lessen faculty administrative burden. Moreover, e-learning can be designed to include outcomes assessment to determine whether learning has occurred. This review article evaluates the current status and level of tele-education development in Bosnia and Herzegovina outlining its components, faculty development needs for implementation and the possibility of its integration as official learning standard in biomedical curricula in Bosnia and Herzegovina. Tele-education refers to the use of information and communication technologies (ICT) to enhance knowledge and performance. Tele-education in biomedical education is widely accepted in the medical education community where it is mostly integrated into biomedical curricula forming part of a blended learning strategy. There are many biomedical digital repositories of e-learning materials worldwide, some peer reviewed, where instructors or developers can submit materials for widespread use. First pilot project with the aim to introduce tele-education in biomedical curricula in Bosnia and Herzegovina was initiated by Department for Medical Informatics at Medical Faculty in Sarajevo in 2002 and has been developing since. Faculty member’s skills in creating tele-education differ from those needed for traditional teaching and faculty rewards must recognize this difference and reward the effort. Tele-education and use of computers will have an impact of future medical practice in a life long learning. Bologna process, which started last years in European countries, provide us to promote and introduce modern educational methods of education at biomedical faculties in Bosnia and Herzegovina. Cathedra of Medical informatics and Cathedra of Family medicine at Medical Faculty of University of Sarajevo started to use Web based education as common way of teaching of medical students. Satisfaction with this method of education within the students is good, but not yet suitable for most of medical disciplines at biomedical faculties in Bosnia and Herzegovina.
doi:10.5455/aim.2008.16.102-117
PMCID: PMC3789161  PMID: 24109154
Medical education; Distance learning; Bosnia and Herzegovina
18.  A research education program model to prepare a highly qualified workforce in biomedical and health-related research and increase diversity 
BMC Medical Education  2014;14(1):202.
Background
The National Institutes of Health has recognized a compelling need to train highly qualified individuals and promote diversity in the biomedical/clinical sciences research workforce. In response, we have developed a research-training program known as REPID (Research Education Program to Increase Diversity among Health Researchers) to prepare students/learners to pursue research careers in these fields and address the lack of diversity and health disparities. By inclusion of students/learners from minority and diverse backgrounds, the REPID program aims to provide a research training and enrichment experience through team mentoring to inspire students/learners to pursue research careers in biomedical and health-related fields.
Methods
Students/learners are recruited from the University campus from a diverse population of undergraduates, graduates, health professionals, and lifelong learners. Our recruits first enroll into an innovative on-line introductory course in Basics and Methods in Biomedical Research that uses a laboratory Tool-Kit (a lab in a box called the My Dr. ET Lab Tool-Kit) to receive the standard basics of research education, e.g., research skills, and lab techniques. The students/learners will also learn about the responsible conduct of research, research concept/design, data recording/analysis, and scientific writing/presentation. The course is followed by a 12-week hands-on research experience during the summer. The students/learners also attend workshops and seminars/conferences. The students/learners receive scholarship to cover stipends, research related expenses, and to attend a scientific conference.
Results
The scholarship allows the students/learners to gain knowledge and seize opportunities in biomedical and health-related careers. This is an ongoing program, and during the first three years of the program, fifty-one (51) students/learners have been recruited. Thirty-six (36) have completed their research training, and eighty percent (80%) of them have continued their research experiences beyond the program. The combination of carefully providing standard basics of research education and mentorship has been successful and instrumental for training these students/learners and their success in finding biomedical/health-related jobs and/or pursuing graduate/medical studies. All experiences have been positive and highly promoted.
Conclusions
This approach has the potential to train a highly qualified workforce, change lives, enhance biomedical research, and by extension, improve national health-care.
doi:10.1186/1472-6920-14-202
PMCID: PMC4197236  PMID: 25248498
Innovative on-line biomedical research training; Mobile biomedical lab; Innovative lab tool-kit; Microscopy training; Health-care research training program; Team mentoring; On-line medical research education
19.  Medical Informatics Education at Medical Faculty of Sarajevo University - 15 Years Experience 
Acta Informatica Medica  2008;16(1):4-9.
CONFLICT OF INTEREST: NONE DECLARED
In Bosnia and Herzegovina, Medical informatics has been a separate subject for the last 15 years with regard to Medical curriculum at the biomedical faculties in the country (1,2). Education in the field of Medical informatics is based on the concept which is used in developed countries, according to the recommendations of the working groups EDU – Education of Medical Informatics, of the European Federation for Medical Informatics (EFMI) and International Medical Informatics Association (IMIA). Theoretical and practical teaching and training performance as a whole is performed by use of the computer equipment, and the final knowledge check of the students is also performed using the Data Base Management System MS Access specifically designed to cover full teaching and training material by using question sets in the data base which encircled nearly 1500 question combinations. The distance learning is logical step that can further improve this method of education. In this paper, authors present 15 years of experience of Medical informatics education at biomedical faculties in Bosnia and Herzegovina. Medical Informatics, as an obligatory subject, was introduced to the biomedical faculties in Sarajevo (medical, dental and pharmaceutical as well as the High medical school) in 1992 and 1993. Students have practical computer exercises for a period of 7 weeks. Students had training in Excel, Word etc. During the semester, the students perform specific operation such as creation of data carrier for manipulation with medical information. The information was analyzed by statistical program such as Excel. From 2002 years Medical Informatics is divided in two parts in order to facilitate data processing and other procedure that are necessary to perform at time when student’s knowledge of medicine is sufficient for practicing specific tasks that include management the data about patient, anamnesis and similar parameters cause we noticed that students without such knowledge cannot figure out the whole picture without difficulties. The Theoretical part of examination is done using the multiple choice answer form provided by special software with randomly selected questions for each student. Such way of practical and theoretical path of final exam make possible to perform such procedures such as electronic registration for exam and distance testing. Possibilities of introduction of distance learning in medical curriculum are the title of project which has been realizing at Cathedra for medical Informatics, Medical faculty since year 2002. Our undergraduate and postgraduate students are satisfied with contents and organization of the teaching process.
doi:10.5455/aim.2008.16.4-9
PMCID: PMC3789160  PMID: 24109152
Medical informatics; education; distance learning
20.  Design and National Dissemination of the StrongWomen Community Strength Training Program 
Preventing Chronic Disease  2007;5(1):A25.
Background
Physical activity is essential for maintaining health and function with age, especially among women. Strength training exercises combat weakness and frailty and mitigate the development of chronic disease. Community-based programs offer accessible opportunities for strength training.
Program Design
The StrongWomen Program is an evidence-informed, community-based strength training program developed and disseminated to enable women aged 40 or older to maintain their strength, function, and independence. The StrongWomen Workshop and StrongWomen Tool Kit are the training and implementation tools for the StrongWomen Program. Program leaders are trained at the StrongWomen Workshop. They receive the StrongWomen Tool Kit and subsequent support to implement the program in their communities.
Dissemination
Program dissemination began in May 2003 with a three-part approach: recruiting leaders and forming key partnerships, soliciting participant interest and supporting implementation, and promoting growth and sustainability.
Assessment
We conducted site visits during the first year to assess curriculum adherence. We conducted a telephone survey to collect data on program leaders, participants, locations, and logistics. We used a database to track workshop locations and program leaders. As of July 2006, 881 leaders in 43 states were trained; leaders from 35 states had implemented programs.
Conclusion
Evidence-informed strength training programs can be successful when dissemination occurs at the community level using trained leaders. This research demonstrates that hands-on training, a written manual, partnerships with key organizations, and leader support contributed to the successful dissemination of the StrongWomen Program. Results presented provide a model that may aid the dissemination of other community-based exercise programs.
PMCID: PMC2248774  PMID: 18082014
21.  Using mass-media communications to increase population usage of Australia’s Get Healthy Information and Coaching Service® 
BMC Public Health  2012;12:762.
Background
Global obesity prevalence is increasing and population health programs are required to support changes to modifiable lifestyle risk factors. Such interventions benefit from mass-communications to promote their use. The Get Healthy Information and Coaching Service ® (GHS) utilised mass-reach media advertising to recruit participants to an Australian state-wide program.
Methods
A stand alone population survey collected awareness, knowledge and behavioural variables before the first advertising phase, (n = 1,544; August -September 2010), during (n = 1,500; February - March 2011) and after the advertising period (n = 1,500; June-July 2011). GHS usage data (n = 6,375) was collated during July 2010 – June 2011.
Results
The results showed that television-lead mass-media significantly increased unprompted awareness (0% to 31.8%, p < 0.001); prompted awareness (2.5% to 23.7%, p < 0.001); and understanding (10.2% to 32.2%, p < 0.001). Mass-media (television, print and mail out information) was more often cited as the source of referral by males, those aged 18 – 49 years, employed, and from the lowest socio-economic groups. During the weeks when mass-media advertising was present, 4 and 2.5 times more information and coaching participants respectively registered than when there was no advertising present. Participants who cited television and print were less likely to enrol in GHS coaching, but this was not the case for mail out information and secondary referral sources.
Conclusions
GHS mass-communications campaigns are effective at increasing awareness and usage of the GHS, especially among hard-to-reach population groups. Television advertising provides universal reach, but should be supplemented by health professional referrals and targeted mail-out information to recruit participants to the intensive GHS coaching program.
doi:10.1186/1471-2458-12-762
PMCID: PMC3490994  PMID: 22967230
Mass-media; Recruitment; Telephone-based counselling; Lifestyle intervention
22.  Evidence of Community Structure in Biomedical Research Grant Collaborations 
Recent studies have clearly demonstrated a shift towards collaborative research and team science approaches across a spectrum of disciplines. Such collaborative efforts have also been acknowledged and nurtured by popular extramurally funded programs including the Clinical Translational Science Award (CTSA) conferred by the National Institutes of Health. Since its inception, the number of CTSA awardees has steadily increased to 60 institutes across 30 states. One of the objectives of CTSA is to accelerate translation of research from bench to bedside to community and train a new genre of researchers under the translational research umbrella. Feasibility of such a translation implicitly demands multi-disciplinary collaboration and mentoring. Networks have proven to be convenient abstractions for studying research collaborations. The present study is a part of the CTSA baseline study and investigates existence of possible community-structure in Biomedical Research Grant Collaboration (BRGC) networks across data sets retrieved from the internally developed grants management system, the Automated Research Information Administrator (ARIA) at the University of Arkansas for Medical Sciences (UAMS).
Fastgreedy and link-community community-structure detection algorithms were used to investigate the presence of non-overlapping and overlapping community-structure and their variation across years 2006 and 2009. A surrogate testing approach in conjunction with appropriate discriminant statistics, namely: the Modularity Index and the Maximum Partition Density is proposed to investigate whether the community-structure of the BRGC networks were different from those generated by certain types of random graphs.
Non-overlapping as well as overlapping community-structure detection algorithms indicated the presence of community-structure in the BRGC network. Subsequent, surrogate testing revealed that random graph models considered in the present study may not necessarily be appropriate generative mechanisms of the community-structure in the BRGC networks. The discrepancy in the community-structure between the BRGC networks and the random graph surrogates was especially pronounced at 2009 as opposed to 2006 indicating a possible shift towards team-science and formation of non-trivial modular patterns with time. The results also clearly demonstrate presence of inter-departmental and multi-disciplinary collaborations in BRGC networks. While the results are presented on BRGC networks as a part of the CTSA baseline study at UAMS, the proposed methodologies are as such generic with potential to be extended across other CTSA organizations. Understanding the presence of community-structure can supplement more traditional network analysis as they're useful in identifying research teams and their inter-connections as opposed to the role of individual nodes in the network. Such an understanding can be a critical step prior to devising meaningful interventions for promoting team-science, multi-disciplinary collaborations, cross-fertilization of ideas across research teams and identifying suitable mentors. Understanding the temporal evolution of these communities may also be useful in CTSA evaluation.
doi:10.1016/j.jbi.2012.08.002
PMCID: PMC4121986  PMID: 22981843
Biomedical Research Grant Collaborations; Team-Science; Networks; Community-Structure
23.  The Twin Cities biomedical consortium. 
Twenty-eight health science libraries in the St. Paul-Minneapolis area formed the Twin Cities Biomedical Consortium with the intention of developing a strong network of biomedical libraries in the Twin Cities area. Toward this end, programs were designed to strengthen lines of communication and increase cooperation among local health science libraries; improve access to biomedical information at the local level; and enable the Consortium, as a group, to meet an increasing proportion of its members' needs for biomedical information. Presently, the TCBC comprises libraries in twenty-two hospitals, two county medical societies, one school of nursing, one junior college, and two private corporations.
PMCID: PMC198910  PMID: 1173785
24.  The Future of the Pharmaceutical Sciences and Graduate Education: Recommendations from the AACP Graduate Education Special Interest Group 
Despite pharma's recent sea change in approach to drug discovery and development, U.S. pharmaceutical sciences graduate programs are currently maintaining traditional methods for master's and doctoral student education. The literature on graduate education in the biomedical sciences has long been advocating educating students to hone soft skills like communication and teamwork, in addition to maintaining excellent basic skills in research. However, recommendations to date have not taken into account the future trends in the pharmaceutical industry. The AACP Graduate Education Special Interest Group has completed a literature survey of the trends in the pharmaceutical industry and graduate education in order to determine whether our graduate programs are strategically positioned to prepare our graduates for successful careers in the next few decades. We recommend that our pharmaceutical sciences graduate programs take a proactive leadership role in meeting the needs of our future graduates and employers. Our graduate programs should bring to education the innovation and collaboration that our industry also requires to be successful and relevant in this century.
doi:10.5688/ajpe774S2
PMCID: PMC3663643  PMID: 23716757
pharmacy; education; graduate; pharmaceutical industry; future; pharmaceutical sciences; jobs; career; skills; preparation; higher education
25.  Participant Profiles According to Recruitment Source in a Large Web-Based Prospective Study: Experience From the Nutrinet-Santé Study 
Background
Interest in Internet-based epidemiologic research is growing given the logistic and cost advantages. Cohort recruitment to maximally diversify the sociodemographic profiles of participants, however, remains a contentious issue.
Objective
The aim of the study was to characterize the sociodemographic profiles according to the recruitment mode of adult volunteers enrolled in a Web-based cohort.
Methods
The French NutriNet-Santé Web-based cohort was launched in 2009. Recruitment is ongoing and largely relies on recurrent multimedia campaigns. One month after enrollment, participants are asked how they learned about the study (eg, general newscast or a health program on television, radio newscast, newspaper articles, Internet, personal advice, leaflet/flyers) The sociodemographic profiles of participants recruited through operative communication channels (radio, print media, Internet, advice) were compared with the profiles of those informed through television by using polytomous logistic regression.
Results
Among the 88,238 participants enrolled through the end of 2011, 30,401 (34.45%), 16,751 (18.98%), and 14,309 (16.22%) learned about the study from television, Internet, and radio newscasts, respectively. Sociodemographic profiles were various, with 14,541 (16.5%) aged ≥60 years, 20,166 (22.9%) aged <30 years, 27,766 (32.1%) without postsecondary education, 15,397 (19.7%) with household income <€1200/month, and 8258 (10.6%) with household income €3700/month. Compared to employed individuals, unemployed and retired participants were less likely to be informed about the study through other sources than through television (adjusted ORs 0.56-0.83, P<.001). Participants reporting up to secondary education were also less likely to have learned about the study through radio newscasts, newspaper articles, Internet, and advice than through television (adjusted ORs 0.60-0.77, P<.001).
Conclusions
Television broadcasts appear to permit the recruitment of e-cohort participants with diverse sociodemographic backgrounds, including socioeconomically disadvantaged individuals who are usually difficult to reach and retain in long-term epidemiologic studies. These findings could inform future Web-based studies regarding the development of promising targeted or general population recruitment strategies.
doi:10.2196/jmir.2488
PMCID: PMC3785981  PMID: 24036068
cohort study; Internet; selection bias; population characteristics

Results 1-25 (679416)