PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (816659)

Clipboard (0)
None

Related Articles

1.  The RAST Server: Rapid Annotations using Subsystems Technology 
BMC Genomics  2008;9:75.
Background
The number of prokaryotic genome sequences becoming available is growing steadily and is growing faster than our ability to accurately annotate them.
Description
We describe a fully automated service for annotating bacterial and archaeal genomes. The service identifies protein-encoding, rRNA and tRNA genes, assigns functions to the genes, predicts which subsystems are represented in the genome, uses this information to reconstruct the metabolic network and makes the output easily downloadable for the user. In addition, the annotated genome can be browsed in an environment that supports comparative analysis with the annotated genomes maintained in the SEED environment.
The service normally makes the annotated genome available within 12–24 hours of submission, but ultimately the quality of such a service will be judged in terms of accuracy, consistency, and completeness of the produced annotations. We summarize our attempts to address these issues and discuss plans for incrementally enhancing the service.
Conclusion
By providing accurate, rapid annotation freely to the community we have created an important community resource. The service has now been utilized by over 120 external users annotating over 350 distinct genomes.
doi:10.1186/1471-2164-9-75
PMCID: PMC2265698  PMID: 18261238
2.  The comprehensive microbial resource 
Nucleic Acids Research  2009;38(Database issue):D340-D345.
The Comprehensive Microbial Resource or CMR (http://cmr.jcvi.org) provides a web-based central resource for the display, search and analysis of the sequence and annotation for complete and publicly available bacterial and archaeal genomes. In addition to displaying the original annotation from GenBank, the CMR makes available secondary automated structural and functional annotation across all genomes to provide consistent data types necessary for effective mining of genomic data. Precomputed homology searches are stored to allow meaningful genome comparisons. The CMR supplies users with over 50 different tools to utilize the sequence and annotation data across one or more of the 571 currently available genomes. At the gene level users can view the gene annotation and underlying evidence. Genome level information includes whole genome graphical displays, biochemical pathway maps and genome summary data. Comparative tools display analysis between genomes with homology and genome alignment tools, and searches across the accessions, annotation, and evidence assigned to all genes/genomes are available. The data and tools on the CMR aid genomic research and analysis, and the CMR is included in over 200 scientific publications. The code underlying the CMR website and the CMR database are freely available for download with no license restrictions.
doi:10.1093/nar/gkp912
PMCID: PMC2808947  PMID: 19892825
3.  EuCAP, a Eukaryotic Community Annotation Package, and its application to the rice genome 
BMC Genomics  2007;8:388.
Background
Despite the improvements of tools for automated annotation of genome sequences, manual curation at the structural and functional level can provide an increased level of refinement to genome annotation. The Institute for Genomic Research Rice Genome Annotation (hereafter named the Osa1 Genome Annotation) is the product of an automated pipeline and, for this reason, will benefit from the input of biologists with expertise in rice and/or particular gene families. Leveraging knowledge from a dispersed community of scientists is a demonstrated way of improving a genome annotation. This requires tools that facilitate 1) the submission of gene annotation to an annotation project, 2) the review of the submitted models by project annotators, and 3) the incorporation of the submitted models in the ongoing annotation effort.
Results
We have developed the Eukaryotic Community Annotation Package (EuCAP), an annotation tool, and have applied it to the rice genome. The primary level of curation by community annotators (CA) has been the annotation of gene families. Annotation can be submitted by email or through the EuCAP Web Tool. The CA models are aligned to the rice pseudomolecules and the coordinates of these alignments, along with functional annotation, are stored in the MySQL EuCAP Gene Model database. Web pages displaying the alignments of the CA models to the Osa1 Genome models are automatically generated from the EuCAP Gene Model database. The alignments are reviewed by the project annotators (PAs) in the context of experimental evidence. Upon approval by the PAs, the CA models, along with the corresponding functional annotations, are integrated into the Osa1 Genome Annotation. The CA annotations, grouped by family, are displayed on the Community Annotation pages of the project website , as well as in the Community Annotation track of the Genome Browser.
Conclusion
We have applied EuCAP to rice. As of July 2007, the structural and/or functional annotation of 1,094 genes representing 57 families have been deposited and integrated into the current gene set. All of the EuCAP components are open-source, thereby allowing the implementation of EuCAP for the annotation of other genomes. EuCAP is available at .
doi:10.1186/1471-2164-8-388
PMCID: PMC2151081  PMID: 17961238
4.  Phylogenomics of Prokaryotic Ribosomal Proteins 
PLoS ONE  2012;7(5):e36972.
Archaeal and bacterial ribosomes contain more than 50 proteins, including 34 that are universally conserved in the three domains of cellular life (bacteria, archaea, and eukaryotes). Despite the high sequence conservation, annotation of ribosomal (r-) protein genes is often difficult because of their short lengths and biased sequence composition. We developed an automated computational pipeline for identification of r-protein genes and applied it to 995 completely sequenced bacterial and 87 archaeal genomes available in the RefSeq database. The pipeline employs curated seed alignments of r-proteins to run position-specific scoring matrix (PSSM)-based BLAST searches against six-frame genome translations, mitigating possible gene annotation errors. As a result of this analysis, we performed a census of prokaryotic r-protein complements, enumerated missing and paralogous r-proteins, and analyzed the distributions of ribosomal protein genes among chromosomal partitions. Phyletic patterns of bacterial and archaeal r-protein genes were mapped to phylogenetic trees reconstructed from concatenated alignments of r-proteins to reveal the history of likely multiple independent gains and losses. These alignments, available for download, can be used as search profiles to improve genome annotation of r-proteins and for further comparative genomics studies.
doi:10.1371/journal.pone.0036972
PMCID: PMC3353972  PMID: 22615861
5.  The COG database: a tool for genome-scale analysis of protein functions and evolution 
Nucleic Acids Research  2000;28(1):33-36.
Rational classification of proteins encoded in sequenced genomes is critical for making the genome sequences maximally useful for functional and evolutionary studies. The database of Clusters of Orthologous Groups of proteins (COGs) is an attempt on a phylogenetic classification of the proteins encoded in 21 complete genomes of bacteria, archaea and eukaryotes (http://www.ncbi.nlm.nih.gov/COG ). The COGs were constructed by applying the criterion of consistency of genome-specific best hits to the results of an exhaustive comparison of all protein sequences from these genomes. The database comprises 2091 COGs that include 56–83% of the gene products from each of the complete bacterial and archaeal genomes and ~35% of those from the yeast Saccharomyces cerevisiae genome. The COG database is accompanied by the COGNITOR program that is used to fit new proteins into the COGs and can be applied to functional and phylogenetic annotation of newly sequenced genomes.
PMCID: PMC102395  PMID: 10592175
6.  Proteomic Detection of Non-Annotated Protein-Coding Genes in Pseudomonas fluorescens Pf0-1 
PLoS ONE  2009;4(12):e8455.
Genome sequences are annotated by computational prediction of coding sequences, followed by similarity searches such as BLAST, which provide a layer of possible functional information. While the existence of processes such as alternative splicing complicates matters for eukaryote genomes, the view of bacterial genomes as a linear series of closely spaced genes leads to the assumption that computational annotations that predict such arrangements completely describe the coding capacity of bacterial genomes. We undertook a proteomic study to identify proteins expressed by Pseudomonas fluorescens Pf0-1 from genes that were not predicted during the genome annotation. Mapping peptides to the Pf0-1 genome sequence identified sixteen non-annotated protein-coding regions, of which nine were antisense to predicted genes, six were intergenic, and one read in the same direction as an annotated gene but in a different frame. The expression of all but one of the newly discovered genes was verified by RT-PCR. Few clues as to the function of the new genes were gleaned from informatic analyses, but potential orthologs in other Pseudomonas genomes were identified for eight of the new genes. The 16 newly identified genes improve the quality of the Pf0-1 genome annotation, and the detection of antisense protein-coding genes indicates the under-appreciated complexity of bacterial genome organization.
doi:10.1371/journal.pone.0008455
PMCID: PMC2794547  PMID: 20041161
7.  BG7: A New Approach for Bacterial Genome Annotation Designed for Next Generation Sequencing Data 
PLoS ONE  2012;7(11):e49239.
BG7 is a new system for de novo bacterial, archaeal and viral genome annotation based on a new approach specifically designed for annotating genomes sequenced with next generation sequencing technologies. The system is versatile and able to annotate genes even in the step of preliminary assembly of the genome. It is especially efficient detecting unexpected genes horizontally acquired from bacterial or archaeal distant genomes, phages, plasmids, and mobile elements. From the initial phases of the gene annotation process, BG7 exploits the massive availability of annotated protein sequences in databases. BG7 predicts ORFs and infers their function based on protein similarity with a wide set of reference proteins, integrating ORF prediction and functional annotation phases in just one step. BG7 is especially tolerant to sequencing errors in start and stop codons, to frameshifts, and to assembly or scaffolding errors. The system is also tolerant to the high level of gene fragmentation which is frequently found in not fully assembled genomes. BG7 current version – which is developed in Java, takes advantage of Amazon Web Services (AWS) cloud computing features, but it can also be run locally in any operating system. BG7 is a fast, automated and scalable system that can cope with the challenge of analyzing the huge amount of genomes that are being sequenced with NGS technologies. Its capabilities and efficiency were demonstrated in the 2011 EHEC Germany outbreak in which BG7 was used to get the first annotations right the next day after the first entero-hemorrhagic E. coli genome sequences were made publicly available. The suitability of BG7 for genome annotation has been proved for Illumina, 454, Ion Torrent, and PacBio sequencing technologies. Besides, thanks to its plasticity, our system could be very easily adapted to work with new technologies in the future.
doi:10.1371/journal.pone.0049239
PMCID: PMC3504008  PMID: 23185310
8.  Reduce Manual Curation by Combining Gene Predictions from Multiple Annotation Engines, a Case Study of Start Codon Prediction 
PLoS ONE  2013;8(5):e63523.
Nowadays, prokaryotic genomes are sequenced faster than the capacity to manually curate gene annotations. Automated genome annotation engines provide users a straight-forward and complete solution for predicting ORF coordinates and function. For many labs, the use of AGEs is therefore essential to decrease the time necessary for annotating a given prokaryotic genome. However, it is not uncommon for AGEs to provide different and sometimes conflicting predictions. Combining multiple AGEs might allow for more accurate predictions. Here we analyzed the ab initio open reading frame (ORF) calling performance of different AGEs based on curated genome annotations of eight strains from different bacterial species with GC% ranging from 35–52%. We present a case study which demonstrates a novel way of comparative genome annotation, using combinations of AGEs in a pre-defined order (or path) to predict ORF start codons. The order of AGE combinations is from high to low specificity, where the specificity is based on the eight genome annotations. For each AGE combination we are able to derive a so-called projected confidence value, which is the average specificity of ORF start codon prediction based on the eight genomes. The projected confidence enables estimating likeliness of a correct prediction for a particular ORF start codon by a particular AGE combination, pinpointing ORFs notoriously difficult to predict start codons. We correctly predict start codons for 90.5±4.8% of the genes in a genome (based on the eight genomes) with an accuracy of 81.1±7.6%. Our consensus-path methodology allows a marked improvement over majority voting (9.7±4.4%) and with an optimal path ORF start prediction sensitivity is gained while maintaining a high specificity.
doi:10.1371/journal.pone.0063523
PMCID: PMC3651085  PMID: 23675487
9.  HAMAP: a database of completely sequenced microbial proteome sets and manually curated microbial protein families in UniProtKB/Swiss-Prot 
Nucleic Acids Research  2008;37(Database issue):D471-D478.
The growth in the number of completely sequenced microbial genomes (bacterial and archaeal) has generated a need for a procedure that provides UniProtKB/Swiss-Prot-quality annotation to as many protein sequences as possible. We have devised a semi-automated system, HAMAP (High-quality Automated and Manual Annotation of microbial Proteomes), that uses manually built annotation templates for protein families to propagate annotation to all members of manually defined protein families, using very strict criteria. The HAMAP system is composed of two databases, the proteome database and the family database, and of an automatic annotation pipeline. The proteome database comprises biological and sequence information for each completely sequenced microbial proteome, and it offers several tools for CDS searches, BLAST options and retrieval of specific sets of proteins. The family database currently comprises more than 1500 manually curated protein families and their annotation templates that are used to annotate proteins that belong to one of the HAMAP families. On the HAMAP website, individual sequences as well as whole genomes can be scanned against all HAMAP families. The system provides warnings for the absence of conserved amino acid residues, unusual sequence length, etc. Thanks to the implementation of HAMAP, more than 200 000 microbial proteins have been fully annotated in UniProtKB/Swiss-Prot (HAMAP website: http://www.expasy.org/sprot/hamap).
doi:10.1093/nar/gkn661
PMCID: PMC2686602  PMID: 18849571
10.  The web server of IBM's Bioinformatics and Pattern Discovery group 
Nucleic Acids Research  2003;31(13):3645-3650.
We herein present and discuss the services and content which are available on the web server of IBM's Bioinformatics and Pattern Discovery group. The server is operational around the clock and provides access to a variety of methods that have been published by the group's members and collaborators. The available tools correspond to applications ranging from the discovery of patterns in streams of events and the computation of multiple sequence alignments, to the discovery of genes in nucleic acid sequences and the interactive annotation of amino acid sequences. Additionally, annotations for more than 70 archaeal, bacterial, eukaryotic and viral genomes are available on-line and can be searched interactively. The tools and code bundles can be accessed beginning at http://cbcsrv.watson.ibm.com/Tspd.html whereas the genomics annotations are available at http://cbcsrv.watson.ibm.com/Annotations/.
PMCID: PMC169027  PMID: 12824385
11.  A guide to best practices for Gene Ontology (GO) manual annotation 
The Gene Ontology Consortium (GOC) is a community-based bioinformatics project that classifies gene product function through the use of structured controlled vocabularies. A fundamental application of the Gene Ontology (GO) is in the creation of gene product annotations, evidence-based associations between GO definitions and experimental or sequence-based analysis. Currently, the GOC disseminates 126 million annotations covering >374 000 species including all the kingdoms of life. This number includes two classes of GO annotations: those created manually by experienced biocurators reviewing the literature or by examination of biological data (1.1 million annotations covering 2226 species) and those generated computationally via automated methods. As manual annotations are often used to propagate functional predictions between related proteins within and between genomes, it is critical to provide accurate consistent manual annotations. Toward this goal, we present here the conventions defined by the GOC for the creation of manual annotation. This guide represents the best practices for manual annotation as established by the GOC project over the past 12 years. We hope this guide will encourage research communities to annotate gene products of their interest to enhance the corpus of GO annotations available to all.
Database URL: http://www.geneontology.org
doi:10.1093/database/bat054
PMCID: PMC3706743  PMID: 23842463
12.  Homology modeling, comparative genomics and functional annotation of Mycoplasma genitalium hypothetical protein MG_237 
Bioinformation  2011;7(6):299-303.
Mycoplasma genitalium is a human pathogen associated with several sexually transmitted diseases. The complete genome of M. genitalium G37 has been sequenced and provides an opportunity to understand the pathogenesis and identification of therapeutic targets. However, complete understanding of bacterial function requires proper annotation of its proteins. The genome of M. genitalium consists of 475 proteins. Among these, 94 are without any known function and are described as ‘hypothetical proteins’. We selected MG_237 for sequence and structural analysis using a bioinformatics approach. Primary and secondary structure analysis suggested that MG_237 is a hydrophilic protein containing a significant proportion of alpha helices, and subcellular localization predictions suggested it is a cytoplasmic protein. Homology modeling was used to define the three-dimensional (3D) structure of MG-237. A search for templates revealed that MG_237 shares 63% homology to a hypothetical protein of Mycoplasma pneumoniae, indicating this protein is evolutionary conserved. The refined 3D model was generated using (PS)2­v2 sever that incorporates MODELLER. Several quality assessment and validation parameters were computed and indicated that the homology model is reliable. Furthermore, comparative genomics analysis suggested MG_237 as non-homologous protein and involved in four different metabolic pathways. Experimental validation will provide more insight into the actual function of this protein in microbial pathways.
PMCID: PMC3280499  PMID: 22355225
Mycoplasma genitalium; homology modelling; hypothetical proteins; comparative genomics; metabolic pathways
13.  Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium 
Briefings in Bioinformatics  2011;12(5):449-462.
The goal of the Gene Ontology (GO) project is to provide a uniform way to describe the functions of gene products from organisms across all kingdoms of life and thereby enable analysis of genomic data. Protein annotations are either based on experiments or predicted from protein sequences. Since most sequences have not been experimentally characterized, most available annotations need to be based on predictions. To make as accurate inferences as possible, the GO Consortium's Reference Genome Project is using an explicit evolutionary framework to infer annotations of proteins from a broad set of genomes from experimental annotations in a semi-automated manner. Most components in the pipeline, such as selection of sequences, building multiple sequence alignments and phylogenetic trees, retrieving experimental annotations and depositing inferred annotations, are fully automated. However, the most crucial step in our pipeline relies on software-assisted curation by an expert biologist. This curation tool, Phylogenetic Annotation and INference Tool (PAINT) helps curators to infer annotations among members of a protein family. PAINT allows curators to make precise assertions as to when functions were gained and lost during evolution and record the evidence (e.g. experimentally supported GO annotations and phylogenetic information including orthology) for those assertions. In this article, we describe how we use PAINT to infer protein function in a phylogenetic context with emphasis on its strengths, limitations and guidelines. We also discuss specific examples showing how PAINT annotations compare with those generated by other highly used homology-based methods.
doi:10.1093/bib/bbr042
PMCID: PMC3178059  PMID: 21873635
gene ontology; genome annotation; reference genome; gene function prediction; phylogenetics
14.  The new modern era of yeast genomics: community sequencing and the resulting annotation of multiple Saccharomyces cerevisiae strains at the Saccharomyces Genome Database 
The first completed eukaryotic genome sequence was that of the yeast Saccharomyces cerevisiae, and the Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/) is the original model organism database. SGD remains the authoritative community resource for the S. cerevisiae reference genome sequence and its annotation, and continues to provide comprehensive biological information correlated with S. cerevisiae genes and their products. A diverse set of yeast strains have been sequenced to explore commercial and laboratory applications, and a brief history of those strains is provided. The publication of these new genomes has motivated the creation of new tools, and SGD will annotate and provide comparative analyses of these sequences, correlating changes with variations in strain phenotypes and protein function. We are entering a new era at SGD, as we incorporate these new sequences and make them accessible to the scientific community, all in an effort to continue in our mission of educating researchers and facilitating discovery.
Database URL: http://www.yeastgenome.org/
doi:10.1093/database/bat012
PMCID: PMC3595989  PMID: 23487186
15.  A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea 
Nature  2009;462(7276):1056-1060.
Sequencing of bacterial and archaeal genomes has revolutionized our understanding of the many roles played by microorganisms1. There are now nearly 1,000 completed bacterial and archaeal genomes available2, most of which were chosen for sequencing on the basis of their physiology. As a result, the perspective provided by the currently available genomes is limited by a highly biased phylogenetic distribution3–5. To explore the value added by choosing microbial genomes for sequencing on the basis of their evolutionary relationships, we have sequenced and analysed the genomes of 56 culturable species of Bacteria and Archaea selected to maximize phylogenetic coverage. Analysis of these genomes demonstrated pronounced benefits (compared to an equivalent set of genomes randomly selected from the existing database) in diverse areas including the reconstruction of phylogenetic history, the discovery of new protein families and biological properties, and the prediction of functions for known genes from other organisms. Our results strongly support the need for systematic ‘phylogenomic’ efforts to compile a phylogeny-driven ‘Genomic Encyclopedia of Bacteria and Archaea’ in order to derive maximum knowledge from existing microbial genome data as well as from genome sequences to come.
doi:10.1038/nature08656
PMCID: PMC3073058  PMID: 20033048
16.  Analysis of two large functionally uncharacterized regions in the Methanopyrus kandleri AV19 genome 
BMC Genomics  2003;4:12.
Background
For most sequenced prokaryotic genomes, about a third of the protein coding genes annotated are "orphan proteins", that is, they lack homology to known proteins. These hypothetical genes are typically short and randomly scattered throughout the genome. This trend is seen for most of the bacterial and archaeal genomes published to date.
Results
In contrast we have found that a large fraction of the genes coding for such orphan proteins in the Methanopyrus kandleri AV19 genome occur within two large regions. These genes have no known homologs except from other M. kandleri genes. However, analysis of their lengths, codon usage, and Ribosomal Binding Site (RBS) sequences shows that they are most likely true protein coding genes and not random open reading frames.
Conclusions
Although these regions can be considered as candidates for massive lateral gene transfer, our bioinformatics analysis suggests that this is not the case. We predict many of the organism specific proteins to be transmembrane and belong to protein families that are non-randomly distributed between the regions. Consistent with this, we suggest that the two regions are most likely unrelated, and that they may be integrated plasmids.
doi:10.1186/1471-2164-4-12
PMCID: PMC156604  PMID: 12697059
17.  PEDANT covers all complete RefSeq genomes 
Nucleic Acids Research  2008;37(Database issue):D408-D411.
The PEDANT genome database provides exhaustive annotation of nearly 3000 publicly available eukaryotic, eubacterial, archaeal and viral genomes with more than 4.5 million proteins by a broad set of bioinformatics algorithms. In particular, all completely sequenced genomes from the NCBI's Reference Sequence collection (RefSeq) are covered. The PEDANT processing pipeline has been sped up by an order of magnitude through the utilization of precalculated similarity information stored in the similarity matrix of proteins (SIMAP) database, making it possible to process newly sequenced genomes immediately as they become available. PEDANT is freely accessible to academic users at http://pedant.gsf.de. For programmatic access Web Services are available at http://pedant.gsf.de/webservices.jsp.
doi:10.1093/nar/gkn749
PMCID: PMC2686588  PMID: 18940859
18.  The web server of IBM's Bioinformatics and Pattern Discovery group: 2004 update 
Nucleic Acids Research  2004;32(Web Server issue):W10-W15.
In this report, we provide an update on the services and content which are available on the web server of IBM's Bioinformatics and Pattern Discovery group. The server, which is operational around the clock, provides access to a large number of methods that have been developed and published by the group's members. There is an increasing number of problems that these tools can help tackle; these problems range from the discovery of patterns in streams of events and the computation of multiple sequence alignments, to the discovery of genes in nucleic acid sequences, the identification—directly from sequence—of structural deviations from α-helicity and the annotation of amino acid sequences for antimicrobial activity. Additionally, annotations for more than 130 archaeal, bacterial, eukaryotic and viral genomes are now available on-line and can be searched interactively. The tools and code bundles continue to be accessible from http://cbcsrv.watson.ibm.com/Tspd.html whereas the genomics annotations are available at http://cbcsrv.watson.ibm.com/Annotations/.
doi:10.1093/nar/gkh367
PMCID: PMC441505  PMID: 15215340
19.  Argot2: a large scale function prediction tool relying on semantic similarity of weighted Gene Ontology terms 
BMC Bioinformatics  2012;13(Suppl 4):S14.
Background
Predicting protein function has become increasingly demanding in the era of next generation sequencing technology. The task to assign a curator-reviewed function to every single sequence is impracticable. Bioinformatics tools, easy to use and able to provide automatic and reliable annotations at a genomic scale, are necessary and urgent. In this scenario, the Gene Ontology has provided the means to standardize the annotation classification with a structured vocabulary which can be easily exploited by computational methods.
Results
Argot2 is a web-based function prediction tool able to annotate nucleic or protein sequences from small datasets up to entire genomes. It accepts as input a list of sequences in FASTA format, which are processed using BLAST and HMMER searches vs UniProKB and Pfam databases respectively; these sequences are then annotated with GO terms retrieved from the UniProtKB-GOA database and the terms are weighted using the e-values from BLAST and HMMER. The weighted GO terms are processed according to both their semantic similarity relations described by the Gene Ontology and their associated score. The algorithm is based on the original idea developed in a previous tool called Argot. The entire engine has been completely rewritten to improve both accuracy and computational efficiency, thus allowing for the annotation of complete genomes.
Conclusions
The revised algorithm has been already employed and successfully tested during in-house genome projects of grape and apple, and has proven to have a high precision and recall in all our benchmark conditions. It has also been successfully compared with Blast2GO, one of the methods most commonly employed for sequence annotation. The server is freely accessible at http://www.medcomp.medicina.unipd.it/Argot2.
doi:10.1186/1471-2105-13-S4-S14
PMCID: PMC3314586  PMID: 22536960
20.  BLANNOTATOR: enhanced homology-based function prediction of bacterial proteins 
BMC Bioinformatics  2012;13:33.
Background
Automated function prediction has played a central role in determining the biological functions of bacterial proteins. Typically, protein function annotation relies on homology, and function is inferred from other proteins with similar sequences. This approach has become popular in bacterial genomics because it is one of the few methods that is practical for large datasets and because it does not require additional functional genomics experiments. However, the existing solutions produce erroneous predictions in many cases, especially when query sequences have low levels of identity with the annotated source protein. This problem has created a pressing need for improvements in homology-based annotation.
Results
We present an automated method for the functional annotation of bacterial protein sequences. Based on sequence similarity searches, BLANNOTATOR accurately annotates query sequences with one-line summary descriptions of protein function. It groups sequences identified by BLAST into subsets according to their annotation and bases its prediction on a set of sequences with consistent functional information. We show the results of BLANNOTATOR's performance in sets of bacterial proteins with known functions. We simulated the annotation process for 3090 SWISS-PROT proteins using a database in its state preceding the functional characterisation of the query protein. For this dataset, our method outperformed the five others that we tested, and the improved performance was maintained even in the absence of highly related sequence hits. We further demonstrate the value of our tool by analysing the putative proteome of Lactobacillus crispatus strain ST1.
Conclusions
BLANNOTATOR is an accurate method for bacterial protein function prediction. It is practical for genome-scale data and does not require pre-existing sequence clustering; thus, this method suits the needs of bacterial genome and metagenome researchers. The method and a web-server are available at http://ekhidna.biocenter.helsinki.fi/poxo/blannotator/.
doi:10.1186/1471-2105-13-33
PMCID: PMC3386020  PMID: 22335941
21.  A proteogenomic analysis of Shigella flexneri using 2D LC-MALDI TOF/TOF 
BMC Genomics  2011;12:528.
Background
New strategies for high-throughput sequencing are constantly appearing, leading to a great increase in the number of completely sequenced genomes. Unfortunately, computational genome annotation is out of step with this progress. Thus, the accurate annotation of these genomes has become a bottleneck of knowledge acquisition.
Results
We exploited a proteogenomic approach to improve conventional genome annotation by integrating proteomic data with genomic information. Using Shigella flexneri 2a as a model, we identified total 823 proteins, including 187 hypothetical proteins. Among them, three annotated ORFs were extended upstream through comprehensive analysis against an in-house N-terminal extension database. Two genes, which could not be translated to their full length because of stop codon 'mutations' induced by genome sequencing errors, were revised and annotated as fully functional genes. Above all, seven new ORFs were discovered, which were not predicted in S. flexneri 2a str.301 by any other annotation approaches. The transcripts of four novel ORFs were confirmed by RT-PCR assay. Additionally, most of these novel ORFs were overlapping genes, some even nested within the coding region of other known genes.
Conclusions
Our findings demonstrate that current Shigella genome annotation methods are not perfect and need to be improved. Apart from the validation of predicted genes at the protein level, the additional features of proteogenomic tools include revision of annotation errors and discovery of novel ORFs. The complementary dataset could provide more targets for those interested in Shigella to perform functional studies.
doi:10.1186/1471-2164-12-528
PMCID: PMC3219829  PMID: 22032405
22.  PUMA2—grid-based high-throughput analysis of genomes and metabolic pathways 
Nucleic Acids Research  2005;34(Database issue):D369-D372.
The PUMA2 system (available at ) is an interactive, integrated bioinformatics environment for high-throughput genetic sequence analysis and metabolic reconstructions from sequence data. PUMA2 provides a framework for comparative and evolutionary analysis of genomic data and metabolic networks in the context of taxonomic and phenotypic information. Grid infrastructure is used to perform computationally intensive tasks. PUMA2 currently contains precomputed analysis of 213 prokaryotic, 22 eukaryotic, 650 mitochondrial and 1493 viral genomes and automated metabolic reconstructions for >200 organisms. Genomic data is annotated with information integrated from >20 sequence, structural and metabolic databases and ontologies. PUMA2 supports both automated and interactive expert-driven annotation of genomes, using a variety of publicly available bioinformatics tools. It also contains a suite of unique PUMA2 tools for automated assignment of gene function, evolutionary analysis of protein families and comparative analysis of metabolic pathways. PUMA2 allows users to submit batch sequence data for automated functional analysis and construction of metabolic models. The results of these analyses are made available to the users in the PUMA2 environment for further interactive sequence analysis and annotation.
doi:10.1093/nar/gkj095
PMCID: PMC1347457  PMID: 16381888
23.  The UCSC Archaeal Genome Browser 
Nucleic Acids Research  2005;34(Database issue):D407-D410.
As more archaeal genomes are sequenced, effective research and analysis tools are needed to integrate the diverse information available for any given locus. The feature-rich UCSC Genome Browser, created originally to annotate the human genome, can be applied to any sequenced organism. We have created a UCSC Archaeal Genome Browser, available at , currently with 26 archaeal genomes. It displays G/C content, gene and operon annotation from multiple sources, sequence motifs (promoters and Shine-Dalgarno), microarray data, multi-genome alignments and protein conservation across phylogenetic and habitat categories. We encourage submission of new experimental and bioinformatic analysis from contributors. The purpose of this tool is to aid biological discovery and facilitate greater collaboration within the archaeal research community.
doi:10.1093/nar/gkj134
PMCID: PMC1347496  PMID: 16381898
24.  Gene-oriented ortholog database: a functional comparison platform for orthologous loci 
The accumulation of complete genomic sequences enhances the need for functional annotation. Associating existing functional annotation of orthologs can speed up the annotation process and even examine the existing annotation. However, current protein sequence-based ortholog databases provide ambiguous and incomplete orthology in eukaryotes. It is because that isoforms, derived by alternative splicing (AS), often share higher sequence similarity to interfere the sequence-based identification. Gene-Oriented Ortholog Database (GOOD) employs genomic locations of transcripts to cluster AS-derived isoforms prior to ortholog delineation to eliminate the interference from AS. From the gene-oriented presentation, isoforms can be clearly associated to their genes to provide comprehensive ortholog information and further be discriminated from paralogs. Aside from, displaying clusters of isoforms between orthologous genes can present the evolution variation at the transcription level. Based on orthology, GOOD additionally comprises functional annotation from the Gene Ontology (GO) database. However, there exist redundant annotations, both parent and child terms assigned to the same gene, in the GO database. It is difficult to precisely draw the numerical comparison of term counts between orthologous genes annotated with redundant terms. Instead of the description only, GOOD further provides the GO graphs to reveal hierarchical-like relationships among divergent functionalities. Therefore, the redundancy of GO terms can be examined, and the context among compared terms is more comprehensive. In sum, GOOD can improve the interpretation in the molecular function from experiments in the model organism and provide clear comparative genomic annotation across organisms.
Database URL: http://goods.ibms.sinica.edu.tw/goods/
doi:10.1093/database/baq002
PMCID: PMC2860896  PMID: 20428317
25.  HaloWeb: the haloarchaeal genomes database 
Saline Systems  2010;6:12.
Background
Complete genome sequencing together with post-genomic studies provide the opportunity for a comprehensive 'systems biology' understanding of model organisms. For maximum effectiveness, an integrated database containing genomic, transcriptomic, and proteomic data is necessary.
Description
To improve data access and facilitate functional genomic studies on haloarchaea in our laboratory, a dedicated database and website, named HaloWeb, was developed. It incorporates all finished and publicly released haloarchaeal genomes, including gene, protein and RNA sequences and annotation data, as well as other features such as insertion element sequences. The HaloWeb database was designed for easy data access and mining, and includes tools for tasks such as genome map generation, sequence extraction, and sequence editing. Popular resources at other sites, e.g., NCBI PubMed and BLAST, COG and KOG protein clusters, KEGG pathways, and GTOP structures were dynamically linked. The HaloWeb site is located at http://halo4.umbi.umd.edu, and at a mirror site, http://halo5.umbi.umd.edu, with all public genomic data and NCBI, KEGG, and GTOP links available for use by the academic community. The database is curated and updated on a regular basis.
Conclusions
The HaloWeb site includes all completely sequenced haloarchaeal genomes from public databases. It is currently being used as a tool for comparative genomics, including analysis of gene and genome structure, organization, and function. The database and website are up-to-date resources for researchers worldwide.
doi:10.1186/1746-1448-6-12
PMCID: PMC3023673  PMID: 21192823

Results 1-25 (816659)