Search tips
Search criteria

Results 1-25 (1065608)

Clipboard (0)

Related Articles

1.  Consistency of genetic inheritance mode and heritability patterns of triglyceride vs. high density lipoprotein cholesterol ratio in two Taiwanese family samples 
BMC Genetics  2003;4:7.
Triglyceride/HDL cholesterol ratio (TG/HDL-C) is considered as a risk factor for cardiovascular events. Genetic components were important in controlling the variation in western countries. But the mode of inheritance and family aggregation patterns were still unknown among Asian-Pacific countries. This study, based on families recruited from community and hospital, is aimed to investigate the mode of inheritance, heritability and shared environmental factors in controlling TG/HDL-C.
Two populations, one from community-based families (n = 988, 894 parent-offspring and 453 sibling pairs) and the other from hospital-based families (n = 1313, 76 parent-offspring and 52 sibling pairs) were sampled. The population in hospital-based families had higher mean age values than community-based families (54.7 vs. 34.0). Logarithmic transformed TG/ HDL-C values, after adjusted by age, gender and body mass index, were for genetic analyses. Significant parent-offspring and sibling correlations were also found in both samples. The parent-offspring correlation coefficient was higher in the hospital-based families than in the community-based families. Genetic heritability was higher in community-based families (0.338 ± 0.114, p = 0.002), but the common shared environmental factor was higher in hospital-based families (0.203 ± 0.042, p < 0.001). Commingling analyses showed that more than one-component distribution models were the best-fit models to explain the variance in both populations. Complex segregation analysis by regressive models revealed that in both samples the best-fit model of TG/HDL-C was the model of environmental effects plus familial correlation, in which significant parent-offspring and sibling correlations were demonstrated. Models of major gene effects were rejected in both samples.
Variations of TG/HDL-C in the normal ranges were likely to be influenced by multiple factors, including environmental and genetic components. Higher genetic factors were proved in younger community-based families than in older hospital-based families.
PMCID: PMC155683  PMID: 12710891
2.  Genetic Heterogeneity of Oesophageal Cancer in High-Incidence Areas of Southern and Northern China 
PLoS ONE  2010;5(3):e9668.
Background and Objective
Oesophageal cancer is one of the most common and deadliest cancers worldwide. Our previous population-based study reported a high prevalence of oesophageal cancer in Chaoshan, Guangdong Province, China. Ancestors of the Chaoshan population migrated from the Taihang Mountain region of north-central China, which is another high-incidence area for oesophageal cancer. The purpose of the present study was to obtain evidence of inherited susceptibility to oesophageal cancer in the Chaoshan population, with reference to the Taihang Mountain population, with the eventual goal of molecular identification of the disease genes.
We conducted familial correlation, commingling, and complex segregation analyses of 224 families from the Chaoshan population and 403 families from the Taihang population using the FPMM program of S.A.G.E. version 5.3.0. A second analysis focused on specific families having large numbers of affected individuals or early onset of the disease.
For the general population, moderate sib-sib correlation was noticed for esophageal cancer. Additionally, brother-brother correlation was even higher. Commingling analyses indicated that a three-component distribution model best accounts for the variation in age of onset of oesophageal cancer, and that a multifactorial model provides the best fit to the general population data. An autosomal dominant mode and a dominant or recessive major gene with polygenic inheritance were found to be the best models of inherited susceptibility to oesophageal cancer in some large families.
The current results provide evidence for inherited susceptibility to oesophageal cancer in certain high-risk groups in China, and support efforts to identify the susceptibility genes.
PMCID: PMC2837742  PMID: 20300624
3.  Segregation analysis of apolipoprotein A1 levels in families of adolescents: A community-based study in Taiwan 
BMC Genetics  2006;7:4.
Apolipoprotein (Apo) A1 is a protective factor for cardiovascular events. This study aimed to perform complex segregation analyses of Apo A1 levels in families of adolescents systematically ascertained from the junior high school students in a rural community. Both siblings and parents of the adolescent probands were recruited for the study. Apo A1 concentrations were measured by turbidimetric immunoassay methods. After adjustment for gender, age, body mass index, smoking and drinking status, residual values of Apo A1 were subjected to subsequent analyses.
Significant mother-father and parent-offspring correlations were found. Commingling analyses indicated that a four-component distribution model was needed to account for the Apo A1 variation. Segregation analysis using regressive models revealed that the best-fit model of Apo A1 was a model of environmental effect plus familial correlation (heritability = 23.9%), in which a significant mother-father correlation existed. Models containing major gene effect could be rejected.
These results suggest that variations of Apo A1 levels in the normal range, especially during adolescence, are likely to be influenced by multiple factors without significant contribution from major genes.
PMCID: PMC1360683  PMID: 16423305
4.  Heritability of left ventricular structure and function in Caucasian families 
The aim of this study was to investigate the heritability as well as genetic and environmental correlations of left ventricular (LV) structural and functional traits in complex pedigrees of a Caucasian population.
Methods and results
We randomly recruited 459 white European subjects from 52 families (50% women; mean age 45 years). LV structure was measured by M-mode and 2D echocardiography and LV function was measured by conventional Doppler and tissue Doppler imaging (TDI). Other measurements included blood pressure, anthropometric, and biochemical measurements. We estimated the heritability of LV traits while adjusting for covariables, including sex, age, body height and weight, systolic and diastolic blood pressures, and heart rate. With full adjustment, heritability of LV mass was 0.23 (P= 0.025). The TDI-derived mitral annular velocities Ea and Aa showed moderate heritability (h2= 0.36 and 0.53, respectively), whereas the mitral inflow A peak had weak heritability (h2 = 0.25) and the E peak was not heritable (h2 = 0.11). We partitioned the total phenotypic correlation when it reached significance, into a genetic and an environmental component. The genetic correlations were 0.61 between the E and Ea peaks and 0.90 between the A and Aa peaks.
Our study demonstrated moderate heritability for LV mass as well as the mitral annular Ea and Aa peaks. We also found significant genetic correlations between the E and Ea peaks and between the A and Aa peaks. Our current findings support the ongoing research to map and detect genetic variants that contribute to the variation in LV mass and other LV structural and functional phenotypes.
PMCID: PMC3106286  PMID: 21398654
Echocardiography; Heritability; Left ventricular phenotypes; Population science
5.  Human metabolic profiles are stably controlled by genetic and environmental variation 
A comprehensive variation map of the human metabolome identifies genetic and stable-environmental sources as major drivers of metabolite concentrations. The data suggest that sample sizes of a few thousand are sufficient to detect metabolite biomarkers predictive of disease.
We designed a longitudinal twin study to characterize the genetic, stable-environmental, and longitudinally fluctuating influences on metabolite concentrations in two human biofluids—urine and plasma—focusing specifically on the representative subset of metabolites detectable by 1H nuclear magnetic resonance (1H NMR) spectroscopy.We identified widespread genetic and stable-environmental influences on the (urine and plasma) metabolomes, with (30 and 42%) attributable on average to familial sources, and (47 and 60%) attributable to longitudinally stable sources.Ten of the metabolites annotated in the study are estimated to have >60% familial contribution to their variation in concentration.Our findings have implications for the design and interpretation of 1H NMR-based molecular epidemiology studies. On the basis of the stable component of variation quantified in the current paper, we specified a model of disease association under which we inferred that sample sizes of a few thousand should be sufficient to detect disease-predictive metabolite biomarkers.
Metabolites are small molecules involved in biochemical processes in living systems. Their concentration in biofluids, such as urine and plasma, can offer insights into the functional status of biological pathways within an organism, and reflect input from multiple levels of biological organization—genetic, epigenetic, transcriptomic, and proteomic—as well as from environmental and lifestyle factors. Metabolite levels have the potential to indicate a broad variety of deviations from the ‘normal' physiological state, such as those that accompany a disease, or an increased susceptibility to disease. A number of recent studies have demonstrated that metabolite concentrations can be used to diagnose disease states accurately. A more ambitious goal is to identify metabolite biomarkers that are predictive of future disease onset, providing the possibility of intervention in susceptible individuals.
If an extreme concentration of a metabolite is to serve as an indicator of disease status, it is usually important to know the distribution of metabolite levels among healthy individuals. It is also useful to characterize the sources of that observed variation in the healthy population. A proportion of that variation—the heritable component—is attributable to genetic differences between individuals, potentially at many genetic loci. An effective, molecular indicator of a heritable, complex disease is likely to have a substantive heritable component. Non-heritable biological variation in metabolite concentrations can arise from a variety of environmental influences, such as dietary intake, lifestyle choices, general physical condition, composition of gut microflora, and use of medication. Variation across a population in stable-environmental influences leads to long-term differences between individuals in their baseline metabolite levels. Dynamic environmental pressures lead to short-term fluctuations within an individual about their baseline level. A metabolite whose concentration changes substantially in response to short-term pressures is relatively unlikely to offer long-term prediction of disease. In summary, the potential suitability of a metabolite to predict disease is reflected by the relative contributions of heritable and stable/unstable-environmental factors to its variation in concentration across the healthy population.
Studies involving twins are an established technique for quantifying the heritable component of phenotypes in human populations. Monozygotic (MZ) twins share the same DNA genome-wide, while dizygotic (DZ) twins share approximately half their inherited DNA, as do ordinary siblings. By comparing the average extent of phenotypic concordance within MZ pairs to that within DZ pairs, it is possible to quantify the heritability of a trait, and also to quantify the familiality, which refers to the combination of heritable and common-environmental effects (i.e., environmental influences shared by twins in a pair). In addition to incorporating twins into the study design, it is useful to quantify the phenotype in some individuals at multiple time points. The longitudinal aspect of such a study allows environmental effects to be decomposed into those that affect the phenotype over the short term and those that exert stable influence.
For the current study, urine and blood samples were collected from a cohort of MZ and DZ twins, with some twins donating samples on two occasions several months apart. Samples were analysed by 1H nuclear magnetic resonance (1H NMR) spectroscopy—an untargeted, discovery-driven technique for quantifying metabolite concentrations in biological samples. The application of 1H NMR to a biological sample creates a spectrum, made up of multiple peaks, with each peak's size quantitatively representing the concentration of its corresponding hydrogen-containing metabolite.
In each biological sample in our study, we extracted a full set of peaks, and thereby quantified the concentrations of all common plasma and urine metabolites detectable by 1H NMR. We developed bespoke statistical methods to decompose the observed concentration variation at each metabolite peak into that originating from familial, individual-environmental, and unstable-environmental sources.
We quantified the variability landscape across all common metabolite peaks in the urine and plasma 1H NMR metabolomes. We annotated a subset of peaks with a total of 65 metabolites; the variance decompositions for these are shown in Figure 1. Ten metabolites' concentrations were estimated to have familial contributions in excess of 60%. The average proportion of stable variation across all extracted metabolite peaks was estimated to be 47% in the urine samples and 60% in the plasma samples; the average estimated familiality was 30% for urine and 42% for plasma. These results comprise the first quantitative variation map of the 1H NMR metabolome. The identification and quantification of substantive widespread stability provides support for the use of these biofluids in molecular epidemiology studies. On the basis of our findings, we performed power calculations for a hypothetical study searching for predictive disease biomarkers among 1H NMR-detectable urine and plasma metabolites. Our calculations suggest that sample sizes of 2000–5000 should allow reliable identification of disease-predictive metabolite concentrations explaining 5–10% of disease risk, while greater sample sizes of 5000–20 000 would be required to identify metabolite concentrations explaining 1–2% of disease risk.
1H Nuclear Magnetic Resonance spectroscopy (1H NMR) is increasingly used to measure metabolite concentrations in sets of biological samples for top-down systems biology and molecular epidemiology. For such purposes, knowledge of the sources of human variation in metabolite concentrations is valuable, but currently sparse. We conducted and analysed a study to create such a resource. In our unique design, identical and non-identical twin pairs donated plasma and urine samples longitudinally. We acquired 1H NMR spectra on the samples, and statistically decomposed variation in metabolite concentration into familial (genetic and common-environmental), individual-environmental, and longitudinally unstable components. We estimate that stable variation, comprising familial and individual-environmental factors, accounts on average for 60% (plasma) and 47% (urine) of biological variation in 1H NMR-detectable metabolite concentrations. Clinically predictive metabolic variation is likely nested within this stable component, so our results have implications for the effective design of biomarker-discovery studies. We provide a power-calculation method which reveals that sample sizes of a few thousand should offer sufficient statistical precision to detect 1H NMR-based biomarkers quantifying predisposition to disease.
PMCID: PMC3202796  PMID: 21878913
biomarker; 1H nuclear magnetic resonance spectroscopy; metabolome-wide association study; top-down systems biology; variance decomposition
6.  Coordinated Genetic Scaling of the Human Eye: Shared Determination of Axial Eye Length and Corneal Curvature 
To examine the extent to which the two major determinants of refractive error, corneal curvature and axial length, are scaled relative to one another by shared genetic variants, along with their relationship to the genetic scaling of height.
Corneal curvature, axial length, and height were measured in unrelated 14- to 17-year-old white European participants of the Avon Longitudinal Study of Parents and Children (ALSPAC; n = 1915) and in unrelated 40- to 80-year-old participants of the Singapore Chinese Eye Study (SCES; n = 1642). Univariate and bivariate heritability analyses were performed with methods that avoid confounding by common family environment, using information solely from genome-wide high-density genotypes.
In ALSPAC subjects, axial length, corneal curvature, and height had similar lower-bound heritability estimates: axial length, h2 = 0.46 (SE = 0.16, P = 0.002); corneal curvature, h2 = 0.42 (SE = 0.16, P = 0.004); height, h2 = 0.48 (SE = 0.17, P = 0.002). The corresponding estimates in the SCES were 0.79 (SE = 0.18, P < 0.001), 0.35 (SE = 0.20, P = 0.036), and 0.31 (SE = 0.20, P = 0.061), respectively. The genetic correlation between corneal curvature and axial length was 0.69 (SE = 0.17, P = 0.019) for ALSPAC participants and 0.64 (SE = 0.22, P = 0.003) for SCES participants. In the subset of 1478 emmetropic ALSPAC individuals, the genetic correlation was 0.85 (SE = 0.12, P = 0.008).
These results imply that coordinated scaling of ocular component dimensions is largely achieved by hundreds to thousands of common genetic variants, each with a small pleiotropic effect. Furthermore, genome-wide association studies (GWAS) for either axial length or corneal curvature are likely to identify variants controlling overall eye size when using discovery cohorts dominated by emmetropes, but trait-specific variants in discovery cohorts dominated by ametropes.
Analyses of high-density genetic markers distributed across the genomes of 1915 European teenagers and 1642 Chinese adults suggested that commonly occurring, additively acting genetic variants largely codetermine corneal curvature and axial length, especially in emmetropes.
PMCID: PMC3626516  PMID: 23385790
7.  LINE-1 methylation is inherited in familial testicular cancer kindreds 
BMC Medical Genetics  2010;11:77.
Testicular germ cell tumors (TGCT) are the most frequent cancers among young men. There is a clear familial component to TGCT etiology, but no high-penetrance susceptibility gene has been identified. Epigenetic aberrations of the genome represent an alternative mechanism for cancer susceptibility; and, studies suggest that epigenetic changes that influence cancer risk can be inherited through the germline. Global DNA hypomethylation has been associated with the risk of cancers of the bladder and head/neck.
We performed a pilot study of global methylation at long interspersed nuclear elements-1 (LINE-1) in peripheral blood DNA isolated from 466 family members of 101 multiple-case testicular cancer families.
Investigating the correlation of LINE-1 methylation levels among parent-child pairs independent of affection status (n = 355) revealed a strong positive association only between mother-daughter (r = 0.48, P = <0.001) and father-daughter pairs (r = 0.31, P = 0.02), suggesting gender-specific inheritance of methylation. Incorporating cancer status, we observed a strong correlation in LINE-1 methylation levels only among affected father-affected son pairs (r = 0.49, P = 0.03). There was a marginally significant inverse association between lower LINE-1 methylation levels and increased TGCT risk, compared with healthy male relatives (P = 0.049).
Our data suggest that heritability of LINE-1 methylation may be gender-specific. Further, the strong correlation between LINE-1 methylation levels among affected father-affected son pairs suggests that transgenerational inheritance of an epigenetic event may be associated with disease risk. Larger studies are needed to clarify these preliminary observations.
PMCID: PMC2880977  PMID: 20478068
8.  Novel quantitative trait locus is mapped to chromosome 12p11 for left ventricular mass in Dominican families: the Family Study of Stroke Risk and Carotid Atherosclerosis 
BMC Medical Genetics  2009;10:74.
Left ventricular mass (LVM) is an important risk factor for stroke and vascular disease. The genetic basis of LVM is unclear although a high heritability has been suggested. We sought to map quantitative trait loci (QTL) for LVM using large Dominican families.
Probands were selected from Dominican subjects of the population-based Northern Manhattan Study (NOMAS). LVM was measured by transthoracic echocardiography. A set of 405 microsatellite markers was used to screen the whole genome among 1360 subjects from 100 Dominican families who had complete phenotype data and DNA available. A polygenic covariate screening was run to identify the significant covariates. Variance components analysis was used to estimate heritability and to detect evidence for linkage, after adjusting for significant risk factors. Ordered-subset Analysis (OSA) was conducted to identify a more homogeneous subset for stratification analysis.
LVM had a heritability of 0.58 in the studied population (p < 0.0001). The most significant evidence for linkage was found at chromosome 12p11 (MLOD = 3.11, empirical p = 0.0003) with peak marker at D12S1042. This linkage was significantly increased in a subset of families with the high average waist circumference (MLOD = 4.45, p = 0.0045 for increase in evidence for linkage).
We mapped a novel QTL near D12S1042 for LVM in Dominicans. Enhanced linkage evidence in families with larger waist circumference suggests that gene(s) residing within the QTL interact(s) with abdominal obesity to contribute to phenotypic variation of LVM. Suggestive evidence for linkage (LOD = 1.99) has been reported at the same peak marker for left ventricular geometry in a White population from the HyperGEN study, underscoring the importance of this QTL for left ventricular phenotype. Further fine mapping and validation studies are warranted to identify the underpinning genes.
PMCID: PMC2724377  PMID: 19627612
9.  Single-Tissue and Cross-Tissue Heritability of Gene Expression Via Identity-by-Descent in Related or Unrelated Individuals 
PLoS Genetics  2011;7(2):e1001317.
Family studies of individual tissues have shown that gene expression traits are genetically heritable. Here, we investigate cis and trans components of heritability both within and across tissues by applying variance-components methods to 722 Icelanders from family cohorts, using identity-by-descent (IBD) estimates from long-range phased genome-wide SNP data and gene expression measurements for ∼19,000 genes in blood and adipose tissue. We estimate the proportion of gene expression heritability attributable to cis regulation as 37% in blood and 24% in adipose tissue. Our results indicate that the correlation in gene expression measurements across these tissues is primarily due to heritability at cis loci, whereas there is little sharing of trans regulation across tissues. One implication of this finding is that heritability in tissues composed of heterogeneous cell types is expected to be more dominated by cis regulation than in tissues composed of more homogeneous cell types, consistent with our blood versus adipose results as well as results of previous studies in lymphoblastoid cell lines. Finally, we obtained similar estimates of the cis components of heritability using IBD between unrelated individuals, indicating that transgenerational epigenetic inheritance does not contribute substantially to the “missing heritability” of gene expression in these tissue types.
Author Summary
An important goal in biology is to understand how genotype affects gene expression. Because gene expression varies across tissues, the relationship between genotype and gene expression may be tissue-specific. In this study, we used heritability approaches to study the regulation of gene expression in two tissue types, blood and adipose tissue, as well as the regulation of gene expression that is shared across these tissues. Heritability can be partitioned into cis and trans effects by assessing identity-by-descent (IBD) at the genomic location close to the expressed gene or genome-wide, respectively, and applying variance-components methods to partition the heritability of each gene. We estimated the proportion of gene expression heritability explained by cis regulation as 37% in blood and 24% in adipose tissue. Notably, the heritability shared across tissue types was primarily due to cis regulation. Thus, the relative contribution of cis versus trans regulation is expected to increase with the number of cell types present in the tissue being assayed, just as observed in our study and in a comparison to previous work on lymphoblastoid cell lines (LCL). We specifically ruled out a substantial contribution of transgenerational epigenetic inheritance to heritability of gene expression in these cohorts by repeating our heritability analyses using segments shared IBD in distantly related Icelanders.
PMCID: PMC3044684  PMID: 21383966
10.  Variability in the Heritability of Body Mass Index: A Systematic Review and Meta-Regression 
Evidence for a major role of genetic factors in the determination of body mass index (BMI) comes from studies of related individuals. Despite consistent evidence for a heritable component of BMI, estimates of BMI heritability vary widely between studies and the reasons for this remain unclear. While some variation is natural due to differences between populations and settings, study design factors may also explain some of the heterogeneity. We performed a systematic review that identified 88 independent estimates of BMI heritability from twin studies (total 140,525 twins) and 27 estimates from family studies (42,968 family members). BMI heritability estimates from twin studies ranged from 0.47 to 0.90 (5th/50th/95th centiles: 0.58/0.75/0.87) and were generally higher than those from family studies (range: 0.24–0.81; 5th/50th/95th centiles: 0.25/0.46/0.68). Meta-regression of the results from twin studies showed that BMI heritability estimates were 0.07 (P = 0.001) higher in children than in adults; estimates increased with mean age among childhood studies (+0.012/year, P = 0.002), but decreased with mean age in adult studies (−0.002/year, P = 0.002). Heritability estimates derived from AE twin models (which assume no contribution of shared environment) were 0.12 higher than those from ACE models (P < 0.001), whilst lower estimates were associated with self reported versus DNA-based determination of zygosity (−0.04, P = 0.02), and with self reported versus measured BMI (−0.05, P = 0.03). Although the observed differences in heritability according to aspects of study design are relatively small, together, the above factors explained 47% of the heterogeneity in estimates of BMI heritability from twin studies. In summary, while some variation in BMI heritability is expected due to population-level differences, study design factors explained nearly half the heterogeneity reported in twin studies. The genetic contribution to BMI appears to vary with age and may have a greater influence during childhood than adult life.
PMCID: PMC3355836  PMID: 22645519
body mass index; twin study; family study; heritability
11.  Using Extended Genealogy to Estimate Components of Heritability for 23 Quantitative and Dichotomous Traits 
PLoS Genetics  2013;9(5):e1003520.
Important knowledge about the determinants of complex human phenotypes can be obtained from the estimation of heritability, the fraction of phenotypic variation in a population that is determined by genetic factors. Here, we make use of extensive phenotype data in Iceland, long-range phased genotypes, and a population-wide genealogical database to examine the heritability of 11 quantitative and 12 dichotomous phenotypes in a sample of 38,167 individuals. Most previous estimates of heritability are derived from family-based approaches such as twin studies, which may be biased upwards by epistatic interactions or shared environment. Our estimates of heritability, based on both closely and distantly related pairs of individuals, are significantly lower than those from previous studies. We examine phenotypic correlations across a range of relationships, from siblings to first cousins, and find that the excess phenotypic correlation in these related individuals is predominantly due to shared environment as opposed to dominance or epistasis. We also develop a new method to jointly estimate narrow-sense heritability and the heritability explained by genotyped SNPs. Unlike existing methods, this approach permits the use of information from both closely and distantly related pairs of individuals, thereby reducing the variance of estimates of heritability explained by genotyped SNPs while preventing upward bias. Our results show that common SNPs explain a larger proportion of the heritability than previously thought, with SNPs present on Illumina 300K genotyping arrays explaining more than half of the heritability for the 23 phenotypes examined in this study. Much of the remaining heritability is likely to be due to rare alleles that are not captured by standard genotyping arrays.
Author Summary
Phenotype is a function of a genome and its environment. Heritability is the fraction of variation in a phenotype determined by genetic factors in a population. Current methods to estimate heritability rely on the phenotypic correlations of closely related individuals and are potentially upwardly biased, due to the impact of epistasis and shared environment. We develop new methods to estimate heritability over both closely and distantly related individuals. By examining the phenotypic correlation among different types of related individuals such as siblings, half-siblings, and first cousins, we show that shared environment is the primary determinant of inflated estimates of heritability. For a large number of phenotypes, it is not known how much of the heritability is explained by SNPs included on current genotyping platforms. Existing methods to estimate this component of heritability are biased in the presence of related individuals. We develop a method that permits the inclusion of both closely and distantly related individuals when estimating heritability explained by genotyped SNPs and use it to make estimates for 23 medically relevant phenotypes. These estimates can be used to increase our understanding of the distribution and frequency of functionally relevant variants and thereby inform the design of future studies.
PMCID: PMC3667752  PMID: 23737753
12.  Modest familial risks for multiple sclerosis: a registry-based study of the population of Sweden 
Brain  2014;137(3):770-778.
In a study based on 96% of the roughly 28,000 patients with multiple sclerosis (MS) in Sweden, Westerlind et al. report relative and absolute MS risks for relatives of patients. Risks were lower than most of those previously reported, with an MS sibling risk seven times that of randomly selected controls.
Data on familial recurrence rates of complex diseases such as multiple sclerosis give important hints to aetiological factors such as the importance of genes and environment. By linking national registries, we sought to avoid common limitations of clinic-based studies such as low numbers, poor representation of the population and selection bias. Through the Swedish Multiple Sclerosis Registry and a nationwide hospital registry, a total of 28 396 patients with multiple sclerosis were identified. We used the national Multi-Generation Registry to identify first and second degree relatives as well as cousins, and the Swedish Twin Registry to identify twins of patients with multiple sclerosis. Crude and age corrected familial risks were estimated for cases and found to be in the same range as previously published figures. Matched population-based controls were used to calculate relative risks, revealing lower estimates of familial multiple sclerosis risks than previously reported, with a sibling recurrence risk (λs = 7.1; 95% confidence interval: 6.42–7.86). Surprisingly, despite a well-established lower prevalence of multiple sclerosis amongst males, the relative risks were equal among maternal and paternal relations. A previously reported increased risk in maternal relations could thus not be replicated. An observed higher transmission rate from fathers to sons compared with mothers to sons suggested a higher transmission to offspring from the less prevalent sex; therefore, presence of the so-called ‘Carter effect’ could not be excluded. We estimated the heritability of multiple sclerosis using 74 757 twin pairs with known zygosity, of which 315 were affected with multiple sclerosis, and added information from 2.5 million sibling pairs to increase power. The heritability was estimated to be 0.64 (0.36–0.76), whereas the shared environmental component was estimated to be 0.01 (0.00–0.18). In summary, whereas multiple sclerosis is to a great extent an inherited trait, the familial relative risks may be lower than usually reported.
PMCID: PMC3927700  PMID: 24441172
familial recurrence; multiple sclerosis; familial risk; twin study
13.  Genetic and environmental influences on skeletal muscle phenotypes as a function of age and sex in large, multigenerational families of African heritage 
The aim of this study was to estimate the heritability of and environmental contributions to skeletal muscle phenotypes (appendicular lean mass and calf muscle cross-sectional area) in subjects of African descent and to determine whether heritability estimates are impacted by sex or age. Body composition was measured by dual-energy X-ray absorptiometry and computed tomography in 444 men and women aged 18 yr and older (mean: 43 yr) from eight large, multigenerational Afro-Caribbean families (family size range: 21–112). Using quantitative genetic methods, we estimated heritability and the association of anthropometric, lifestyle, and medical variables with skeletal muscle phenotypes. In the overall group, we estimated the heritability of lean mass and calf muscle cross-sectional area (h2 = 0.18–0.23, P < 0.01) and contribution of environmental factors to these phenotypes (r2 = 0.27– 0.55, P < 0.05). In our age-specific analysis, the heritability of leg lean mass was lower in older vs. younger individuals (h2 = 0.05 vs. 0.23, respectively, P = 0.1). Sex was a significant covariate in our models (P < 0.001), although sex-specific differences in heritability varied depending on the lean mass phenotype analyzed. High genetic correlations (ρG = 0.69–0.81; P < 0.01) between different lean mass measures suggest these traits share a large proportion of genetic components. Our results demonstrate the heritability of skeletal muscle traits in individuals of African heritage and that heritability may differ as a function of sex and age. As the loss of skeletal muscle mass is related to metabolic abnormalities, disability, and mortality in older individuals, further research is warranted to identify specific genetic loci that contribute to these traits in general and in a sex- and age-specific manner.
PMCID: PMC2811418  PMID: 17656630
heritability; lean mass; race; aging
14.  Epidemiology, Heritability and Genetic Linkage of C-Reactive Protein in African-Americans (From the Jackson Heart Study) 
The American journal of cardiology  2008;102(7):835-841.
C-reactive protein (CRP) largely has been studied in white non-Hispanic cohorts. There is limited information on CRP’s range of values, heritability and relation to cardiovascular disease (CVD) risk factors in African Americans. We sought to evaluate the distribution, clinical correlates, heritability and genetic linkage of log-transformed CRP in participants of the middle-aged to elderly African American community-based Jackson Heart Study. The distribution and correlates of CRP were analyzed for the entire study cohort who underwent the first examination (2001–2004). Heritability was estimated for the family cohort nested within the larger Jackson Heart Study (246 families, n=1,317). The relation between CRP and CVD risk factors were tested with multivariable stepwise regression analyses. Heritability was estimated using a variance components method. Linkage analysis was performed using the multipoint variance components approach. The study sample consisted of 4,919 participants (mean age 55±13 years, 63% women); median CRP concentration was 2.7 mg/L. In stepwise models traditional risk factors explained 23.8% of CRP’s variability, with body mass index (BMI, partial R2=13.6%) explaining 57.1% of the variability of CRP due to traditional risk factors. The heritability of CRP (adjusted for age, sex and BMI) was 0.45. The strongest linkage evidence for CRP was observed on chromosome 11 (11p13–11p11.2) with a logarithm of odds score of 2.72. In conclusion, in this large population-based cohort of African Americans, circulating CRP concentration was heritable and associated with several traditional cardiovascular risk factors, particularly BMI.
PMCID: PMC3733442  PMID: 18805107
C-reactive protein; risk factors; genetics; heritability; blood pressure; cholesterol; body mass index; African Americans
15.  Latent common genetic components of obesity traits 
Obesity is rapidly becoming a global epidemic. Unlike many complex human diseases, obesity is defined not just by a single trait or phenotype, but jointly by measures of anthropometry and metabolic status.
We applied maximum likelihood factor analysis to identify common latent factors underlying observed covariance in multiple obesity-related measures. Both the genetic components and the mode of inheritance of the common factors were evaluated. A total of 1775 participants from 590 families for whom measures on obesity-related traits were available were included in this study.
The average age of participants was 37 years, 39% of the participants were obese (body mass index ≥ 30.0 kg/m2) and 26% were overweight (body mass index 25.0 - 29.9 kg/m2). Two latent common factors jointly accounting for over 99% of the correlations among obesity-related traits were identified. Complex segregation analysis of the age and sex-adjusted latent factors provide evidence for a Mendelian mode of inheritance of major genetic effect with heritability estimates of 40.4% and 47.5% for the first and second factors, respectively.
These findings provide a support for multivariate-based approach for investigating pleiotropic effects on obesity-related traits which can be applied in both genetic linkage and association mapping.
PMCID: PMC2830146  PMID: 18936762
African American; Heritability; Latent Genetic Component; Maximum Likelihood Factor Analysis; Obesity Trait; Pleiotropic; Segregation Analysis
16.  Segregation of a Latent High Adiposity Phenotype in Families with a History of Type 2 Diabetes Mellitus Implicates Rare Obesity-Susceptibility Genetic Variants with Large Effects in Diabetes-Related Obesity 
PLoS ONE  2013;8(8):e70435.
We recently reported significantly greater weight gain in non-diabetic healthy subjects with a 1st degree family history (FH+) of type 2 diabetes mellitus (T2DM) than in a matched control group without such history (FH−) during voluntary overfeeding, implying co-inheritance of susceptibilities to T2DM and obesity. We have estimated the extent and mode of inheritance of susceptibility to increased adiposity in FH+.
Normoglycaemic participants were categorised either FH+ (≥1 1st degree relative with T2DM, 50F/30M, age 45±14 (SD) yr) or FH− (71F/51M, age 43±14 yr). Log-transformed anthropometric measurements (height, hip and waist circumferences) and lean, bone and fat mass (Dual Energy X-ray Absorptiometry) data were analysed by rotated Factor Analysis. The age- and gender-adjusted distributions of indices of adiposity in FH+ were assessed by fits to a bimodal model and by relative risk ratios (RR, FH+/FH−) and interpreted in a purely genetic model of FH effects.
The two orthogonal factors extracted, interpretable as Frame and Adiposity accounted for 80% of the variance in the input data. FH+ was associated with significantly higher Adiposity scores (p<0.01) without affecting Frame scores. Adiposity scores in FH+ conformed to a bimodal normal distribution, consistent with dominant expression of major susceptibility genes with 59% (95% CI 40%, 74%) of individuals under the higher mode. Calculated risk allele frequencies were 0.09 (0.02, 0.23) in FH−, 0.36 (0.22, 0.48) in FH+ and 0.62 (0.36, 0.88) in unobserved T2DM-affected family members.
The segregation of Adiposity in T2DM-affected families is consistent with dominant expression of rare risk variants with major effects, which are expressed in over half of FH+ and which can account for most T2DM-associated obesity in our population. The calculated risk allele frequency in FH− suggests that rare genetic variants could also account for a substantial fraction of the prevalent obesity in this society.
PMCID: PMC3737254  PMID: 23950934
17.  Heritability of Nonalcoholic Fatty Liver Disease 
Gastroenterology  2009;136(5):1585-1592.
Background & Aims
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the United States. The etiology is believed to be multi-factorial with a substantial genetic component; however, the heritability of NAFLD is undetermined. Therefore, a familial aggregation study was performed to test the hypothesis that NAFLD is highly heritable.
Overweight children with biopsy-proven NAFLD and overweight children without NAFLD served as probands. Family members were studied including magnetic resonance imaging to quantify liver fat fraction. Fatty liver was defined as a liver fat fraction ≥ 5%. Etiologies for fatty liver other than NAFLD were excluded. Narrow-sense heritability estimates for fatty liver (dichotomous) and fat fraction (continuous) were calculated using variance components analysis adjusted for covariate effects.
Fatty liver was present in 17% of siblings and 37% of parents of overweight children without NAFLD. Fatty liver was significantly more common in siblings (59%) and parents (78%) of children with NAFLD. Liver fat fraction was correlated with body mass index (BMI), although the correlation was significantly stronger for families of children with NAFLD than those without NAFLD. Adjusted for age, sex, race, and BMI, heritability of fatty liver was 1.000 and of liver fat fraction 0.386.
Family members of children with NAFLD should be considered at high risk for NAFLD. These data suggest that familial factors are a major determinant of whether an individual has NAFLD. Studies examining the complex relations between genes and environment in the development and progression of NAFLD are warranted.
PMCID: PMC3397140  PMID: 19208353
magnetic resonance; genetics; family; obesity; fatty liver
18.  Genome-Wide Association Study of Lp-PLA2 Activity and Mass in the Framingham Heart Study 
PLoS Genetics  2010;6(4):e1000928.
Lipoprotein-associated phospholipase A2 (Lp-PLA2) is an emerging risk factor and therapeutic target for cardiovascular disease. The activity and mass of this enzyme are heritable traits, but major genetic determinants have not been explored in a systematic, genome-wide fashion. We carried out a genome-wide association study of Lp-PLA2 activity and mass in 6,668 Caucasian subjects from the population-based Framingham Heart Study. Clinical data and genotypes from the Affymetrix 550K SNP array were obtained from the open-access Framingham SHARe project. Each polymorphism that passed quality control was tested for associations with Lp-PLA2 activity and mass using linear mixed models implemented in the R statistical package, accounting for familial correlations, and controlling for age, sex, smoking, lipid-lowering-medication use, and cohort. For Lp-PLA2 activity, polymorphisms at four independent loci reached genome-wide significance, including the APOE/APOC1 region on chromosome 19 (p = 6×10−24); CELSR2/PSRC1 on chromosome 1 (p = 3×10−15); SCARB1 on chromosome 12 (p = 1×10−8) and ZNF259/BUD13 in the APOA5/APOA1 gene region on chromosome 11 (p = 4×10−8). All of these remained significant after accounting for associations with LDL cholesterol, HDL cholesterol, or triglycerides. For Lp-PLA2 mass, 12 SNPs achieved genome-wide significance, all clustering in a region on chromosome 6p12.3 near the PLA2G7 gene. Our analyses demonstrate that genetic polymorphisms may contribute to inter-individual variation in Lp-PLA2 activity and mass.
Author Summary
Blood levels of lipoprotein-associated phospholipase A2 (Lp-PLA2) show a strong association with atherosclerosis in humans. This enzyme is made by certain cells of the immune system, associates with lipoproteins (HDL and LDL), and is thought to be involved in inflammation. Studies have shown that Lp-PLA2 is a good predictor of cardiovascular disease, independent of HDL and LDL cholesterol levels. This has led to the development of drugs aimed at inhibiting Lp-PLA2 as a way to treat or prevent cardiovascular disease. The activity and mass of Lp-PLA2 are heritable traits, but major genetic determinants have not been explored in a systematic fashion. We examined genetic variants across the human genome to identify genes influencing Lp-PLA2 activity and mass. We studied 6,668 Caucasian subjects from the population-based Framingham Heart Study. Clinical data and genetic data on 550,000 genetic variants were available for association analysis. There was no overlap in the most significantly associated SNPs for activity and mass. We identified four distinct gene regions showing highly significant associations with Lp-PLA2 activity, all of which are known to include genes involved in cholesterol metabolism. The only locus associated with Lp-PLA2 mass was a region harboring PLA2G7, the gene that encodes lipoprotein-associated phospholipase A2.
PMCID: PMC2861686  PMID: 20442857
19.  Body Mass Index Modulates Blood Pressure Heritability: The Family Blood Pressure Program 
American Journal of Hypertension  2013;27(4):610-619.
Candidate gene and twin studies suggest that interactions between body mass index (BMI) and genes contribute to the variability of blood pressure (BP). To determine whether there is evidence for gene–BMI interactions, we investigated the modulation of BP heritability by BMI using 4,153 blacks, 1,538 Asians, 4,013 whites, and 2,199 Hispanic Americans from the Family Blood Pressure Program.
To capture the BP heritability dependence on BMI, we employed a generalized variance components model incorporating linear and Gaussian interactions between BMI and the genetic component. Within each race and network subgroup, we used the Akaike information criterion and likelihood ratio test to select the appropriate interaction function for each BP trait (systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP)) and determine interaction significance, respectively.
BP heritabilities were significantly modified by BMI in the GenNet and SAPPHIRe Networks, which contained the youngest and least-obese participants, respectively. GenNet Whites had unimodal SBP, MAP, and PP heritabilities that peaked between BMI values of 33 and 37kg/m2. The SBP and MAP heritabilities in GenNet Hispanic Americans, as well as the PP heritability in GenNet blacks, were increasing functions of BMI. The DBP and SBP heritabilities in the SAPPHIRe Chinese and Japanese, respectively, were decreasing functions of BMI.
BP heritability differed by BMI in the youngest and least-obese networks, although the shape of this dependence differed by race. Use of nonlinear gene–BMI interactions may enhance BP gene discovery efforts in individuals of European ancestry.
PMCID: PMC3958601  PMID: 24029162
blood pressure; BMI; FBPP; heritability; hypertension; interactions.
20.  Genetic Architecture of Ear Fasciation in Maize (Zea mays) under QTL Scrutiny 
PLoS ONE  2015;10(4):e0124543.
Maize ear fasciation
Knowledge of the genes affecting maize ear inflorescence may lead to better grain yield modeling. Maize ear fasciation, defined as abnormal flattened ears with high kernel row number, is a quantitative trait widely present in Portuguese maize landraces.
Material and Methods
Using a segregating population derived from an ear fasciation contrasting cross (consisting of 149 F2:3 families) we established a two location field trial using a complete randomized block design. Correlations and heritabilities for several ear fasciation-related traits and yield were determined. Quantitative Trait Loci (QTL) involved in the inheritance of those traits were identified and candidate genes for these QTL proposed.
Results and Discussion
Ear fasciation broad-sense heritability was 0.73. Highly significant correlations were found between ear fasciation and some ear and cob diameters and row number traits. For the 23 yield and ear fasciation-related traits, 65 QTL were identified, out of which 11 were detected in both environments, while for the three principal components, five to six QTL were detected per environment. Detected QTL were distributed across 17 genomic regions and explained individually, 8.7% to 22.4% of the individual traits or principal components phenotypic variance. Several candidate genes for these QTL regions were proposed, such as bearded-ear1, branched silkless1, compact plant1, ramosa2, ramosa3, tasselseed4 and terminal ear1. However, many QTL mapped to regions without known candidate genes, indicating potential chromosomal regions not yet targeted for maize ear traits selection.
Portuguese maize germplasm represents a valuable source of genes or allelic variants for yield improvement and elucidation of the genetic basis of ear fasciation traits. Future studies should focus on fine mapping of the identified genomic regions with the aim of map-based cloning.
PMCID: PMC4414412  PMID: 25923975
21.  A Rare Co-Segregation-Mutation in the Insulin Receptor Substrate 1 Gene in One Chinese Family with Ankylosing Spondylitis 
PLoS ONE  2015;10(5):e0126348.
Ankylosing spondylitis (AS; MIM 106300) is a common rheumatic disease with strong genetic components affecting approximately 0.3% of the population. The exact genetic mechanism of AS remains elusive. Our previous study showed that AS could be transmitted in an autosomal dominant inheritance mode and a 6-cM candidate region located on the chromosome 2q36.1-36.3 was mapped in a Chinese family. Mutation screening was conducted within the candidate region in the family and other AS by sequencing, and the novel mutation will be further validated in other AS families, sporadic cases and healthy controls by mass spectrometry. We identified a rare non-synonymous mutation (Arg580Gly) in insulin receptor substrate 1 (IRS1) co-segregated with disease phenotype in patients of the family, which was not found in other AS families, sporadic patients and healthy controls. In the study, we found a rare non-synonymous mutation in IRS1 co-segregation in one Chinese family with AS, which indicated a new candidate disease causative gene for AS.
PMCID: PMC4433214  PMID: 25978640
22.  Genetic epidemiology of left ventricular hypertrophy 
Left ventricular (LV) hypertrophy is a strong independent predictor of increased cardiovascular morbidity and mortality in clinical and population-based samples. Clinical and hemodynamic stimuli to LV hypertrophy induce not only an increase in cardiac mass and wall thickness but also a fundamental reconfiguration of the protein, cellular and molecular components of the myocardium. Several studies have indicated that LV mass is influenced by genetic factors. The substantial heritability (h2) for LV mass in population-based samples of varying ethnicity indicates robust genetic influences on LV hypertrophy. Genome-wide linkage and association studies in diverse populations have been performed to identify genes influencing LV mass, and although several chromosomal regions have been found to be significantly associated with LV mass, the specific genes and functional variants contained in these chromosomal regions have yet to be identified. In addition, multiple studies have tried to link single-nucleotide polymorphisms (SNPs) in regulatory and pathway genes with common forms of LV hypertrophy, but there is little evidence that these genetic variations are functional. Up to this point in time, the results obtained in genetic studies are of limited clinical value. Much of the heritability remains unexplained, the identity of the underlying gene pathways, genes, and functional variants remains unknown, and the promise of genetically-based risk prediction and personalized medicine remain unfulfilled. However, molecular biological technologies continue to improve rapidly, and the long-term potential of sophisticated genetic investigations using these modern genomic technologies, coupled with smart study designs, remains intact. Ultimately, genetic investigations offer much promise for future prevention, early intervention and treatment of this major public health issue.
PMCID: PMC3499934  PMID: 23173100
Left ventricular (LV) hypertrophy; genetic epidemiology; Genome-wide linkage and association studies
23.  Genome-wide association of echocardiographic dimensions, brachial artery endothelial function and treadmill exercise responses in the Framingham Heart Study 
BMC Medical Genetics  2007;8(Suppl 1):S2.
Echocardiographic left ventricular (LV) measurements, exercise responses to standardized treadmill test (ETT) and brachial artery (BA) vascular function are heritable traits that are associated with cardiovascular disease risk. We conducted a genome-wide association study (GWAS) in the community-based Framingham Heart Study.
We estimated multivariable-adjusted residuals for quantitative echocardiography, ETT and BA function traits. Echocardiography residuals were averaged across 4 examinations and included LV mass, diastolic and systolic dimensions, wall thickness, fractional shortening, left atrial and aortic root size. ETT measures (single exam) included systolic blood pressure and heart rate responses during exercise stage 2, and at 3 minutes post-exercise. BA measures (single exam) included vessel diameter, flow-mediated dilation (FMD), and baseline and hyperemic flow responses. Generalized estimating equations (GEE), family-based association tests (FBAT) and variance-components linkage were used to relate multivariable-adjusted trait residuals to 70,987 SNPs (Human 100K GeneChip, Affymetrix) restricted to autosomal SNPs with minor allele frequency ≥0.10, genotype call rate ≥0.80, and Hardy-Weinberg equilibrium p ≥ 0.001.
We summarize results from 17 traits in up to 1238 related middle-aged to elderly men and women. Results of all association and linkage analyses are web-posted at . We confirmed modest-to-strong heritabilities (estimates 0.30–0.52) for several Echo, ETT and BA function traits. Overall, p < 10-5 in either GEE or FBAT models were observed for 21 SNPs (nine for echocardiography, eleven for ETT and one for BA function). The top SNPs associated were (GEE results): LV diastolic dimension, rs1379659 (SLIT2, p = 1.17*10-7); LV systolic dimension, rs10504543 (KCNB2, p = 5.18*10-6); LV mass, rs10498091 (p = 5.68*10-6); Left atrial size, rs1935881 (FAM5C, p = 6.56*10-6); exercise heart rate, rs6847149 (NOLA1, p = 2.74*10-6); exercise systolic blood pressure, rs2553268 (WRN, p = 6.3*10-6); BA baseline flow, rs3814219 (OBFC1, 9.48*10-7), and FMD, rs4148686 (CFTR, p = 1.13*10-5). Several SNPs are reasonable biological candidates, with some being related to multiple traits suggesting pleiotropy. The peak LOD score was for LV mass (4.38; chromosome 5); the 1.5 LOD support interval included NRG2.
In hypothesis-generating GWAS of echocardiography, ETT and BA vascular function in a moderate-sized community-based sample, we identified several SNPs that are candidates for replication attempts and we provide a web-based GWAS resource for the research community.
PMCID: PMC1995617  PMID: 17903301
24.  Familial correlation and aggregation of body mass index and blood pressure in Chinese Han population 
BMC Public Health  2013;13:686.
It remains unclear whether the body mass index (BMI) and blood pressure (BP) profile are clustered within families in Chinese Han population. The aim of this study is to explore familial aggregation and parent-offspring correlations of BMI and blood pressure in Chinese Han population.
6,369 Han nucleus families, consisting of parents and at least one biological adult child who were living together, were enrolled from the nation-wide cross-sectional study (China National Nutrition and Health Survey) which was conducted in 2002, with a total number of 19,107 participants aged 18–64 years (6,369 sets of parents, 4,132 sons and 2,237 daughters). Family aggregation (Intra-class correlations, ICCs) and parent-offspring correlations in BMI, systolic BP (SBP) and diastolic BP (DBP) were estimated using linear mixed effect regression models.
BMI and BP levels in two generations and ICCs of BMI, SBP and DBP varied across the country. Familial aggregation of overweight/obesity was observed in rural area (ICC = 5.4%, p<0.05), and high BP (defined as SBP ≥ 120 mmHg or DBP ≥ 80 mmHg) was more common in low income families (ICC = 4.4%, p<0.05) compared to middle income (ICC = 1.9%) and high income families (ICC = 2.6%). Additionally, offspring with more parents being overweight/obese tend to have higher BMI. The similar trend was found for high BP. However, we did not observe that same-sex parent-offspring correlations of BMI and BP were stronger than the correlations for mother-son or father-daughter.
Our study suggested that familial environments, alongside the impact of genetic factors, could be important non-communicable chronic diseases (NCD) risk factors. Family-based intervention taking both mother and father into account might have great potential in NCD prevention for younger generation.
PMCID: PMC3729501  PMID: 23890201
Body mass index; Blood pressure; Family aggregation; Parent-offspring correlation; Sex-specific
25.  Principal Components of Heritability From Neurocognitive Domains Differ Between Families With Schizophrenia and Control Subjects 
Schizophrenia Bulletin  2012;39(2):464-471.
Objective: Various measures of neurocognitive function show mean differences among individuals with schizophrenia (SZ), their relatives, and population controls. We use eigenvector transformations that maximize heritability of multiple neurocognitive measures, namely principal components of heritability (PCH), and evaluate how they distribute in SZ families and controls. Methods: African-Americans with SZ or schizoaffective disorder (SZA) (n = 514), their relatives (n = 1092), and adult controls (n = 300) completed diagnostic interviews and computerized neurocognitive tests. PCH were estimated from 9 neurocognitive domains. Three PCH, PCH1–PCH3, were modeled to determine if status (SZ, relative, and control), other psychiatric covariates, and education were significant predictors of mean values. A small-scale linkage analysis was also conducted in a subset of the sample. Results: PCH1, PCH2, and PCH3 account for 72% of the genetic variance. PCH1 represents 8 of 9 neurocognitive domains, is most highly correlated with spatial processing and emotion recognition, and has unadjusted heritability of 68%. The means for PCH1 differ significantly among SZ, their relatives, and controls. PCH2, orthogonal to PCH1, is most closely correlated with working memory and has an unadjusted heritability of 45%. Mean PCH2 is different only between SZ families and controls. PCH3 apparently represents a heritable component of neurocognition similar across the 3 diagnostic groups. No significant linkage evidence to PCH1–PCH3 or individual neurocognitive measures was discovered. Conclusions: PCH1 is highly heritable and genetically correlated with SZ. It should prove useful in future genetic analyses. Mean PCH2 differentiates SZ families and controls but not SZ and unaffected family members.
PMCID: PMC3576168  PMID: 22234486
schizophrenia; cognition; heritability; principal components; linkage

Results 1-25 (1065608)