Search tips
Search criteria

Results 1-25 (1006346)

Clipboard (0)

Related Articles

1.  Deletional Protein Engineering Based on Stable Fold 
PLoS ONE  2012;7(12):e51510.
Diversification of protein sequence-structure space is a major concern in protein engineering. Deletion mutagenesis can generate a protein sequence-structure space different from substitution mutagenesis mediated space, but it has not been widely used in protein engineering compared to substitution mutagenesis, because it causes a relatively huge range of structural perturbations of target proteins which often inactivates the proteins. In this study, we demonstrate that, using green fluorescent protein (GFP) as a model system, the drawback of the deletional protein engineering can be overcome by employing the protein structure with high stability. The systematic dissection of N-terminal, C-terminal and internal sequences of GFPs with two different stabilities showed that GFP with high stability (s-GFP), was more tolerant to the elimination of amino acids compared to a GFP with normal stability (n-GFP). The deletion studies of s-GFP enabled us to achieve three interesting variants viz. s-DL4, s-N14, and s-C225, which could not been obtained from n-GFP. The deletion of 191–196 loop sequences led to the variant s-DL4 that was expressed predominantly as insoluble form but mostly active. The s-N14 and s-C225 are the variants without the amino acid residues involving secondary structures around N- and C-terminals of GFP fold respectively, exhibiting comparable biophysical properties of the n-GFP. Structural analysis of the variants through computational modeling study gave a few structural insights that can explain the spectral properties of the variants. Our study suggests that the protein sequence-structure space of deletion mutants can be more efficiently explored by employing the protein structure with higher stability.
PMCID: PMC3519881  PMID: 23240034
2.  N-Myristoyltransferase isozymes exhibit differential specificity for human immunodeficiency virus type 1 Gag and Nef 
The Journal of general virology  2008;89(Pt 1):288-296.
Myristoylation of the human immunodeficiency virus type 1 (HIV-1) proteins Gag and Nef by N-myristoyltransferase (NMT) is a key process in retroviral replication and virulence, yet remains incompletely characterized. Therefore, the roles of the two isozymes, NMT1 and NMT2, in myristoylating Gag and Nef were examined using biochemical and molecular approaches. Fluorescently labelled peptides corresponding to the N terminus of HIV-1 Gag or Nef were myristoylated by recombinant human NMT1 and NMT2. Kinetic analyses indicated that NMT1 and NMT2 had 30- and 130-fold lower Km values for Nef than Gag, respectively. Values for Kcat indicated that, once Gag or Nef binds to the enzyme, myristoylation by NMT1 and NMT2 proceeds at comparable rates. Furthermore, the catalytic efficiencies for the processing of Gag by NMT1 and NMT2 were equivalent. In contrast, NMT2 had approximately 5-fold higher catalytic efficiency for the myristoylation of Nef than NMT1. Competition experiments confirmed that the Nef peptide acts as a competitive inhibitor for the myristoylation of Gag. Experiments using full-length recombinant Nef protein also indicated a lower Km for Nef myristoylation by NMT2 than NMT1. Small interfering RNAs were used to selectively deplete NMT1 and/or NMT2 from HEK293T cells expressing a recombinant Nef–sgGFP fusion protein. Depletion of NMT1 had minimal effect on the intracellular distribution of Nef–sgGFP, whereas, depletion of NMT2 altered distribution to a diffuse, widespread pattern, mimicking that of a myristoylation-deficient mutant of Nef–sgGFP. Together, these findings indicate that Nef is preferentially myristoylated by NMT2, suggesting that selective inhibition of NMT2 may provide a novel means of blocking HIV virulence.
PMCID: PMC2888270  PMID: 18089753
3.  Structural plasticity of green fluorescent protein to amino acid deletions and fluorescence rescue by folding-enhancing mutations 
BMC Biochemistry  2015;16:17.
Green fluorescent protein (GFP) and its derivative fluorescent proteins (FPs) are among the most commonly used reporter systems for studying gene expression and protein interaction in biomedical research. Most commercially available FPs have been optimized for their oligomerization state to prevent potential structural constraints that may interfere with the native function of fused proteins. Other approach to reducing structural constraints may include minimizing the structure of GFPs. Previous studies in an enhanced GFP variant (EGFP) identified a series of deletions that can retain GFP fluorescence. In this study, we interrogated the structural plasticity of a UV-optimized GFP variant (GFPUV) to amino acid deletions, characterized the effects of deletions and explored the feasibility of rescuing the fluorescence of deletion mutants using folding-enhancing mutations.
Transposon mutagenesis was used to screen amino acid deletions in GFP that led to fluorescent and nonfluorescent phenotypes. The fluorescent GFP mutants were characterized for their whole-cell fluorescence and fraction soluble. Fluorescent GFP mutants with internal deletions were purified and characterized for their spectral and folding properties. Folding-ehancing mutations were introduced to deletion mutants to rescue their compromised fluorescence.
We identified twelve amino acid deletions that can retain the fluorescence of GFPUV. Seven of these deletions are either at the N- or C- terminus, while the other five are located at internal helices or strands. Further analysis suggested that the five internal deletions diminished the efficiency of protein folding and chromophore maturation. Protein expression under hypothermic condition or incorporation of folding-enhancing mutations could rescue the compromised fluorescence of deletion mutants. In addition, we generated dual deletion mutants that can retain GFP fluorescence.
Our results suggested that a “size-minimized” GFP may be developed by iterative incorporation of amino acid deletions, followed by fluorescence rescue with folding-enhancing mutations.
Electronic supplementary material
The online version of this article (doi:10.1186/s12858-015-0046-5) contains supplementary material, which is available to authorized users.
PMCID: PMC4513630  PMID: 26206151
Green fluorescent protein (GFP); Transposon mutagenesis; Amino acid deletions; Protein folding; Chromophore maturation
4.  Structure of the red fluorescent protein from a lancelet (Branchiostoma lanceolatum): a novel GYG chromophore covalently bound to a nearby tyrosine 
The crystal structure of the novel red emitting fluorescent protein from lancelet Branchiostoma lanceolatum (Chordata) revealed an unusual five residues cyclic unit comprising Gly58-Tyr59-Gly60 chromophore, the following Phe61 and Tyr62 covalently bound to chromophore Tyr59.
A key property of proteins of the green fluorescent protein (GFP) family is their ability to form a chromophore group by post-translational modifications of internal amino acids, e.g. Ser65-Tyr66-Gly67 in GFP from the jellyfish Aequorea victoria (Cnidaria). Numerous structural studies have demonstrated that the green GFP-like chromophore represents the ‘core’ structure, which can be extended in red-shifted proteins owing to modifications of the protein backbone at the first chromophore-forming position. Here, the three-dimensional structures of green laGFP (λex/λem = 502/511 nm) and red laRFP (λex/λem ≃ 521/592 nm), which are fluorescent proteins (FPs) from the lancelet Branchiostoma lanceolatum (Chordata), were determined together with the structure of a red variant laRFP-ΔS83 (deletion of Ser83) with improved folding. Lancelet FPs are evolutionarily distant and share only ∼20% sequence identity with cnidarian FPs, which have been extensively characterized and widely used as genetically encoded probes. The structure of red-emitting laRFP revealed three exceptional features that have not been observed in wild-type fluorescent proteins from Cnidaria reported to date: (i) an unusual chromophore-forming sequence Gly58-Tyr59-Gly60, (ii) the presence of Gln211 at the position of the conserved catalytic Glu (Glu222 in Aequorea GFP), which proved to be crucial for chromophore formation, and (iii) the absence of modifications typical of known red chromophores and the presence of an extremely unusual covalent bond between the Tyr59 Cβ atom and the hydroxyl of the proximal Tyr62. The impact of this covalent bond on the red emission and the large Stokes shift (∼70 nm) of laRFP was verified by extensive structure-based site-directed mutagenesis.
PMCID: PMC3760133  PMID: 23999308
red fluorescent proteins; GYG chromophore; Branchiostoma lanceolatum; lancelets
5.  Protein Evolution via Amino Acid and Codon Elimination 
PLoS ONE  2010;5(4):e10104.
Global residue-specific amino acid mutagenesis can provide important biological insight and generate proteins with altered properties, but at the risk of protein misfolding. Further, targeted libraries are usually restricted to a handful of amino acids because there is an exponential correlation between the number of residues randomized and the size of the resulting ensemble. Using GFP as the model protein, we present a strategy, termed protein evolution via amino acid and codon elimination, through which simplified, native-like polypeptides encoded by a reduced genetic code were obtained via screening of reduced-size ensembles.
Methodology/Principal Findings
The strategy involves combining a sequential mutagenesis scheme to reduce library size with structurally stabilizing mutations, chaperone complementation, and reduced temperature of gene expression. In six steps, we eliminated a common buried residue, Phe, from the green fluorescent protein (GFP), while retaining activity. A GFP variant containing 11 Phe residues was used as starting scaffold to generate 10 separate variants in which each Phe was replaced individually (in one construct two adjacent Phe residues were changed simultaneously), while retaining varying levels of activity. Combination of these substitutions to generate a Phe-free variant of GFP abolished fluorescence. Combinatorial re-introduction of five Phe residues, based on the activities of the respective single amino acid replacements, was sufficient to restore GFP activity. Successive rounds of mutagenesis generated active GFP variants containing, three, two, and zero Phe residues. These GFPs all displayed progenitor-like fluorescence spectra, temperature-sensitive folding, a reduced structural stability and, for the least stable variants, a reduced steady state abundance.
The results provide strategies for the design of novel GFP reporters. The described approach offers a means to enable engineering of active proteins that lack certain amino acids, a key step towards expanding the functional repertoire of uniquely labeled proteins in synthetic biology.
PMCID: PMC2859931  PMID: 20436666
6.  Random Single Amino Acid Deletion Sampling Unveils Structural Tolerance and the Benefits of Helical Registry Shift on GFP Folding and Structure 
Structure(London, England:1993)  2014;22(6):889-898.
Altering a protein’s backbone through amino acid deletion is a common evolutionary mutational mechanism, but is generally ignored during protein engineering primarily because its effect on the folding-structure-function relationship is difficult to predict. Using directed evolution, enhanced green fluorescent protein (EGFP) was observed to tolerate residue deletion across the breadth of the protein, particularly within short and long loops, helical elements, and at the termini of strands. A variant with G4 removed from a helix (EGFPG4Δ) conferred significantly higher cellular fluorescence. Folding analysis revealed that EGFPG4Δ retained more structure upon unfolding and refolded with almost 100% efficiency but at the expense of thermodynamic stability. The EGFPG4Δ structure revealed that G4 deletion caused a beneficial helical registry shift resulting in a new polar interaction network, which potentially stabilizes a cis proline peptide bond and links secondary structure elements. Thus, deletion mutations and registry shifts can enhance proteins through structural rearrangements not possible by substitution mutations alone.
Graphical Abstract
•Using directed evolution, the impact of amino acid deletion on EGFP is explored•Loops, helices, and strand termini are especially tolerant to amino acid deletion•A deletion mutant that enhances cellular production and fluorescence is identified•Structure reveals that a helical registry shift creates a new polar network
Using directed evolution, Arpino et al. examine the impact of amino acid deletion on EGFP and find that loops, helices, and strand termini are especially tolerant to amino acid deletion. Structural work provides a molecular explanation for this observation.
PMCID: PMC4058518  PMID: 24856363
7.  Hue-shifted monomeric variants of Clavularia cyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging 
BMC Biology  2008;6:13.
In the 15 years that have passed since the cloning of Aequorea victoria green fluorescent protein (avGFP), the expanding set of fluorescent protein (FP) variants has become entrenched as an indispensable toolkit for cell biology research. One of the latest additions to the toolkit is monomeric teal FP (mTFP1), a bright and photostable FP derived from Clavularia cyan FP. To gain insight into the molecular basis for the blue-shifted fluorescence emission we undertook a mutagenesis-based study of residues in the immediate environment of the chromophore. We also employed site-directed and random mutagenesis in combination with library screening to create new hues of mTFP1-derived variants with wavelength-shifted excitation and emission spectra.
Our results demonstrate that the protein-chromophore interactions responsible for blue-shifting the absorbance and emission maxima of mTFP1 operate independently of the chromophore structure. This conclusion is supported by the observation that the Tyr67Trp and Tyr67His mutants of mTFP1 retain a blue-shifted fluorescence emission relative to their avGFP counterparts (that is, Tyr66Trp and Tyr66His). Based on previous work with close homologs, His197 and His163 are likely to be the residues with the greatest contribution towards blue-shifting the fluorescence emission. Indeed we have identified the substitutions His163Met and Thr73Ala that abolish or disrupt the interactions of these residues with the chromophore. The mTFP1-Thr73Ala/His163Met double mutant has an emission peak that is 23 nm red-shifted from that of mTFP1 itself. Directed evolution of this double mutant resulted in the development of mWasabi, a new green fluorescing protein that offers certain advantages over enhanced avGFP (EGFP). To assess the usefulness of mTFP1 and mWasabi in live cell imaging applications, we constructed and imaged more than 20 different fusion proteins.
Based on the results of our mutagenesis study, we conclude that the two histidine residues in close proximity to the chromophore are approximately equal determinants of the blue-shifted fluorescence emission of mTFP1. With respect to live cell imaging applications, the mTFP1-derived mWasabi should be particularly useful in two-color imaging in conjunction with a Sapphire-type variant or as a fluorescence resonance energy transfer acceptor with a blue FP donor. In all fusions attempted, both mTFP1 and mWasabi give patterns of fluorescent localization indistinguishable from that of well-established avGFP variants.
PMCID: PMC2292683  PMID: 18325109
8.  The Formation of Viroplasm-Like Structures by the Rotavirus NSP5 Protein Is Calcium Regulated and Directed by a C-Terminal Helical Domain▿  
Journal of Virology  2007;81(21):11758-11767.
The rotavirus NSP5 protein directs the formation of viroplasm-like structures (VLS) and is required for viroplasm formation within infected cells. In this report, we have defined signals within the C-terminal 21 amino acids of NSP5 that are required for VLS formation and that direct the insolubility and hyperphosphorylation of NSP5. Deleting C-terminal residues of NSP5 dramatically increased the solubility of N-terminally tagged NSP5 and prevented NSP5 hyperphosphorylation. Computer modeling and analysis of the NSP5 C terminus revealed the presence of an amphipathic α-helix spanning 21 C-terminal residues that is conserved among rotaviruses. Proline-scanning mutagenesis of the predicted helix revealed that single-amino-acid substitutions abolish NSP5 insolubility and hyperphosphorylation. Helix-disrupting NSP5 mutations also abolished localization of green fluorescent protein (GFP)-NSP5 fusions into VLS and directly correlate VLS formation with NSP5 insolubility. All mutations introduced into the hydrophobic face of the predicted NSP5 α-helix disrupted VLS formation, NSP5 insolubility, and the accumulation of hyperphosphorylated NSP5 isoforms. Some NSP5 mutants were highly soluble but still were hyperphosphorylated, indicating that NSP5 insolubility was not required for hyperphosphorylation. Expression of GFP containing the last 68 residues of NSP5 at its C terminus resulted in the formation of punctate VLS within cells. Interestingly, GFP-NSP5-C68 was diffusely dispersed in the cytoplasm when calcium was depleted from the medium, and after calcium resupplementation GFP-NSP5-C68 rapidly accumulated into punctate VLS. A potential calcium switch, formed by two tandem pseudo-EF-hand motifs (DxDxD), is present just upstream of the predicted α-helix. Mutagenesis of either DxDxD motif abolished the regulatory effect of calcium on VLS formation and resulted in the constitutive assembly of GFP-NSP5-C68 into punctate VLS. These results reveal specific residues within the NSP5 C-terminal domain that direct NSP5 hyperphosphorylation, insolubility, and VLS formation in addition to defining residues that constitute a calcium-dependent trigger of VLS formation. These studies identify functional determinants within the C terminus of NSP5 that regulate VLS formation and provide a target for inhibiting NSP5-directed VLS functions during rotavirus replication.
PMCID: PMC2168809  PMID: 17699573
9.  Residues of VP26 of Herpes Simplex Virus Type 1 That Are Required for Its Interaction with Capsids 
Journal of Virology  2003;77(1):391-404.
VP26 is the smallest capsid protein and decorates the outer surface of the capsid shell of herpes simplex virus. It is located on the hexons at equimolar amounts with VP5. Its small size (112 amino acids) and high copy number make it an attractive molecule to use as a probe to investigate the complex pattern of capsid protein interactions. An in vitro capsid binding assay and a green fluorescent protein (GFP) localization assay were used to identify VP26 residues important for its interaction with capsids. To test for regions of VP26 that may be essential for binding to capsids, three small in-frame deletion mutations were generated in VP26, Δ18-25, Δ54-60, and Δ93-100. Their designations refer to the amino acids deleted by the mutation. The mutation at the C terminus of the molecule, which encompasses a region of highly conserved residues, abolished binding to the capsid and the localization of GFP to the nucleus in characteristic large puncta. Additional mutations revealed that a region of VP26 spanning from residue 50 to 112 was sufficient for the localization of the fused protein (VP26-GFP) to the nucleus and for it to bind to capsids. Using site-directed mutagenesis of conserved residues in VP26, two key residues for protein-protein interaction, F79 and G93, were identified as judged by the localization of GFP to nuclear puncta. When these mutations were analyzed in the capsid binding assay, they were also found to eliminate binding of VP26 to the capsid structure. Surprisingly, additional mutations that affected the ability of VP26 to bind to capsids in vitro were uncovered. Mutations at residues A58 and L64 resulted in a reduced ability of VP26 to bind to capsids. Mutation of the hydrophobic residues M78 and A80, which are adjacent to the hydrophobic residue F79, abolished VP26 capsid binding. In addition, the block of conserved amino acids in the carboxy end of the molecule had the most profound effect on the ability of VP26 to interact with capsids. Mutation of amino acid G93, L94, R95, R96, or T97 resulted in a greatly diminished ability of VP26 to bind capsids. Yet, all of these residues other than G93 were able to efficiently translocate or concentrate GFP into the nucleus, giving rise to the punctate fluorescence. Thus, the interaction of VP26 with the capsid appears to occur through at least two separate mechanisms. The initial interaction of VP26 and VP5 may occur in the cytoplasm or when VP5 is localized in the nucleus. Residues F79 and G93 are important for this bi-molecular interaction, resulting in the accumulation of VP26 in the nucleus in concentrated foci. Subsequent to this association, additional amino acids of VP26, including those in the C-terminal conserved domain, are important for interaction of VP26 with the three-dimensional capsid structure.
PMCID: PMC140620  PMID: 12477844
10.  Producing a Mammalian GFP Expression Vector Containing Neomycin Resistance Gene 
The green fluorescent protein (GFP) was originally isolated from the Jellyfish Aequorea Victoria that fluoresces green when exposed to blue light. GFP protein is composed of 238 amino acids with the molecular mass of 26.9 kD. The GFP gene is frequently used in cellular and molecular biology as a reporter gene. To date, many bacterial, yeast, fungal, plants, fly and mammalian cells, including human, have been created which express GFP. Martin Chalfie, Osamu Shimomura, and Roger Tsien were awarded the 2008 noble prize in chemistry for their discovery and development of GFP. In many studies on mammalian cells, GFP gene is introduced into cells using vector-based systems or a recombinant virus to track the location of a target protein or to study the expression level of the gene of interest, but in these studies there is no selection marker to normalize transfection. According to the importance of neomycin gene as a selection marker in mammalian cells, we aimed to produce a GFP expression vector that contains neomycin gene. GFP gene was separated from pEGFP-N1 vector and was inserted in the back-bone of pCDNA3.1/His/LacZ vector that contained the neomycin gene. The resulted vector contained GFP beside neomycin gene.
PMCID: PMC3558120  PMID: 23407141
Expression; Green Flourescent Protein; Neomycin; Resistance gene; Vector
11.  The structure of mAG, a monomeric mutant of the green fluorescent protein Azami-Green, reveals the structural basis of its stable green emission 
Acta Crystallographica Section F  2010;66(Pt 5):485-489.
The crystal structure of a monomeric mutant of Azami-Green (mAG) from G. fascicularis was determined at 2.2 Å resolution.
Monomeric Azami-Green (mAG) from the stony coral Galaxea fascicularis is the first known monomeric green-emitting fluorescent protein that is not a variant of Aequorea victoria green fluorescent protein (avGFP). These two green fluorescent proteins are only 27% identical in their amino-acid sequences. mAG is more similar in its amino-acid sequence to four fluorescent proteins: Dendra2 (a green-to-red irreversibly photoconverting fluorescent protein), Dronpa (a bright-and-dark reversibly photoswitchable fluorescent protein), KikG (a tetrameric green-emitting fluorescent protein) and Kaede (another green-to-red irreversibly photoconverting fluorescent protein). To reveal the structural basis of stable green emission by mAG, the 2.2 Å crystal structure of mAG has been determined and compared with the crystal structures of avGFP, Dronpa, Dendra2, Kaede and KikG. The structural comparison revealed that the chromophore formed by Gln62-Tyr63-Gly64 (QYG) and the fixing of the conformation of the imidazole ring of His193 by hydrogen bonds and van der Waals contacts involving His193, Arg66 and Thr69 are likely to be required for the stable green emission of mAG. The crystal structure of mAG will contribute to the design and development of new monomeric fluorescent proteins with faster maturation, brighter fluorescence, improved photostability, new colours and other preferable properties as alternatives to avGFP and its variants.
PMCID: PMC2864674  PMID: 20445241
fluorescent proteins; β-barrel; green emission
12.  A codon-optimized green fluorescent protein for live cell imaging in Zymoseptoria tritici☆ 
Fungal Genetics and Biology  2015;79:125-131.
•We generated a Z. tritici codon-optimized gene for green fluorescent protein (ZtGFP).•In epi-fluorescence and confocal microscopy, ZtGFP is brighter and more stable than eGFP.•We provide 3 vectors that carry AcGFP, eGFP and ZtGFP for yeast recombination-based cloning.•The vectors carry carboxin resistance for targeted integration.•The carboxin resistance conveying vectors integrate as single copies into the sdi1 locus.
Fluorescent proteins (FPs) are powerful tools to investigate intracellular dynamics and protein localization. Cytoplasmic expression of FPs in fungal pathogens allows greater insight into invasion strategies and the host-pathogen interaction. Detection of their fluorescent signal depends on the right combination of microscopic setup and signal brightness. Slow rates of photo-bleaching are pivotal for in vivo observation of FPs over longer periods of time. Here, we test green-fluorescent proteins, including Aequorea coerulescens GFP (AcGFP), enhanced GFP (eGFP) from Aequorea victoria and a novel Zymoseptoria tritici codon-optimized eGFP (ZtGFP), for their usage in conventional and laser-enhanced epi-fluorescence, and confocal laser-scanning microscopy. We show that eGFP, expressed cytoplasmically in Z. tritici, is significantly brighter and more photo-stable than AcGFP. The codon-optimized ZtGFP performed even better than eGFP, showing significantly slower bleaching and a 20–30% further increase in signal intensity. Heterologous expression of all GFP variants did not affect pathogenicity of Z. tritici. Our data establish ZtGFP as the GFP of choice to investigate intracellular protein dynamics in Z. tritici, but also infection stages of this wheat pathogen inside host tissue.
PMCID: PMC4502462  PMID: 26092799
FPs, fluorescent proteins; eGFP, enhanced green fluorescent protein; AcGFP, Aequorea coerulescens green fluorescent protein; ZtGFP, Z. tritici codon-optimized green fluorescent protein; GFP, green fluorescent protein; Val, valine; Arg, arginine; Ser, serine; Cys, cysteine; Ile, isoleucine; Tyr, tyrosine; Leu, leucine; His, histidine; tub2, α tubulin; sdi1, succinate dehydrogenase 1; RB and LB, right and left border; dpi, days post infection; ROI, region of interest; n, sample size; Green fluorescent protein; Protein localization; Wheat pathogenic fungi; Septoria tritici blotch; Mycosphaerella graminicola
13.  A hydrophobic domain within the small capsid protein of Kaposi’s sarcoma-associated herpesvirus is required for assembly 
The Journal of General Virology  2014;95(Pt 8):1755-1769.
Kaposi’s sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP–GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present – indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP–GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP–His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP–GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP–GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP–MCP interaction.
PMCID: PMC4103069  PMID: 24824860
14.  Functional Characterization of the Nuclear Localization Signal for a Suppressor of Posttranscriptional Gene Silencing 
Journal of Virology  2003;77(12):7026-7033.
The nucleus-localized C2 protein of Tomato yellow leaf curl virus-China (TYLCV-C) is an active suppressor of posttranscriptional gene silencing (PTGS). Consistently, infection with TYLCV-C resulted in PTGS arrest in plants. The C2 protein possesses a functional, arginine-rich nuclear localization signal within the basic amino acid-rich region 17KVQHRIAKKTTRRRR31. When expressed from potato virus X, C2-RRRR31DVGG (in which the four consecutive arginine residues 28RRRR31 were replaced with DVGG) that had been tagged with a green fluorescent protein (GFP) failed to transport GFP into nuclei and was dysfunctional in inducing necrosis and suppressing PTGS in plants. Amino acid substitution mutants C2-K17D-GFP, C2-HR21DV-GFP, and C2-KK25DI-GFP localized to nuclei and produced necrosis, but only C2-K17D-GFP suppressed PTGS. The N-terminal portions C21-31 and C217-31 fused in frame to GFP were capable of targeting GFP to nuclei, but neither caused necrosis nor affected PTGS. Our data establish that nuclear localization is likely required for C2 protein to function in C2-mediated induction of necrosis and suppression of PTGS, which may follow diverse pathways in plants. Possible mechanisms of how the C2 protein involves these biological functions are discussed.
PMCID: PMC156164  PMID: 12768021
15.  Directed evolution of bright mutants of an oxygen-independent flavin-binding fluorescent protein from Pseudomonas putida 
Fluorescent reporter proteins have revolutionized our understanding of cellular bioprocesses by enabling live cell imaging with exquisite spatio-temporal resolution. Existing fluorescent proteins are predominantly based on the green fluorescent protein (GFP) and related analogs. However, GFP-family proteins strictly require molecular oxygen for maturation of fluorescence, which precludes their application for investigating biological processes in low-oxygen environments. A new class of oxygen-independent fluorescent reporter proteins was recently reported based on flavin-binding photosensors from Bacillus subtilis and Pseudomonas putida. However, flavin-binding fluorescent proteins show very limited brightness, which restricts their utility as biological imaging probes.
In this work, we report the discovery of bright mutants of a flavin-binding fluorescent protein from P. putida using directed evolution by site saturation mutagenesis. We discovered two mutations at a chromophore-proximal amino acid (F37S and F37T) that confer a twofold enhancement in brightness relative to the wild type fluorescent protein through improvements in quantum yield and holoprotein fraction. In addition, we observed that substitution with other aromatic amino acids at this residue (F37Y and F37W) severely diminishes fluorescence emission. Therefore, we identify F37 as a key amino acid residue in determining fluorescence.
To increase the scope and utility of flavin-binding fluorescent proteins as practical fluorescent reporters, there is a strong need for improved variants of the wild type protein. Our work reports on the application of site saturation mutagenesis to isolate brighter variants of a flavin-binding fluorescent protein, which is a first-of-its-kind approach. Overall, we anticipate that the improved variants will find pervasive use as fluorescent reporters for biological studies in low-oxygen environments.
PMCID: PMC3488000  PMID: 23095243
Flavin-binding fluorescent proteins; Directed evolution; Site saturation mutagenesis
16.  Color transitions in coral's fluorescent proteins by site-directed mutagenesis 
BMC Biochemistry  2001;2:6.
Green Fluorescent Protein (GFP) cloned from jellyfish Aequorea victoria and its homologs from corals Anthozoa have a great practical significance as in vivo markers of gene expression. Also, they are an interesting puzzle of protein science due to an unusual mechanism of chromophore formation and diversity of fluorescent colors. Fluorescent proteins can be subdivided into cyan (~ 485 nm), green (~ 505 nm), yellow (~ 540 nm), and red (>580 nm) emitters.
Here we applied site-directed mutagenesis in order to investigate the structural background of color variety and possibility of shifting between different types of fluorescence. First, a blue-shifted mutant of cyan amFP486 was generated. Second, it was established that cyan and green emitters can be modified so as to produce an intermediate spectrum of fluorescence. Third, the relationship between green and yellow fluorescence was inspected on closely homologous green zFP506 and yellow zFP538 proteins. The following transitions of colors were performed: yellow to green; yellow to dual color (green and yellow); and green to yellow. Fourth, we generated a mutant of cyan emitter dsFP483 that demonstrated dual color (cyan and red) fluorescence.
Several amino acid substitutions were found to strongly affect fluorescence maxima. Some positions primarily found by sequence comparison were proved to be crucial for fluorescence of particular color. These results are the first step towards predicting the color of natural GFP-like proteins corresponding to newly identified cDNAs from corals.
PMCID: PMC34604  PMID: 11459517
17.  Interrogating and Predicting Tolerated Sequence Diversity in Protein Folds: Application to E. elaterium Trypsin Inhibitor-II Cystine-Knot Miniprotein 
PLoS Computational Biology  2009;5(9):e1000499.
Cystine-knot miniproteins (knottins) are promising molecular scaffolds for protein engineering applications. Members of the knottin family have multiple loops capable of displaying conformationally constrained polypeptides for molecular recognition. While previous studies have illustrated the potential of engineering knottins with modified loop sequences, a thorough exploration into the tolerated loop lengths and sequence space of a knottin scaffold has not been performed. In this work, we used the Ecballium elaterium trypsin inhibitor II (EETI) as a model member of the knottin family and constructed libraries of EETI loop-substituted variants with diversity in both amino acid sequence and loop length. Using yeast surface display, we isolated properly folded EETI loop-substituted clones and applied sequence analysis tools to assess the tolerated diversity of both amino acid sequence and loop length. In addition, we used covariance analysis to study the relationships between individual positions in the substituted loops, based on the expectation that correlated amino acid substitutions will occur between interacting residue pairs. We then used the results of our sequence and covariance analyses to successfully predict loop sequences that facilitated proper folding of the knottin when substituted into EETI loop 3. The sequence trends we observed in properly folded EETI loop-substituted clones will be useful for guiding future protein engineering efforts with this knottin scaffold. Furthermore, our findings demonstrate that the combination of directed evolution with sequence and covariance analyses can be a powerful tool for rational protein engineering.
Author Summary
The use of engineered proteins in medicine and biotechnology has surged in recent years. An emerging approach for developing novel proteins is to use a naturally-occurring protein as a molecular framework, or scaffold, wherein amino acid mutations are introduced to elicit new properties, such as the ability to recognize a specific target molecule. Successful protein engineering with this strategy requires a dependable and customizable scaffold that tolerates modifications without compromising structure. An important consideration for scaffold utility is whether existing loops can be replaced with loops of different lengths and amino acid sequences without disrupting the protein framework. This paper offers a rigorous study of the effects of modifying the exposed loops of Ecballium elaterium trypsin inhibitor II (EETI), a member of a family of promising scaffold proteins called knottins. Through our work, we identified sequence patterns of modified EETI loops that are structurally tolerated. Using bioinformatics tools, we established molecular guidelines for designing peptides for substitution into EETI and successfully predicted loop-substituted EETI variants that retain the correct protein fold. This study provides a basis for understanding the versatility of the knottin scaffold as a protein engineering platform and can be applied for predictive interrogation of other scaffold proteins.
PMCID: PMC2725296  PMID: 19730675
18.  Mutations in the Central Domain of Potato Virus X TGBp2 Eliminate Granular Vesicles and Virus Cell-to-Cell Trafficking▿  
Journal of Virology  2006;81(4):1899-1911.
Most RNA viruses remodel the endomembrane network to promote virus replication, maturation, or egress. Rearrangement of cellular membranes is a crucial component of viral pathogenesis. The PVX TGBp2 protein induces vesicles of the granular type to bud from the endoplasmic reticulum network. Green fluorescent protein (GFP) was fused to the PVX TGBp2 coding sequence and inserted into the viral genome and into pRTL2 plasmids to study protein subcellular targeting in the presence and absence of virus infection. Mutations were introduced into the central domain of TGBp2, which contains a stretch of conserved amino acids. Deletion of a 10-amino-acid segment (m2 mutation) overlapping the segment of conserved residues eliminated the granular vesicle and inhibited virus movement. GFP-TGBp2m2 proteins accumulated in enlarged vesicles. Substitution of individual conserved residues in the same region similarly inhibited virus movement and caused the mutant GFP-TGBp2 fusion proteins to accumulate in enlarged vesicles. These results identify a novel element in the PVX TGBp2 protein which determines vesicle morphology. In addition, the data indicate that vesicles of the granular type induced by TGBp2 are necessary for PVX plasmodesmata transport.
PMCID: PMC1797549  PMID: 17151124
19.  A Nuclear Localization of the Infectious Haematopoietic Necrosis Virus NV Protein Is Necessary for Optimal Viral Growth 
PLoS ONE  2011;6(7):e22362.
The nonvirion (NV) protein of infectious hematopoietic necrosis virus (IHNV) has been previously reported to be essential for efficient growth and pathogenicity of IHNV. However, little is known about the mechanism by which the NV supports the viral growth. In this study, cellular localization of NV and its role in IHNV growth in host cells was investigated. Through transient transfection in RTG-2 cells of NV fused to green fluorescent protein (GFP), a nuclear localization of NV was demonstrated. Deletion analyses showed that the 32EGDL35 residues were essential for nuclear localization of NV protein, and fusion of these 4 amino acids to GFP directed its transport to the nucleus. We generated a recombinant IHNV, rIHNV-NV-ΔEGDL in which the 32EGDL35 was deleted from the NV. rIHNVs with wild-type NV (rIHNV-NV) or with the NV gene replaced with GFP (rIHNV-ΔNV-GFP) were used as controls. RTG-2 cells infected with rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL yielded 12- and 5-fold less infectious virion, respectively, than wild type rIHNV-infected cells at 48 h post-infection (p.i.). While treatment with poly I∶C at 24 h p.i. did not inhibit replication of wild-type rIHNVs, replication rates of rIHNV-ΔNV-GFP and rIHNV-NV-ΔEGDL were inhibited by poly I∶C. In addition, both rIHNV-ΔNV and rIHNV-NV-ΔEGDL induced higher levels of expressions of both IFN1 and Mx1 than wild-type rIHNV. These data suggest that the IHNV NV may support the growth of IHNV through inhibition of the INF system and the amino acid residues of 32EGDL35 responsible for nuclear localization are important for the inhibitory activity of NV.
PMCID: PMC3141031  PMID: 21814578
20.  Surface Loop Dynamics in Adeno-Associated Virus Capsid Assembly▿  
Journal of Virology  2008;82(11):5178-5189.
The HI loop is a prominent domain on the adeno-associated virus (AAV) capsid surface that extends from each viral protein (VP) subunit overlapping the neighboring fivefold VP. Despite the highly conserved nature of the residues at the fivefold pore, the HI loops surrounding this critical region vary significantly in amino acid sequence between the AAV serotypes. In order to understand the role of this unique capsid domain, we ablated side chain interactions between the HI loop and the underlying EF loop in the neighboring VP subunit by generating a collection of deletion, insertion, and substitution mutants. A mutant lacking the HI loop was unable to assemble particles, while a substitution mutant (10 glycine residues) assembled particles but was unable to package viral genomes. Substitution mutants carrying corresponding regions from AAV1, AAV4, AAV5, and AAV8 yielded (i) particles with titers and infectivity identical to those of AAV2 (AAV2 HI1 and HI8), (ii) particles with a decreased virus titer (1 log) but normal infectivity (HI4), and (iii) particles that synthesized VPs but were unable to assemble into intact capsids (HI5). AAV5 HI is shorter than all other HI loops by one amino acid. Replacing the missing residue (threonine) in AAV2 HI5 resulted in a moderate particle assembly rescue. In addition, we replaced the HI loop with peptides varying in length and amino acid sequence. This region tolerated seven-amino-acid peptide substitutions unless they spanned a conserved phenylalanine at amino acid position 661. Mutation of this highly conserved phenylalanine to a glycine resulted in a modest decrease in virus titer but a substantial decrease (1 log order) in infectivity. Subsequently, confocal studies revealed that AAV2 F661G is incapable of efficiently completing a key step in the infectious pathway nuclear entry, hinting at a possible perturbation of VP1 phospholipase activity. Molecular modeling studies with the F661G mutant suggest that disruption of interactions between F661 and an underlying P373 residue in the EF loop of the neighboring subunit might adversely affect incorporation of the VP1 subunit at the fivefold axis. Western blot analysis confirmed inefficient incorporation of VP1, as well as a proteolytically processed VP1 subunit that could account for the markedly reduced infectivity. In summary, our studies show that the HI loop, while flexible in amino acid sequence, is critical for AAV capsid assembly, proper VP1 subunit incorporation, and viral genome packaging, all of which implies a potential role for this unique surface domain in viral infectivity.
PMCID: PMC2395211  PMID: 18367523
21.  Misfolding of Mutated Vasopressin Causes ER-Retention and Activation of ER-Stress Markers in Neuro-2a Cells 
Arginine-vasopressin (AVP) is a peptide hormone normally secreted from neuroendocrine cells via the regulated secretory pathway. In Familial Neurohypophyseal Diabetes Insipidus (FNDI), an autosomal dominant form of central diabetes insipidus, mutations of pro-vasopressin appear to accumulate in the endoplasmic reticulum (ER) causing a lack of biologically active AVP in the blood. To investigate the effect of pro-vasopressin mutations regarding intracellular functions of protein targeting and secretion, we created two FNDI-associated amino acid substitution mutants, e.g., G14R, and G17V in frame with green fluorescent protein (GFP) and pro-vasopressin (VP) in frame with red fluorescent protein (VP-RFP). Fluorescence microscopy of Neuro-2a cells expressing these constructs revealed co-localization of VP-GFP and VP-RFP to punctate granules along the length and accumulating at the tips of neurites, characteristic of regulated secretory granules. In contrast, the two FNDI-associated amino acid substitution mutants, e.g., G14R-GFP, and G17VGFP, were localized to a perinuclear region of the Neuro-2a cells characteristic of the endoplasmic reticulum. Co-expression of these mutants with VP-RFP showed VP-RFP was retained in the ER, co-localized with the mutants suggesting the formation of heterodimers as found in FNDI. Stimulated secretion experiments indicated that VP-GFP was secreted in an inducible manner whereas, G14R-GFP and G17V-GFP were retained to nearly 100% within the cells. Analysis by western blotting and semi-quantitative RT-PCR indicated an increased protein and mRNA expression for an ER resident molecular chaperone, BiP. Further analysis of ER-storage disease-associated proteins such as caspase 12 and CHOP showed an increase in these as well. The results suggest that G14R-GFP and G17V-GFP are retained in the ER of Neuro-2a cells, resulting in up-regulation of the molecular chaperone BiP, and activation of the ER-storage disease-associated caspase cascade system.
PMCID: PMC3932059  PMID: 24567768
Familial diabetes insipidus; GFP; regulated secretory pathway; sorting; vasopressin
22.  An amphiphilic region in the cytoplasmic domain of KdpD is recognized by the signal recognition particle and targeted to the Escherichia coli membrane 
Molecular Microbiology  2008;68(6):1471-1484.
The sensor protein KdpD of Escherichia coli is composed of a large N-terminal hydrophilic region (aa 1–400), four transmembrane regions (aa 401–498) and a large hydrophilic region (aa 499–894) at the C-terminus. KdpD requires the signal recognition particle (SRP) for its targeting to the membrane. Deletions within KdpD show that the first 50 residues are required for SRP-driven membrane insertion. A fusion protein of the green fluorescent protein (GFP) with KdpD is found localized at the membrane only when SRP is present. The membrane targeting of GFP was not observed when the first 50 KdpD residues were deleted. A truncated mutant of KdpD containing only the first 25 amino acids fused to GFP lost its ability to specifically interact with SRP, whereas a specific interaction between SRP and the first 48 amino acids of KdpD fused to GFP was confirmed by pull-down experiments. Conclusively, a small amphiphilic region of 27 residues within the amino-terminal domain of KdpD (aa 22–48) is recognized by SRP and targets the protein to the membrane. This shows that membrane proteins with a large N-terminal region in the cytoplasm can be membrane-targeted early on to allow co-translational membrane insertion of their distant transmembrane regions.
PMCID: PMC2440551  PMID: 18433452
23.  Enhanced fluorescent properties of an OmpT site deleted mutant of Green Fluorescent Protein 
The green fluorescent protein has revolutionized many areas of cell biology and biotechnology since it is widely used in determining gene expression and for localization of protein expression. Expression of recombinant GFP in E. coli K12 host from pBAD24M-GFP construct upon arabinose induction was significantly lower than that seen in E. coli B cells with higher expression at 30°C as compared to 37°C in E. coli K12 hosts. Since OmpT levels are higher at 37°C than at 30°C, it prompted us to modify the OmpT proteolytic sites of GFP and examine such an effect on GFP expression and fluorescence. Upon modification of one of the two putative OmpT cleavage sites of GFP, we observed several folds enhanced fluorescence of GFP as compared to unmodified GFPuv (Wild Type-WT). The western blot studies of the WT and the SDM II GFP mutant using anti-GFP antibody showed prominent degradation of GFP with negligible degradation in case of SDM II GFP mutant while no such degradation of GFP was seen for both the clones when expressed in BL21 cells. The SDM II GFP mutant also showed enhanced GFP fluorescence in other E. coli K12 OmpT hosts like E. coli JM109 and LE 392 in comparison to WT GFPuv. Inclusion of an OmpT inhibitor, like zinc with WT GFP lysate expressed from an E. coli K12 host was found to reduce degradation of GFP fluorescence by two fold.
We describe the construction of two GFP variants with modified putative OmpT proteolytic sites by site directed mutagenesis (SDM). Such modified genes upon arabinose induction exhibited varied degrees of GFP fluorescence. While the mutation of K79G/R80A (SDM I) resulted in dramatic loss of fluorescence activity, the modification of K214A/R215A (SDM II) resulted in four fold enhanced fluorescence of GFP.
This is the first report on effect of OmpT protease site modification on GFP fluorescence. The wild type and the GFP variants showed similar growth profile in bioreactor studies with similar amounts of recombinant GFP expressed in the soluble fraction of the cell. Our observations on higher levels of fluorescence of SDM II GFP mutant over native GFPuv in an OmpT+ host like DH5α, JM109 and LE392 at 37°C reiterates the role played by host OmpT in determining differences in fluorescent property of the expressed GFP. Both the WT GFP and the SDM II GFP plasmids in E. coli BL21 cells showed similar expression levels and similar GFP fluorescent activity at 37°C. This result substantiates our hypothesis that OmpT protease could be a possible factor responsible for reducing the expression of GFP at 37°C for WT GFP clone in K12 hosts like DH5α, JM109, LE 392 since the levels of GFP expression of SDM II clone in such cells at 37°C is higher than that seen with WT GFP clone at the same temperature.
PMCID: PMC2868801  PMID: 20429908
24.  Uracil-DNA glycosylase-deficient yeast exhibit a mitochondrial mutator phenotype 
Nucleic Acids Research  2001;29(24):4935-4940.
Mutations in mitochondrial DNA (mtDNA) have been reported in cancer and are involved in the pathogenesis of many mitochondrial diseases. Uracil-DNA glycosylase, encoded by the UNG1 gene in Saccharomyces cerevisiae, repairs uracil in DNA formed due to deamination of cytosine. Our study demonstrates that inactivation of the UNG1 gene leads to at least a 3-fold increased frequency of mutations in mtDNA compared with the wild-type. Using a Ung1p–green fluorescent protein (GFP) fusion construct, we demonstrate that yeast yUng1–GFP protein localizes to both mitochondria and the nucleus, indicating that Ung1p must contain both a mitochondrial localization signal (MLS) and a nuclear localization signal. Our study reveals that the first 16 amino acids at the N-terminus contain the yUng1p MLS. Deletion of 16 amino acids resulted in the yUng1p–GFP fusion protein being transported to the nucleus. We also investigated the intracellular localization of human hUng1p–GFP in yeast. Our data indicate that hUng1p–GFP predominately localizes to the mitochondria. Further analysis identified the N-terminal 16 amino acids as important for localization of hUng1 protein into the mitochondria. Expression of both yeast and human UNG1 cDNA suppressed the frequency of mitochondrial mutation in UNG1-deficient cells. However, expression of yUNG1 in wild-type cells increased the frequency of mutations in mtDNA, suggesting that elevated expression of Ung1p is mutagenic. An increase in the frequency of mitochondrial mutants was also observed when hUNG1 site-directed mutants (Y147C and Y147S) were expressed in mitochondria. Our study suggests that deamination of cytosine is a frequent event in S.cerevisiae mitochondria and both yeast and human Ung1p repairs deaminated cytosine in mitochondria.
PMCID: PMC97606  PMID: 11812822
25.  Herpes simplex virus type 1 UL14 tegument protein regulates intracellular compartmentalization of major tegument protein VP16 
Virology Journal  2011;8:365.
Herpes simplex virus type 1 (HSV-1) has a complicated life-cycle, and its genome encodes many components that can modify the cellular environment to facilitate efficient viral replication. The protein UL14 is likely involved in viral maturation and egress (Cunningham C. et al), and it facilitates the nuclear translocation of viral capsids and the tegument protein VP16 during the immediate-early phase of infection (Yamauchi Y. et al, 2008). UL14 of herpes simplex virus type 2 exhibits multiple functions (Yamauchi Y. et al, 2001, 2002, 2003).
To better understand the function(s) of UL14, we generated VP16-GFP-incorporated UL14-mutant viruses with either single (K51M) or triple (R60A, R64A, E68D) amino acid substitutions in the heat shock protein (HSP)-like sequence of UL14. We observed the morphology of cells infected with UL14-null virus and amino acid-substituted UL14-mutant viruses at different time points after infection.
UL14(3P)-VP16GFP and UL14D-VP16GFP (UL14-null) viruses caused similar defects with respect to growth kinetics, compartmentalization of tegument proteins, and cellular morphology in the late phase. Both the UL14D-VP16GFP and UL14(3P)-VP16GFP viruses led to the formation of an aggresome that incorporated some tegument proteins but did not include nuclear-egressed viral capsids.
Our findings suggest that a cluster of charged residues within the HSP-like sequence of UL14 is important for the molecular chaperone-like functions of UL14, and this activity is required for the acquisition of functionality of VP16 and UL46. In addition, UL14 likely contributes to maintaining cellular homeostasis following infection, including cytoskeletal organization. However, direct interactions between UL14 and VP16, UL46, or other cellular or viral proteins remain unclear.
PMCID: PMC3157456  PMID: 21791071
Herpes simplex virus; UL14; VP16; molecular chaperone; heat shock proteins; aggresome

Results 1-25 (1006346)