Search tips
Search criteria

Results 1-25 (692137)

Clipboard (0)

Related Articles

1.  The SR protein family 
Genome Biology  2009;10(10):242.
The SR proteins are not only involved in pre-mRNA splicing but in mRNA export and the initiation of translation.
The processing of pre-mRNAs is a fundamental step required for the expression of most metazoan genes. Members of the family of serine/arginine (SR)-rich proteins are critical components of the machineries carrying out these essential processing events, highlighting their importance in maintaining efficient gene expression. SR proteins are characterized by their ability to interact simultaneously with RNA and other protein components via an RNA recognition motif (RRM) and through a domain rich in arginine and serine residues, the RS domain. Their functional roles in gene expression are surprisingly diverse, ranging from their classical involvement in constitutive and alternative pre-mRNA splicing to various post-splicing activities, including mRNA nuclear export, nonsense-mediated decay, and mRNA translation. These activities point up the importance of SR proteins during the regulation of mRNA metabolism.
PMCID: PMC2784316  PMID: 19857271
2.  Nuclear Export and Retention Signals in the RS Domain of SR Proteins 
Molecular and Cellular Biology  2002;22(19):6871-6882.
Splicing factors of the SR protein family share a modular structure consisting of one or two RNA recognition motifs (RRMs) and a C-terminal RS domain rich in arginine and serine residues. The RS domain, which is extensively phosphorylated, promotes protein-protein interactions and directs subcellular localization and—in certain situations—nucleocytoplasmic shuttling of individual SR proteins. We analyzed mutant versions of human SF2/ASF in which the natural RS repeats were replaced by RD or RE repeats and compared the splicing and subcellular localization properties of these proteins to those of SF2/ASF lacking the entire RS domain or possessing a minimal RS domain consisting of 10 consecutive RS dipeptides (RS10). In vitro splicing of a pre-mRNA that requires an RS domain could take place when the mutant RD, RE, or RS10 domain replaced the natural domain. The RS10 version of SF2/ASF shuttled between the nucleus and the cytoplasm in the same manner as the wild-type protein, suggesting that a tract of consecutive RS dipeptides, in conjunction with the RRMs of SF2/ASF, is necessary and sufficient to direct nucleocytoplasmic shuttling. However, the SR protein SC35 has two long stretches of RS repeats, yet it is not a shuttling protein. We demonstrate the presence of a dominant nuclear retention signal in the RS domain of SC35.
PMCID: PMC134038  PMID: 12215544
3.  SF2/ASF Binds the Human Papillomavirus Type 16 Late RNA Control Element and Is Regulated during Differentiation of Virus-Infected Epithelial Cells 
Journal of Virology  2004;78(19):10598-10605.
Pre-mRNA splicing occurs in the spliceosome, which is composed of small ribonucleoprotein particles (snRNPs) and many non-snRNP components. SR proteins, so called because of their C-terminal arginine- and serine-rich domains (RS domains), are essential members of this class. Recruitment of snRNPs to 5′ and 3′ splice sites is mediated and promoted by SR proteins. SR proteins also bridge splicing factors across exons to help to define these units and have a central role in alternative and enhancer-dependent splicing. Here, we show that the SR protein SF2/ASF is part of a complex that forms upon the 79-nucleotide negative regulatory element (NRE) that is thought to be pivotal in posttranscriptional regulation of late gene expression in human papillomavirus type 16 (HPV-16). However, the NRE does not contain any active splice sites, is located in the viral late 3′ untranslated region, and regulates RNA-processing events other than splicing. The level of expression and extent of phosphorylation of SF2/ASF are upregulated with epithelial differentiation, as is subcellular distribution, specifically in HPV-16-infected epithelial cells, and expression levels are controlled, at least in part, by the virus transcription regulator E2.
PMCID: PMC516382  PMID: 15367627
4.  General and Specific Functions of Exonic Splicing Silencers in Splicing Control 
Molecular cell  2006;23(1):61-70.
Correct splice site recognition is critical in pre-mRNA splicing. We find that almost all of a diverse panel of exonic splicing silencer (ESS) elements alter splice site choice when placed between competing sites, consistently inhibiting use of intron-proximal 5′ and 3′ splice sites. Supporting a general role for ESSs in splice site definition, we found that ESSs are both abundant and highly conserved between alternative splice site pairs and that mutation of ESSs located between natural alternative splice site pairs consistently shifted splicing toward the intron-proximal site. Some exonic splicing enhancers (ESEs) promoted use of intron-proximal 5′ splice sites, and tethering of hnRNP A1 and SF2/ASF proteins between competing splice sites mimicked the effects of ESS and ESE elements, respectively. Further, we observed that specific subsets of ESSs had distinct effects on a multifunctional intron retention reporter, and that one of these subsets is likely preferred for regulation of endogenous intron retention events. Together, our findings provide a comprehensive picture of the functions of ESSs in the control of diverse types of splicing decisions.
PMCID: PMC1839040  PMID: 16797197
5.  Role of SR protein modular domains in alternative splicing specificity in vivo 
Nucleic Acids Research  2000;28(24):4822-4831.
The SR proteins constitute a family of nuclear phosphoproteins which are required for constitutive splicing and also influence alternative splicing regulation. They have a modular structure consisting of one or two RNA recognition motifs (RRMs) and a C-terminal domain, rich in arginine and serine residues. The functional role of the different domains of SR proteins in constitutive splicing activity has been extensively studied in vitro; however, their contribution to alternative splicing specificity in vivo has not been clearly established. We sought to address how the modular domains of SR proteins contribute to alternative splicing specificity. The activity of a series of chimeric proteins consisting of domain swaps between different SR proteins showed that splice site selection is determined by the nature of the RRMs and that RRM2 of SF2/ASF has a dominant role and can confer specificity to a heterologous protein. In contrast, the identity of the RS domain is not important, as the RS domains are functionally interchangeable. The contribution of the RRMs to alternative splicing specificity in vivo suggests that sequence-specific RNA binding by SR proteins is required for this activity.
PMCID: PMC115228  PMID: 11121472
6.  Role of the Modular Domains of SR Proteins in Subnuclear Localization and Alternative Splicing Specificity 
The Journal of Cell Biology  1997;138(2):225-238.
SR proteins are required for constitutive pre-mRNA splicing and also regulate alternative splice site selection in a concentration-dependent manner. They have a modular structure that consists of one or two RNA-recognition motifs (RRMs) and a COOH-terminal arginine/serine-rich domain (RS domain). We have analyzed the role of the individual domains of these closely related proteins in cellular distribution, subnuclear localization, and regulation of alternative splicing in vivo. We observed striking differences in the localization signals present in several human SR proteins. In contrast to earlier studies of RS domains in the Drosophila suppressor-of-white-apricot (SWAP) and Transformer (Tra) alternative splicing factors, we found that the RS domain of SF2/ASF is neither necessary nor sufficient for targeting to the nuclear speckles. Although this RS domain is a nuclear localization signal, subnuclear targeting to the speckles requires at least two of the three constituent domains of SF2/ASF, which contain additive and redundant signals. In contrast, in two SR proteins that have a single RRM (SC35 and SRp20), the RS domain is both necessary and sufficient as a targeting signal to the speckles. We also show that RRM2 of SF2/ASF plays an important role in alternative splicing specificity: deletion of this domain results in a protein that, although active in alternative splicing, has altered specificity in 5′ splice site selection. These results demonstrate the modularity of SR proteins and the importance of individual domains for their cellular localization and alternative splicing function in vivo.
PMCID: PMC2138183  PMID: 9230067
7.  The C-Terminal Domain of RNA Polymerase II Functions as a Phosphorylation-Dependent Splicing Activator in a Heterologous Protein 
Molecular and Cellular Biology  2005;25(2):533-544.
RNA polymerase II, and specifically the C-terminal domain (CTD) of its largest subunit, has been demonstrated to play important roles in capping, splicing, and 3′ processing of mRNA precursors. But how the CTD functions in these reactions, especially splicing, is not well understood. To address some of the basic questions concerning CTD function in splicing, we constructed and purified two fusion proteins, a protein in which the CTD is positioned at the C terminus of the splicing factor ASF/SF2 (ASF-CTD) and an RS domain deletion mutant protein (ASFΔRS-CTD). Significantly, compared to ASF/SF2, ASF-CTD increased the reaction rate during the early stages of splicing, detected as a 20- to 60-min decrease in splicing lag time depending on the pre-mRNA substrate. The increased splicing rate correlated with enhanced production of prespliceosomal complex A and the early spliceosomal complex B but, interestingly, not the very early ATP-independent complex E. Additional assays indicate that the RS domain and CTD perform distinct functions, as exemplified by our identification of an activity that cooperates only with the CTD. Dephosphorylated ASFΔRS-CTD and a glutathione S-transferase-CTD fusion protein were both inactive, suggesting that an RNA-targeting domain and CTD phosphorylation were necessary. Our results provide new insights into the mechanism by which the CTD functions in splicing.
PMCID: PMC543425  PMID: 15632056
8.  Recognition of exonic splicing enhancer sequences by the Drosophila splicing repressor RSF1. 
Nucleic Acids Research  1999;27(11):2377-2386.
The Drosophila repressor splicing factor 1 (RSF1) comprises an N-terminal RNA-binding region and a C-terminal domain rich in glycine, arginine and serine residues, termed the GRS domain. Recently, RSF1 has been shown to antagonize splicing factors of the serine/arginine-rich (SR) family and it is, therefore, expected to play a role in processing of a subset of Drosophila pre-mRNAs through specific interactions with RNA. To investigate the RNA-binding specificity of RSF1, we isolated RSF1-binding RNAs using an in vitro selection approach. We have identified two RNA target motifs recognized by RSF1, designated A (CAACGACGA)- and B (AAACGCGCG)-type sequences. We show here that the A-type cognate sequence behaves as an SR protein-dependent exonic splicing enhancer. Namely, three copies of the A-type ligand bind SR proteins, stimulate the efficiency of splicing of reporter pre-mRNAs several fold and lead to inclusion of a short internal exon both in vitro and in vivo. However, three copies of a B-type ligand were much less active. The finding that RSF1 acts as a potent repressor of pre-mRNA splicing in vitro led us to propose that the equilibrium between a limited number of structurally-related general splicing activators or repressors, competing for common or promiscuous binding sites, may be a major determinant of the underlying mechanisms controlling many alternative pre-mRNA process-ing events.
PMCID: PMC148805  PMID: 10325428
9.  Arginine/serine repeats are sufficient to constitute a splicing activation domain 
Nucleic Acids Research  2003;31(22):6502-6508.
SR proteins are essential pre-mRNA splicing factors that have been shown to bind a number of exonic splicing enhancers where they function to stimulate the splicing of adjacent introns. Members of the SR protein family contain one or two N-terminal RNA binding domains, as well as a C-terminal arginine–serine (RS) rich domain. The RS domains mediate protein–protein interactions with other RS domain containing proteins and are essential for many, but not all, SR protein functions. Hybrid proteins containing an RS domain fused to the bacteriophage MS2 coat protein are sufficient to activate enhancer-dependent splicing in HeLa cell nuclear extract when bound to the pre-mRNA. Here we report progress towards determining the protein sequence requirements for RS domain function. We show that the RS domains from non-SR proteins can also function as splicing activation domains when tethered to the pre-mRNA. Truncation experiments with the RS domain of the human SR protein 9G8 identified a 29 amino acid segment, containing 26 arginine or serine residues, that is sufficient to activate splicing when fused to MS2. We also show that synthetic domains composed solely of RS dipeptides are capable of activating splicing, although their potency is proportional to their size.
PMCID: PMC275541  PMID: 14602908
10.  TRAP150 activates pre-mRNA splicing and promotes nuclear mRNA degradation 
Nucleic Acids Research  2010;38(10):3340-3350.
TRAP150 has been identified as a subunit of the transcription regulatory complex TRAP/Mediator, and also a component of the spliceosome. The exact function of TRAP150, however, remains unclear. We recently identified TRAP150 by its association with the mRNA export factor TAP. TRAP150 contains an arginine/serine-rich domain and has sequence similarity with the cell death-promoting transcriptional repressor BCLAF1. We found that TRAP150 co-localizes with splicing factors in nuclear speckles, and is required for pre-mRNA splicing and activates splicing in vivo. TRAP150 remains associated with the spliced mRNA after splicing, and accordingly, it interacts with the integral exon junction complex. Unexpectedly, when tethered to a precursor mRNA, TRAP150 can trigger mRNA degradation in the nucleus. However, unlike nonsense-mediated decay, TRAP150-mediated mRNA decay is irrespective of the presence of upstream stop codons and occurs in the nucleus. Moreover, TRAP150 activates pre-mRNA splicing and induces mRNA degradation by its separable functional domains. Therefore, TRAP150 represents a multi-functional protein involved in nuclear mRNA metabolism.
PMCID: PMC2879504  PMID: 20123736
11.  Cooperative-Binding and Splicing-Repressive Properties of hnRNP A1▿ † 
Molecular and Cellular Biology  2009;29(20):5620-5631.
hnRNP A1 binds to RNA in a cooperative manner. Initial hnRNP A1 binding to an exonic splicing silencer at the 3′ end of human immunodeficiency virus type 1 (HIV-1) tat exon 3, which is a high-affinity site, is followed by cooperative spreading in a 3′-to-5′ direction. As hnRNP A1 propagates toward the 5′ end of the exon, it antagonizes binding of a serine/arginine-rich (SR) protein to an exonic splicing enhancer, thereby inhibiting splicing at that exon's alternative 3′ splice site. tat exon 3 and the preceding intron of HIV-1 pre-mRNA can fold into an elaborate RNA secondary structure in solution, which could potentially influence hnRNP A1 binding. We report here that hnRNP A1 binding and splicing repression can occur on an unstructured RNA. Moreover, hnRNP A1 can effectively unwind an RNA hairpin upon binding, displacing a bound protein. We further show that hnRNP A1 can also spread in a 5′-to-3′ direction, although when initial binding takes place in the middle of an RNA, spreading preferentially proceeds in a 3′-to-5′ direction. Finally, when two distant high-affinity sites are present on the same RNA, they facilitate cooperative spreading of hnRNP A1 between the two sites.
PMCID: PMC2756886  PMID: 19667073
12.  Regiospecific Phosphorylation Control of the SR Protein ASF/SF2 By SRPK1 
Journal of molecular biology  2009;390(4):618-634.
The SR proteins are essential factors that control the splicing of precursor mRNA by regulating multiple steps in spliceosome development. The prototypical SR protein ASF/SF2 contains two N-terminal RRMs (RRM1 and RRM2) and a 50-residue C-terminal RS (arginine-serine rich) domain that can be phosphorylated at numerous serines by the protein kinase SRPK1. The RS domain is further divided into N-terminal (RS1) and C-terminal (RS2) segments whose modification guides the nuclear localization of ASF/SF2. While previous studies revealed that SRPK1 phosphorylates RS1, regio- and temporal-specific control within the largely redundant RS domain is not well understood. To address this issue, engineered footprinting and single turnover experiments were performed to determine where and how SRPK1 initiates phosphorylation within the RS domain. The data show that local sequence elements in the RS domain control the strong kinetic preference for RS1 phosphorylation. SRPK1 initiates phosphorylation in a small region of serines (initiation box) in the middle of the RS domain at the C-terminal end of RS1 and then proceeds in an N-terminal direction. This initiation process requires both a viable docking groove in the large lobe of SRPK1 and one RRM (RRM2) on the N-terminal flank of the RS domain. Thus, while local RS/SR content steers regional preferences in the RS domain, distal contacts with SRPK1 guide initiation and directional phosphorylation within these regions.
PMCID: PMC2741142  PMID: 19477182
protein kinase; regiospecificity; phosphorylation; splicing; SR protein
13.  Three RNA recognition motifs participate in RNA recognition and structural organization by the pro-apoptotic factor TIA-1 
Journal of Molecular Biology  2011;415(4):727-740.
T-cell intracellular antigen-1 (TIA-1) regulates developmental and stress-responsive pathways through distinct activities at the levels of alternative pre-mRNA splicing and mRNA translation. The TIA-1 polypeptide contains three RNA recognition motifs (RRMs). The central RRM2 and C-terminal RRM3 associate with cellular mRNAs. The N-terminal RRM1 enhances interactions of a C-terminal Q-rich domain of TIA-1 with the U1-C splicing factor, despite linear separation of the domains in the TIA-1 sequence. Given the expanded functional repertoire of the RRM family, it was unknown whether TIA-1 RRM1 contributes to RNA binding as well as documented protein interactions. To address this question, we used isothermal titration calorimetry and small-angle X-ray scattering (SAXS) to dissect the roles of the TIA-1 RRMs in RNA recognition. Notably, the fas RNA exhibited two binding sites with indistinguishable affinities for TIA-1. Analyses of TIA-1 variants established that RRM1 was dispensable for binding AU-rich fas sites, yet all three RRMs were required to bind a polyU RNA with high affinity. SAXS analyses demonstrated a `V' shape for a TIA-1 construct comprising the three RRMs, and revealed that its dimensions became more compact in the RNA-bound state. The sequence-selective involvement of TIA-1 RRM1 in RNA recognition suggests a possible role for RNA sequences in regulating the distinct functions of TIA-1. Further implications for U1-C recruitment by the adjacent TIA-1 binding sites of the fas pre-mRNA and the bent TIA-1 shape, which organizes the N- and C-termini on the same side of the protein, are discussed.
PMCID: PMC3282181  PMID: 22154808
RRM; protein-RNA interactions; small-angle X-ray scattering; isothermal titration calorimetry; pre-mRNA splicing; translational silencing
14.  In vivo regulation of alternative pre-mRNA splicing by the Clk1 protein kinase. 
Molecular and Cellular Biology  1997;17(10):5996-6001.
Controlled expression of cellular and viral genes through alternative precursor messenger RNA (pre-mRNA) splicing requires serine/arginine-rich (SR) proteins. The Clk1 kinase, which phosphorylates SR proteins, is regulated through alternative splicing of the Clk1 pre-mRNA, yielding mRNAs encoding catalytically active and truncated inactive polypeptides (Clk1 and Clk1T, respectively). We present evidence that Clk1 and Clk1T proteins regulate the splicing of Clk1 and adenovirus pre-mRNAs in vivo. The peptide domain encoded by the alternatively spliced exon of Clk1 is essential for the regulatory activity of the Clk1 kinase. This is the first direct demonstration of an in vivo link between alternative splicing and protein kinase activity.
PMCID: PMC232448  PMID: 9315658
15.  Regulation of the alternative splicing of tau exon 10 by SC35 and Dyrk1A 
Nucleic Acids Research  2011;39(14):6161-6171.
Abnormal alternative splicing of tau exon 10 results in imbalance of 3R-tau and 4R-tau expression, which is sufficient to cause neurofibrillary degeneration. Splicing factor SC35, a member of the superfamily of the serine/arginine-rich (SR) proteins, promotes tau exon 10 inclusion. The molecular mechanism by which SC35 participates in tau exon 10 splicing remains elusive. In the present study, we found that tau pre-mRNA was coprecipitated by SC35 tagged with HA. Mutation of the SC35-like exonic splicing enhancer located at exon 10 of tau affected both the binding of SC35 to tau pre-mRNA and promotion of tau exon 10 inclusion, suggesting that SC35 acts on the SC35-like exonic splicing enhancer to promote tau exon 10 inclusion. Dyrk1A (dual-specificity tyrosine-phosphorylated and regulated kinase 1A) phosphorylated SC35 in vitro and interacted with it in cultured cells. Overexpression of Dyrk1A suppressed SC35′s ability to promote tau exon 10 inclusion. Downregulation of Dyrk1A promoted 4R-tau expression. Therefore, upregulation of Dyrk1A in Down syndrome brain or Alzheimer’s brain may cause dysregulation of tau exon 10 splicing through SC35, and probably together with other splicing factors, leading to the imbalance in 3R-tau and 4R-tau expression, which may initiate or accelerate tau pathology and cause neurofibrillary degeneration in the diseases.
PMCID: PMC3152345  PMID: 21470964
16.  Differential Recruitment of Pre-mRNA Splicing Factors to Alternatively Spliced Transcripts In Vivo 
PLoS Biology  2005;3(11):e374.
Alternative splicing in mammalian cells has been suggested to be largely controlled by combinatorial binding of basal splicing factors to pre-mRNA templates. This model predicts that distinct sets of pre-mRNA splicing factors are associated with alternatively spliced transcripts. However, no experimental evidence for differential recruitment of splicing factors to transcripts with distinct splicing fates is available. Here we have used quantitative single-cell imaging to test this key prediction in vivo. We show that distinct combinations of splicing factors are recruited to sites of alternatively spliced transcripts in intact cells. While a subset of serine/arginine protein splicing factors, including SF2/ASF, SC35, and SRp20, is efficiently recruited to the tau gene when exon 10 is included, these factors are less frequently associated with tau transcription sites when exon 10 is excluded. In contrast, the frequency of recruitment of several other splicing factors is independent of splicing outcome. Mutation analysis of SF2/ASF shows that both protein–protein as well as protein–RNA interactions are required for differential recruitment. The differential behavior of the various splicing factors provides the basis for combinatorial occupancy at pre-mRNAs. These observations represent the first in vivo evidence for differential association of pre-mRNA splicing factors with alternatively spliced transcripts. They confirm a key prediction of a stochastic model of alternative splicing, in which distinct combinatorial sets of generic pre-mRNA splicing factors contribute to splicing outcome.
Quantitative single-cell imaging reveals distinct combinations of splicing factors recruited to sites of alternatively spliced transcripts in intact cells.
PMCID: PMC1262628  PMID: 16231974
17.  Activation and repression functions of an SR splicing regulator depend on exonic versus intronic-binding position 
Nucleic Acids Research  2011;40(1):428-437.
SR proteins and related factors play widespread roles in alternative pre-mRNA splicing and are known to promote splice site recognition through their Arg–Ser-rich effector domains. However, binding of SR regulators to some targets results in repression of splice sites through a distinct mechanism. Here, we investigate how activated and repressed targets of the Drosophila SR regulator Transformer2 elicit its differing effects on splicing. We find that, like activation, repression affects early steps in the recognition of splice sites and spliceosome assembly. Repositioning of regulatory elements reveals that Tra2 complexes that normally repress splicing from intronic positions activate splicing when located in an exon. Protein tethering experiments demonstrate that this position dependence is an intrinsic property of Tra2 and further show that repression and activation are mediated by separate effector domains of this protein. When other Drosophila SR factors (SF2 and Rbp1) that activate splicing from exonic positions were tethered intronically they failed to either activate or repress splicing. Interestingly, both activities of Tra2 favor the exonic identity of the RNA sequences that encompass its binding sites. This suggests a model in which these two opposite functions act in concert to define both the position and extent of alternatively spliced exons.
PMCID: PMC3245930  PMID: 21914724
18.  Distinctive Features of Drosophila Alternative Splicing Factor RS Domain: Implication for Specific Phosphorylation, Shuttling, and Splicing Activation 
Molecular and Cellular Biology  2001;21(4):1345-1359.
The human splicing factor 2, also called human alternative splicing factor (hASF), is the prototype of the highly conserved SR protein family involved in constitutive and regulated splicing of metazoan mRNA precursors. Here we report that the Drosophila homologue of hASF (dASF) lacks eight repeating arginine-serine dipeptides at its carboxyl-terminal region (RS domain), previously shown to be important for both localization and splicing activity of hASF. While this difference has no effect on dASF localization, it impedes its capacity to shuttle between the nucleus and cytoplasm and abolishes its phosphorylation by SR protein kinase 1 (SRPK1). dASF also has an altered splicing activity. While being competent for the regulation of 5′ alternative splice site choice and activation of specific splicing enhancers, dASF fails to complement S100-cytoplasmic splicing-deficient extracts. Moreover, targeted overexpression of dASF in transgenic flies leads to higher deleterious developmental defects than hASF overexpression, supporting the notion that the distinctive structural features at the RS domain between the two proteins are likely to be functionally relevant in vivo.
PMCID: PMC99587  PMID: 11158320
19.  Identification of Nuclear and Cytoplasmic mRNA Targets for the Shuttling Protein SF2/ASF 
PLoS ONE  2008;3(10):e3369.
The serine and arginine-rich protein family (SR proteins) are highly conserved regulators of pre-mRNA splicing. SF2/ASF, a prototype member of the SR protein family, is a multifunctional RNA binding protein with roles in pre-mRNA splicing, mRNA export and mRNA translation. These observations suggest the intriguing hypothesis that SF2/ASF may couple splicing and translation of specific mRNA targets in vivo. Unfortunately the paucity of endogenous mRNA targets for SF2/ASF has hindered testing of this hypothesis. Here, we identify endogenous mRNAs directly cross-linked to SF2/ASF in different sub-cellular compartments. Cross-Linking Immunoprecipitation (CLIP) captures the in situ specificity of protein-RNA interaction and allows for the simultaneous identification of endogenous RNA targets as well as the locations of binding sites within the RNA transcript. Using the CLIP method we identified 326 binding sites for SF2/ASF in RNA transcripts from 180 protein coding genes. A purine-rich consensus motif was identified in binding sites located within exon sequences but not introns. Furthermore, 72 binding sites were occupied by SF2/ASF in different sub-cellular fractions suggesting that these binding sites may influence the splicing or translational control of endogenous mRNA targets. We demonstrate that ectopic expression of SF2/ASF regulates the splicing and polysome association of transcripts derived from the SFRS1, PABC1, NETO2 and ENSA genes. Taken together the data presented here indicate that SF2/ASF has the capacity to co-regulate the nuclear and cytoplasmic processing of specific mRNAs and provide further evidence that the nuclear history of an mRNA may influence its cytoplasmic fate.
PMCID: PMC2556390  PMID: 18841201
20.  Mechanism of Dephosphorylation of the SR Protein ASF/SF2 By Protein Phosphatase 1 
Journal of molecular biology  2010;403(3):386-404.
SR proteins are essential splicing factors whose function is controlled by multi-site phosphorylation of a C-terminal domain rich in arginine-serine repeats (RS domain). The protein kinase SRPK1 has been shown to polyphosphorylate the N-terminal portion of the RS domain (RS1) of the SR protein ASF/SF2, a modification that promotes nuclear entry of this splicing factor and engagement in splicing function. Later, dephosphorylation is required for maturation of the spliceosome and other RNA processing steps. While phosphates are attached to RS1 in a sequential manner by SRPK1, little is known about how they are removed. To investigate factors that control dephosphorylation, region-specific mapping of phosphorylation sites in ASF/SF2 was monitored as a function of the protein phosphatase PP1. We showed that ten phosphates added to the RS1 segment by SRPK1 are removed in a preferred N-to-C manner, directly opposing the C-to-N phosphorylation by SRPK1. Two N-terminal RNA recognition motifs (RRMs) in ASF/SF2 control access to the RS domain and guide the directional mechanism. Binding of RNA to the RRMs protects against dephosphorylation suggesting that engagement of the SR protein with exonic splicing enhancers can regulate phosphoryl content in the RS domain. In addition to regulation by N-terminal domains, phosphorylation of the C-terminal portion of the RS domain (RS2) by the nuclear protein kinase Clk/Sty inhibits RS1 dephosphorylation and disrupts the directional mechanism. The data indicate that both RNA-protein interactions and phosphorylation in flanking sequences induce conformations of ASF/SF2 that increase the lifetime of phosphates in the RS domain.
PMCID: PMC2994579  PMID: 20826166
protein kinase; protein phosphatase; phosphorylation; splicing; SR protein
21.  Human RNPS1 and Its Associated Factors: a Versatile Alternative Pre-mRNA Splicing Regulator In Vivo 
Molecular and Cellular Biology  2004;24(3):1174-1187.
Human RNPS1 was originally purified and characterized as a pre-mRNA splicing activator, and its role in the postsplicing process has also been proposed recently. To search for factors that functionally interact with RNPS1, we performed a yeast two-hybrid screen with a human cDNA library. Four factors were identified: p54 (also called SRp54; a member of the SR protein family), human transformer 2β (hTra2β; an exonic splicing enhancer-binding protein), hLucA (a potential component of U1 snRNP), and pinin (also called DRS and MemA; a protein localized in nuclear speckles). The N-terminal region containing the serine-rich (S) domain, the central RNA recognition motif (RRM), and the C-terminal arginine/serine/proline-rich (RS/P) domain of RNPS1 interact with p54, pinin, and hTra2β, respectively. Protein-protein binding between RNPS1 and these factors was verified in vitro and in vivo. Overexpression of RNPS1 in HeLa cells induced exon skipping in a model β-globin pre-mRNA and a human tra-2β pre-mRNA. Coexpression of RNPS1 with p54 cooperatively stimulated exon inclusion in an ATP synthase γ-subunit pre-mRNA. The RS/P domain and RRM are necessary for the exon-skipping activity, whereas the S domain is important for the cooperative effect with p54. RNPS1 appears to be a versatile factor that regulates alternative splicing of a variety of pre-mRNAs.
PMCID: PMC321435  PMID: 14729963
22.  Insights into the selective activation of alternatively used splice acceptors by the human immunodeficiency virus type-1 bidirectional splicing enhancer 
Nucleic Acids Research  2008;36(5):1450-1463.
The guanosine-adenosine-rich exonic splicing enhancer (GAR ESE) identified in exon 5 of the human immunodeficiency virus type-1 (HIV-1) pre-mRNA activates either an enhancer-dependent 5′ splice site (ss) or 3′ ss in 1-intron reporter constructs in the presence of the SR proteins SF2/ASF2 and SRp40. Characterizing the mode of action of the GAR ESE inside the internal HIV-1 exon 5 we found that this enhancer fulfils a dual splicing regulatory function (i) by synergistically mediating exon recognition through its individual SR protein-binding sites and (ii) by conferring 3′ ss selectivity within the 3′ ss cluster preceding exon 5. Both functions depend upon the GAR ESE, U1 snRNP binding at the downstream 5′ ss D4 and the E42 sequence located between these elements. Therefore, a network of cross-exon interactions appears to regulate splicing of the alternative exons 4a and 5. As the GAR ESE-mediated activation of the upstream 3′ ss cluster also is essential for the processing of intron-containing vpu/env-mRNAs during intermediate viral gene expression, the GAR enhancer substantially contributes to the regulation of viral replication.
PMCID: PMC2275126  PMID: 18203748
23.  SRPK2: A Differentially Expressed SR Protein-specific Kinase Involved in Mediating the Interaction and Localization of Pre-mRNA Splicing Factors in Mammalian Cells  
The Journal of Cell Biology  1998;140(4):737-750.
Abstract. Reversible phosphorylation plays an important role in pre-mRNA splicing in mammalian cells. Two kinases, SR protein-specific kinase (SRPK1) and Clk/Sty, have been shown to phosphorylate the SR family of splicing factors. We report here the cloning and characterization of SRPK2, which is highly related to SRPK1 in sequence, kinase activity, and substrate specificity. Random peptide selection for preferred phosphorylation sites revealed a stringent preference of SRPK2 for SR dipeptides, and the consensus derived may be used to predict potential phosphorylation sites in candidate arginine and serine-rich (RS) domain–containing proteins. Phosphorylation of an SR protein (ASF/SF2) by either SRPK1 or 2 enhanced its interaction with another RS domain–containing protein (U1 70K), and overexpression of either kinase induced specific redistribution of splicing factors in the nucleus. These observations likely reflect the function of the SRPK family of kinases in spliceosome assembly and in mediating the trafficking of splicing factors in mammalian cells. The biochemical and functional similarities between SRPK1 and 2, however, are in contrast to their differences in expression. SRPK1 is highly expressed in pancreas, whereas SRPK2 is highly expressed in brain, although both are coexpressed in other human tissues and in many experimental cell lines. Interestingly, SRPK2 also contains a proline-rich sequence at its NH2 terminus, and a recent study showed that this NH2-terminal sequence has the capacity to interact with a WW domain protein in vitro. Together, our studies suggest that different SRPK family members may be uniquely regulated and targeted, thereby contributing to splicing regulation in different tissues, during development, or in response to signaling.
PMCID: PMC2141757  PMID: 9472028
24.  Global control of aberrant splice-site activation by auxiliary splicing sequences: evidence for a gradient in exon and intron definition 
Nucleic Acids Research  2007;35(19):6399-6413.
Auxiliary splicing signals play a major role in the regulation of constitutive and alternative pre-mRNA splicing, but their relative importance in selection of mutation-induced cryptic or de novo splice sites is poorly understood. Here, we show that exonic sequences between authentic and aberrant splice sites that were activated by splice-site mutations in human disease genes have lower frequencies of splicing enhancers and higher frequencies of splicing silencers than average exons. Conversely, sequences between authentic and intronic aberrant splice sites have more enhancers and less silencers than average introns. Exons that were skipped as a result of splice-site mutations were smaller, had lower SF2/ASF motif scores, a decreased availability of decoy splice sites and a higher density of silencers than exons in which splice-site mutation activated cryptic splice sites. These four variables were the strongest predictors of the two aberrant splicing events in a logistic regression model. Elimination or weakening of predicted silencers in two reporters consistently promoted use of intron-proximal splice sites if these elements were maintained at their original positions, with their modular combinations producing expected modification of splicing. Together, these results show the existence of a gradient in exon and intron definition at the level of pre-mRNA splicing and provide a basis for the development of computational tools that predict aberrant splicing outcomes.
PMCID: PMC2095810  PMID: 17881373
25.  Characterization of U2AF6, a Splicing Factor Related to U2AF35 
Molecular and Cellular Biology  2002;22(1):221-230.
The essential splicing factor U2AF (U2 auxiliary factor) is a heterodimer composed of 65-kDa (U2AF65) and 35-kDa (U2AF35) subunits. U2AF35 has multiple functions in pre-mRNA splicing. First, U2AF35 has been shown to function by directly interacting with the AG at the 3′ splice site. Second, U2AF35 is thought to play a role in the recruitment of U2AF65 by serine-arginine-rich (SR) proteins in enhancer-dependent splicing. It has been proposed that the physical interaction between the arginine-serine-rich (RS) domain of U2AF35 and SR proteins is important for this activity. However, other data suggest that this may not be the case. Here, we report the identification of a mammalian gene that encodes a 26-kDa protein bearing strong sequence similarity to U2AF35, designated U2AF26. The N-terminal 187 amino acids of U2AF35 and U2AF26 are nearly identical. However, the C-terminal domain of U2AF26 lacks many characteristics of the U2AF35 RS domain and, therefore, might be incapable of interacting with SR proteins. We show that U2AF26 can associate with U2AF65 and can functionally substitute for U2AF35 in both constitutive and enhancer-dependent splicing, demonstrating that the RS domain of the small U2AF subunit is not required for splicing enhancer function. Finally, we show that U2AF26 functions by enhancing the binding of U2AF65 to weak 3′ splice sites. These studies identify U2AF26 as a mammalian splicing factor and demonstrate that distinct U2AF complexes can participate in pre-mRNA splicing. Based on its sequence and functional similarity to U2AF35, U2AF26 may play a role in regulating alternative splicing.
PMCID: PMC134218  PMID: 11739736

Results 1-25 (692137)