PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (440666)

Clipboard (0)
None

Related Articles

1.  Cholinergic Abnormalities, Endosomal Alterations and Up-Regulation of Nerve Growth Factor Signaling in Niemann-Pick Type C Disease 
Background
Neurotrophins and their receptors regulate several aspects of the developing and mature nervous system, including neuronal morphology and survival. Neurotrophin receptors are active in signaling endosomes, which are organelles that propagate neurotrophin signaling along neuronal processes. Defects in the Npc1 gene are associated with the accumulation of cholesterol and lipids in late endosomes and lysosomes, leading to neurodegeneration and Niemann-Pick type C (NPC) disease. The aim of this work was to assess whether the endosomal and lysosomal alterations observed in NPC disease disrupt neurotrophin signaling. As models, we used i) NPC1-deficient mice to evaluate the central cholinergic septo-hippocampal pathway and its response to nerve growth factor (NGF) after axotomy and ii) PC12 cells treated with U18666A, a pharmacological cellular model of NPC, stimulated with NGF.
Results
NPC1-deficient cholinergic cells respond to NGF after axotomy and exhibit increased levels of choline acetyl transferase (ChAT), whose gene is under the control of NGF signaling, compared to wild type cholinergic neurons. This finding was correlated with increased ChAT and phosphorylated Akt in basal forebrain homogenates. In addition, we found that cholinergic neurons from NPC1-deficient mice had disrupted neuronal morphology, suggesting early signs of neurodegeneration. Consistently, PC12 cells treated with U18666A presented a clear NPC cellular phenotype with a prominent endocytic dysfunction that includes an increased size of TrkA-containing endosomes and reduced recycling of the receptor. This result correlates with increased sensitivity to NGF, and, in particular, with up-regulation of the Akt and PLC-γ signaling pathways, increased neurite extension, increased phosphorylation of tau protein and cell death when PC12 cells are differentiated and treated with U18666A.
Conclusions
Our results suggest that the NPC cellular phenotype causes neuronal dysfunction through the abnormal up-regulation of survival pathways, which causes the perturbation of signaling cascades and anomalous phosphorylation of the cytoskeleton.
doi:10.1186/1750-1326-7-11
PMCID: PMC3395862  PMID: 22458984
NGF; Endosomes; Cholesterol; Niemann-Pick type C1; cholinergic system; PC12
2.  Deficiency of Niemann-Pick Type C-1 Protein Impairs Release of Human Immunodeficiency Virus Type 1 and Results in Gag Accumulation in Late Endosomal/Lysosomal Compartments▿  
Journal of Virology  2009;83(16):7982-7995.
Human immunodeficiency virus type 1 (HIV-1) relies on cholesterol-laden lipid raft membrane microdomains for entry into and egress out of susceptible cells. In the present study, we examine the need for intracellular cholesterol trafficking pathways with respect to HIV-1 biogenesis using Niemann-Pick type C-1 (NPC1)-deficient (NPCD) cells, wherein these pathways are severely compromised, causing massive accumulation of cholesterol in late endosomal/lysosomal (LE/L) compartments. We have found that induction of an NPC disease-like phenotype through treatment of various cell types with the commonly used hydrophobic amine drug U18666A resulted in profound suppression of HIV-1 release. Further, NPCD Epstein-Barr virus-transformed B lymphocytes and fibroblasts from patients with NPC disease infected with a CD4-independent strain of HIV-1 or transfected with an HIV-1 proviral clone, respectively, replicated HIV-1 poorly compared to normal cells. Infection of the NPCD fibroblasts with a vesicular stomatitis virus G-pseudotyped strain of HIV-1 produced similar results, suggesting a postentry block to HIV-1 replication in these cells. Examination of these cells using confocal microscopy showed an accumulation and stabilization of Gag in LE/L compartments. Additionally, normal HIV-1 production could be restored in NPCD cells upon expression of a functional NPC1 protein, and overexpression of NPC1 increased HIV-1 release. Taken together, our findings demonstrate that intact intracellular cholesterol trafficking pathways mediated by NPC1 are needed for efficient HIV-1 production.
doi:10.1128/JVI.00259-09
PMCID: PMC2715784  PMID: 19474101
3.  Cholesterol Accumulation Sequesters Rab9 and Disrupts Late Endosome Function in NPC1-deficient Cells* 
The Journal of biological chemistry  2006;281(26):17890-17899.
Niemann-Pick type C disease is an autosomal recessive disorder that leads to massive accumulation of cholesterol and glycosphingolipids in late endosomes and lysosomes. To understand how cholesterol accumulation influences late endosome function, we investigated the effect of elevated cholesterol on Rab9-dependent export of mannose 6-phosphate receptors from this compartment. Endogenous Rab9 levels were elevated 1.8-fold in Niemann-Pick type C cells relative to wild type cells, and its half-life increased 1.6-fold, suggesting that Rab9 accumulation is caused by impaired protein turnover. Reduced Rab9 degradation was accompaniedby stabilization on endosome membranes, as shown by a reduction in the capacity of Rab9 for guanine nucleotide dissociation inhibitor-mediated extraction from Niemann-Pick type C membranes. Cholesterol appeared to stabilize Rab9 directly, as liposomes loaded with prenylated Rab9 showed decreased extractability with increasing cholesterol content. Rab9 is likely sequestered in an inactive form on Niemann-Pick type C membranes, as cation-dependent man-nose 6-phosphate receptorswere missorted to the lysosome for degradation, a process that was reversed by overexpression of GFP-tagged Rab9. In addition to using primary fibroblasts isolated from Niemann-Pick type C patients, RNA interference was utilized to recapitulate the disease phenotype in cultured cells, greatly facilitating the analysis of cholesterol accumulation and late endosome function. We conclude that cholesterol contributes directly to the sequestration of Rab9 on Niemann-Pick type C cell membranes, which in turn, disrupts mannose 6-phosphate receptor trafficking.
doi:10.1074/jbc.M601679200
PMCID: PMC3650718  PMID: 16644737
4.  ARF6-Mediated Endosome Recycling Reverses Lipid Accumulation Defects in Niemann-Pick Type C Disease 
PLoS ONE  2009;4(4):e5193.
In human Niemann-Pick Type C (NPC) disease, endosomal trafficking defects lead to an accumulation of free cholesterol and other lipids in late endosome/lysosome (LE/LY) compartments, a subsequent block in cholesterol esterification and significantly reduced cholesterol efflux out of the cell. Here we report that nucleotide cycling or cellular knockdown of the small GTP-binding protein, ARF6, markedly impacts cholesterol homeostasis. Unregulated ARF6 activation attenuates the NPC phenotype at least in part by decreasing cholesterol accumulation and restoring normal sphingolipid trafficking. These effects depend on ARF6-stimulated cholesterol efflux out of the endosomal recycling compartment, a major cell repository for free cholesterol. We also show that fibroblasts derived from different NPC patients displayed varying levels of ARF6 that is GTP-bound, which correlate with their response to sustained ARF6 activation. These studies support emerging evidence that early endocytic defects impact NPC disease and suggest that such heterogeneity in NPC disease could result in diverse responses to therapeutic interventions aimed at modulating the trafficking of lipids.
doi:10.1371/journal.pone.0005193
PMCID: PMC2664925  PMID: 19365558
5.  A role for oxysterol-binding protein–related protein 5 in endosomal cholesterol trafficking 
The Journal of Cell Biology  2011;192(1):121-135.
ORP5 works together with Niemann Pick C-1 to facilitate exit of cholesterol from endosomes and lysosomes.
Oxysterol-binding protein (OSBP) and its related proteins (ORPs) constitute a large and evolutionarily conserved family of lipid-binding proteins that target organelle membranes to mediate sterol signaling and/or transport. Here we characterize ORP5, a tail-anchored ORP protein that localizes to the endoplasmic reticulum. Knocking down ORP5 causes cholesterol accumulation in late endosomes and lysosomes, which is reminiscent of the cholesterol trafficking defect in Niemann Pick C (NPC) fibroblasts. Cholesterol appears to accumulate in the limiting membranes of endosomal compartments in ORP5-depleted cells, whereas depletion of NPC1 or both ORP5 and NPC1 results in luminal accumulation of cholesterol. Moreover, trans-Golgi resident proteins mislocalize to endosomal compartments upon ORP5 depletion, which depends on a functional NPC1. Our results establish the first link between NPC1 and a cytoplasmic sterol carrier, and suggest that ORP5 may cooperate with NPC1 to mediate the exit of cholesterol from endosomes/lysosomes.
doi:10.1083/jcb.201004142
PMCID: PMC3019559  PMID: 21220512
6.  Modulation of Cellular Cholesterol Transport and Homeostasis by Rab11 
Molecular Biology of the Cell  2002;13(9):3107-3122.
To analyze the contribution of vesicular trafficking pathways in cellular cholesterol transport we examined the effects of selected endosomal Rab proteins on cholesterol distribution by filipin staining. Transient overexpression of Rab11 resulted in prominent accumulation of free cholesterol in Rab11-positive organelles that sequestered transferrin receptors and internalized transferrin. Sphingolipids were selectively redistributed as pyrene-sphingomyelin and sulfatide cosequestered with Rab11-positive endosomes, whereas globotriaosyl ceramide and GM2 ganglioside did not. Rab11 overexpression did not perturb the transport of 1,1′-dioctadecyl-3,3,3′,3′-tetramethyl-indocarbocyanine-perchlorate–labeled low-density lipoprotein (LDL) to late endosomes or the Niemann-Pick type C1 (NPC1)-induced late endosomal cholesterol clearance in NPC patient cells. However, Rab11 overexpression inhibited cellular cholesterol esterification in an LDL-independent manner. This effect could be overcome by introducing cholesterol to the plasma membrane by using cyclodextrin as a carrier. These results suggest that in Rab11-overexpressing cells, deposition of cholesterol in recycling endosomes results in its impaired esterification, presumably due to defective recycling of cholesterol to the plasma membrane. The findings point to the importance of the recycling endosomes in regulating cholesterol and sphingolipid trafficking and cellular cholesterol homeostasis.
doi:10.1091/mbc.E02-01-0025
PMCID: PMC124146  PMID: 12221119
7.  Inhibition of cholesterol recycling impairs cellular PrPSc propagation 
Cellular and Molecular Life Sciences   2009;66(24):3979-3991.
The infectious agent in prion diseases consists of an aberrantly folded isoform of the cellular prion protein (PrPc), termed PrPSc, which accumulates in brains of affected individuals. Studies on prion-infected cultured cells indicate that cellular cholesterol homeostasis influences PrPSc propagation. Here, we demonstrate that the cellular PrPSc content decreases upon accumulation of cholesterol in late endosomes, as induced by NPC-1 knock-down or treatment with U18666A. PrPc trafficking, lipid raft association, and membrane turnover are not significantly altered by such treatments. Cellular PrPSc formation is not impaired, suggesting that PrPSc degradation is increased by intracellular cholesterol accumulation. Interestingly, PrPSc propagation in U18666A-treated cells was partially restored by overexpression of rab 9, which causes redistribution of cholesterol and possibly of PrPSc to the trans-Golgi network. Surprisingly, rab 9 overexpression itself reduced cellular PrPSc content, indicating that PrPSc production is highly sensitive to alterations in dynamics of vesicle trafficking.
Electronic supplementary material
The online version of this article (doi:10.1007/s00018-009-0158-4) contains supplementary material, which is available to authorized users.
doi:10.1007/s00018-009-0158-4
PMCID: PMC2777232  PMID: 19823766
Cholesterol; Recycling; Prion; PrP; NPC-1; Rab 9
8.  Oxidative Stress: A Pathogenic Mechanism for Niemann-Pick Type C Disease 
Niemann-Pick type C (NPC) disease is a neurovisceral atypical lipid storage disorder involving the accumulation of cholesterol and other lipids in the late endocytic pathway. The pathogenic mechanism that links the accumulation of intracellular cholesterol with cell death in NPC disease in both the CNS and the liver is currently unknown. Oxidative stress has been observed in the livers and brains of NPC mice and in different NPC cellular models. Moreover, there is evidence of an elevation of oxidative stress markers in the serumof NPC patients. Recent evidence strongly suggests that mitochondrial dysfunction plays an important role in NPC pathogenesis and that mitochondria could be a significant source of oxidative stress in this disease. In this context, the accumulation of vitamin E in the late endosomal/lysosomal compartments in NPC could lead to a potential decrease of its bioavailability and could be another possible cause of oxidative damage. Another possible source of reactive species in NPC is the diminished activity of different antioxidant enzymes. Moreover, because NPC is mainly caused by the accumulation of free cholesterol, oxidized cholesterol derivatives produced by oxidative stress may contribute to the pathogenesis of the disease.
doi:10.1155/2012/205713
PMCID: PMC3374944  PMID: 22720116
9.  Rab8-dependent Recycling Promotes Endosomal Cholesterol Removal in Normal and Sphingolipidosis Cells 
Molecular Biology of the Cell  2007;18(1):47-56.
The mechanisms by which low-density lipoprotein (LDL)-cholesterol exits the endocytic circuits are not well understood. The process is defective in Niemann–Pick type C (NPC) disease in which cholesterol and sphingolipids accumulate in late endosomal compartments. This is accompanied by defective cholesterol esterification in the endoplasmic reticulum and impaired ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol efflux. We show here that overexpression of the recycling/exocytic Rab GTPase Rab8 rescued the late endosomal cholesterol deposition and sphingolipid mistrafficking in NPC fibroblasts. Rab8 redistributed cholesterol from late endosomes to the cell periphery and stimulated cholesterol efflux to the ABCA1-ligand apolipoprotein A-I (apoA-I) without increasing cholesterol esterification. Depletion of Rab8 from wild-type fibroblasts resulted in cholesterol deposition within late endosomal compartments. This cholesterol accumulation was accompanied by impaired clearance of LDL-cholesterol from endocytic circuits to apoA-I and could not be bypassed by liver X receptor activation. Our findings establish Rab8 as a key component of the regulatory machinery that leads to ABCA1-dependent removal of cholesterol from endocytic circuits.
doi:10.1091/mbc.E06-07-0575
PMCID: PMC1751315  PMID: 17050734
10.  Free cholesterol accumulation in macrophage membranes activates Toll-like receptors, p38 MAP kinase and induces cathepsin K 
Circulation research  2009;104(4):455-465.
The molecular events linking lipid accumulation in atherosclerotic plaques to complications such as aneurysm formation and plaque disruption are poorly understood. Balb-Apoe−/− mice bearing a null mutation in the Npc1 gene display prominent medial erosion and athero-thrombosis, while their macrophages accumulate free cholesterol in late endosomes and show increased cathepsin K (Ctsk) expression. We now show increased cathespin K immunostaining and increased SH-proteinase activity using near infrared fluorescence imaging over proximal aortas of Apoe−/−, Npc1−/− mice. In mechanistic studies, cholesterol loading of macrophage plasma membranes (cyclodextrin-cholesterol) or endosomal system (AcLDL+U18666A or Npc1 null mutation) activated Toll-like receptor signaling, leading to sustained phosphorylation of p38 MAP kinase, and induction of p38 targets, including Ctsk, S100a8, Mmp8, and Mmp14. Studies in macrophages from knock-out mice showed major roles for TLR4, following plasma membrane cholesterol loading, and for TLR3, after late endosomal loading. TLR signaling via p38 led to phosphorylation and activation of the transcription factor MITF, acting at E-box elements in the Ctsk promoter. These studies suggest that free cholesterol enrichment of either plasma or endosomal membranes in macrophages leads to activation of signaling via various TLRs, prolonged p38 MAP kinase activation and induction of Mmps, Ctsk, and S100a8, potentially contributing to plaque complications.
doi:10.1161/CIRCRESAHA.108.182568
PMCID: PMC2680702  PMID: 19122179
cathepsin K; p38; Toll-like receptor
11.  Caveolin-1 is ubiquitinated and targeted to intralumenal vesicles in endolysosomes for degradation 
The Journal of Cell Biology  2010;191(3):615-629.
Identification of the pathway by which caveolin-1 is degraded when caveolae assembly is compromised suggests that “caveosomes” may be endosomal accumulations of the protein awaiting degradation.
Caveolae are long-lived plasma membrane microdomains composed of caveolins, cavins, and a cholesterol-rich membrane. Little is known about how caveolae disassemble and how their coat components are degraded. We studied the degradation of caveolin-1 (CAV1), a major caveolar protein, in CV1 cells. CAV1 was degraded very slowly, but turnover could be accelerated by compromising caveolae assembly. Now, CAV1 became detectable in late endosomes (LE) and lysosomes where it was degraded. Targeting to the degradative pathway required ubiquitination and the endosomal sorting complex required for transport (ESCRT) machinery for inclusion into intralumenal vesicles in endosomes. A dual-tag strategy allowed us to monitor exposure of CAV1 to the acidic lumen of individual, maturing LE in living cells. Importantly, we found that “caveosomes,” previously described by our group as independent organelles distinct from endosomes, actually correspond to late endosomal compartments modified by the accumulation of overexpressed CAV1 awaiting degradation. The findings led us to a revised model for endocytic trafficking of CAV1.
doi:10.1083/jcb.201003086
PMCID: PMC3003328  PMID: 21041450
12.  The Recycling Endosome of Madin-Darby Canine Kidney Cells Is a Mildly Acidic Compartment Rich in Raft Components 
Molecular Biology of the Cell  2000;11(8):2775-2791.
We present a biochemical and morphological characterization of recycling endosomes containing the transferrin receptor in the epithelial Madin-Darby canine kidney cell line. We find that recycling endosomes are enriched in molecules known to regulate transferrin recycling but lack proteins involved in early endosome membrane dynamics, indicating that recycling endosomes are distinct from conventional early endosomes. We also find that recycling endosomes are less acidic than early endosomes because they lack a functional vacuolar ATPase. Furthermore, we show that recycling endosomes can be reached by apically internalized tracers, confirming that the apical endocytic pathway intersects the transferrin pathway. Strikingly, recycling endosomes are enriched in the raft lipids sphingomyelin and cholesterol as well as in the raft-associated proteins caveolin-1 and flotillin-1. These observations may suggest that a lipid-based sorting mechanism operates along the Madin-Darby canine kidney recycling pathway, contributing to the maintenance of cell polarity. Altogether, our data indicate that recycling endosomes and early endosomes differ functionally and biochemically and thus that different molecular mechanisms regulate protein sorting and membrane traffic at each step of the receptor recycling pathway.
PMCID: PMC14955  PMID: 10930469
13.  Pre-Symptomatic Activation of Antioxidant Responses and Alterations in Glucose and Pyruvate Metabolism in Niemann-Pick Type C1-Deficient Murine Brain 
PLoS ONE  2013;8(12):e82685.
Niemann-Pick Type C (NPC) disease is an autosomal recessive neurodegenerative disorder caused in most cases by mutations in the NPC1 gene. NPC1-deficiency is characterized by late endosomal accumulation of cholesterol, impaired cholesterol homeostasis, and a broad range of other cellular abnormalities. Although neuronal abnormalities and glial activation are observed in nearly all areas of the brain, the most severe consequence of NPC1-deficiency is a near complete loss of Purkinje neurons in the cerebellum. The link between cholesterol trafficking and NPC pathogenesis is not yet clear; however, increased oxidative stress in symptomatic NPC disease, increases in mitochondrial cholesterol, and alterations in autophagy/mitophagy suggest that mitochondria play a role in NPC disease pathology. Alterations in mitochondrial function affect energy and neurotransmitter metabolism, and are particularly harmful to the central nervous system. To investigate early metabolic alterations that could affect NPC disease progression, we performed metabolomics analyses of different brain regions from age-matched wildtype and Npc1-/- mice at pre-symptomatic, early symptomatic and late stage disease by 1H-NMR spectroscopy. Metabolic profiling revealed markedly increased lactate and decreased acetate/acetyl-CoA levels in Npc1-/- cerebellum and cerebral cortex at all ages. Protein and gene expression analyses indicated a pre-symptomatic deficiency in the oxidative decarboxylation of pyruvate to acetyl-CoA, and an upregulation of glycolytic gene expression at the early symptomatic stage. We also observed a pre-symptomatic increase in several indicators of oxidative stress and antioxidant response systems in Npc1-/- cerebellum. Our findings suggest that energy metabolism and oxidative stress may present additional therapeutic targets in NPC disease, especially if intervention can be started at an early stage of the disease.
doi:10.1371/journal.pone.0082685
PMCID: PMC3867386  PMID: 24367541
14.  Diversity of Raft-Like Domains in Late Endosomes 
PLoS ONE  2007;2(4):e391.
Background
Late endosomes, the last sorting station in the endocytic pathway before lysosomes, are pleiomorphic organelles composed of tubular elements as well as vesicular regions with a characteristic multivesicular appearance, which play a crucial role in intracellular trafficking. Here, we have investigated whether, in addition to these morphologically distinguishable regions, late endosomal membranes are additionally sub-compartmentalized into membrane microdomains.
Methodology/Principal Findings
Using sub-organellar fractionation techniques, both with and without detergents, combined with electron microscopy, we found that both the limiting membrane of the organel and the intraluminal vesicles contain raft-type membrane domains. Interestingly, these differentially localized domains vary in protein composition and physico-chemical properties.
Conclusions/Significance
In addition to the multivesicular organization, we find that late endosomes contain cholesterol rich microdomains both on their limiting membrane and their intraluminal vesicles that differ in composition and properties. Implications of these findings for late endosomal functions are discussed.
doi:10.1371/journal.pone.0000391
PMCID: PMC1851096  PMID: 17460758
15.  The Yeast vps Class E Mutants: The Beginning of the Molecular Genetic Analysis of Multivesicular Body Biogenesis 
Molecular Biology of the Cell  2010;21(23):4057-4060.
In 1992, Raymond et al. published a compilation of the 41 yeast vacuolar protein sorting (vps) mutant groups and described a large class of mutants (class E vps mutants) that accumulated an exaggerated prevacuolar endosome-like compartment. Further analysis revealed that this “class E compartment” contained soluble vacuolar hydrolases, vacuolar membrane proteins, and Golgi membrane proteins unable to recycle back to the Golgi complex, yet these class E vps mutants had what seemed to be normal vacuoles. The 13 class E VPS genes were later shown to encode the proteins that make up the complexes required for formation of intralumenal vesicles in late endosomal compartments called multivesicular bodies, and for the sorting of ubiquitinated cargo proteins into these internal vesicles for eventual delivery to the vacuole or lysosome.
doi:10.1091/mbc.E09-07-0603
PMCID: PMC2993735  PMID: 21115849
16.  Loss of Niemann Pick type C proteins 1 and 2 greatly enhances HIV infectivity and is associated with accumulation of HIV Gag and cholesterol in late endosomes/lysosomes 
Virology Journal  2012;9:31.
Background
Cholesterol pathways play an important role at multiple stages during the HIV-1 infection cycle. Here, we investigated the role of cholesterol trafficking in HIV-1 replication utilizing Niemann-Pick Type C disease (NPCD) cells as a model system.
Results
We used a unique NPC2-deficient cell line (NPCD55) that exhibited Gag accumulation as well as decreased NPC1 expression after HIV infection. Virus release efficiency from NPCD55 cells was similar to that from control cells. However, we observed a 3 to 4-fold enhancement in the infectivity of virus released from these cells. Fluorescence microscopy revealed accumulation and co-localization of Gag proteins with cholesterol in late endosomal/lysosomal (LE/L) compartments of these cells. Virion-associated cholesterol was 4-fold higher in virions produced in NPCD55 cells relative to virus produced in control cells. Treatment of infected NPCD55 cells with the cholesterol efflux-inducing drug TO-9013171 reduced virus infectivity to control levels.
Conclusions
These results suggest cholesterol trafficking and localization can profoundly affect HIV-1 infectivity by modulating the cholesterol content of the virions.
doi:10.1186/1743-422X-9-31
PMCID: PMC3299633  PMID: 22273177
17.  Dynamic Movements of Organelles Containing Niemann-Pick C1 Protein: NPC1 Involvement in Late Endocytic EventsV⃞ 
Molecular Biology of the Cell  2001;12(3):601-614.
People homozygous for mutations in the Niemann-Pick type C1 (NPC1) gene have physiological defects, including excess accumulation of intracellular cholesterol and other lipids, that lead to drastic neural and liver degeneration. The NPC1 multipass transmembrane protein is resident in late endosomes and lysosomes, but its functions are unknown. We find that organelles containing functional NPC1-fluorescent protein fusions undergo dramatic movements, some in association with extending strands of endoplasmic reticulum. In NPC1 mutant cells the NPC1-bearing organelles that normally move at high speed between perinuclear regions and the periphery of the cell are largely absent. Pulse-chase experiments with dialkylindocarbocyanine low-density lipoprotein showed that NPC1 organelles function late in the endocytic pathway; NPC1 protein may aid the partitioning of endocytic and lysosomal compartments. The close connection between NPC1 and the drug U18666A, which causes NPC1-like organelle defects, was established by rescuing drug-treated cells with overproduced NPC1. U18666A inhibits outward movements of NPC1 organelles, trapping membranes and cholesterol in perinuclear organelles similar to those in NPC1 mutant cells, even when cells are grown in lipoprotein-depleted serum. We conclude that NPC1 protein promotes the creation and/or movement of particular late endosomes, which rapidly transport materials to and from the cell periphery.
PMCID: PMC30967  PMID: 11251074
18.  Hrs and SNX3 Functions in Sorting and Membrane Invagination within Multivesicular Bodies  
PLoS Biology  2008;6(9):e214.
After internalization, ubiquitinated signaling receptors are delivered to early endosomes. There, they are sorted and incorporated into the intralumenal invaginations of nascent multivesicular bodies, which function as transport intermediates to late endosomes. Receptor sorting is achieved by Hrs—an adaptor-like protein that binds membrane PtdIns3P via a FYVE motif—and then by ESCRT complexes, which presumably also mediate the invagination process. Eventually, intralumenal vesicles are delivered to lysosomes, leading to the notion that EGF receptor sorting into multivesicular bodies mediates lysosomal targeting. Here, we report that Hrs is essential for lysosomal targeting but dispensable for multivesicular body biogenesis and transport to late endosomes. By contrast, we find that the PtdIns3P-binding protein SNX3 is required for multivesicular body formation, but not for EGF receptor degradation. PtdIns3P thus controls the complementary functions of Hrs and SNX3 in sorting and multivesicular body biogenesis.
Author Summary
The cell's genetic program is modulated by extracellular signals that activate cell surface receptors and, in turn, intracellular effectors, to regulate transcription. For cells to function normally, these signals must be turned off to avoid permanent activation—a situation often associated with cancer. For many receptors, signaling is repressed, or down-regulated, in a process that first internalizes and then degrades the receptors. After receptors are removed from the cell surface into structures called early endosomes, they are selectively incorporated within vesicles that form inside the endosome. During this process, endosomal membranes are pulled away from the cytoplasm towards the endosome lumen, against the flow of intracellular membrane traffic, eventually resulting in the formation of a “multivesicular body” (vesicles within vesicles). The common view is that these intralumenal vesicles are then delivered to lysosomes, where they are degraded along with their receptor cargo. We have investigated the mechanisms responsible for the biogenesis of intralumenal vesicles in multivesicular bodies. We find that the small protein SNX3, which binds the signaling lipid phosphatidyl inositol-3-phosphate, is necessary for the formation of intralumenal vesicles, but is not involved in the degradation of the cell surface receptor for EGF. Conversely, we find that Hrs, which also binds phosphatidyl inositol-3-phosphate and mediates receptor sorting into intralumenal vesicles, is essential for lysosomal targeting but dispensable for multivesicular body biogenesis. Phosphatidyl inositol-3-phosphate thus controls the complementary functions of Hrs and SNX3 in the sorting of signaling receptors and multivesicular body biogenesis.
SNX3 plays a direct role in the formation of intralumenal vesicles of multivesicular bodies (MVBs) but is not involved in EGF receptor degradation, whereas Hrs is essential for lysosomal targeting but dispensable for MVB biogenesis. Hence, intralumenal vesicle formation in MVB biogenesis can be uncoupled from lysosomal targeting.
doi:10.1371/journal.pbio.0060214
PMCID: PMC2528051  PMID: 18767904
19.  Cholesterol accumulation in Niemann Pick type C (NPC) model cells causes a shift in APP localization to lipid rafts 
It has been suggested that cholesterol may modulate amyloid-β (Aβ) formation, a causative factor of Alzheimer's disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD (β-amyloid precursor protein (APP), β-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/Aβ formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1-/- cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, γ-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards Aβ occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer's disease and supports the role of lipid rafts in these processes.
doi:10.1016/j.bbrc.2010.02.007
PMCID: PMC2853640  PMID: 20138836
Alzheimer's disease; Amyloid-β; APP; cholesterol; lipid rafts; Niemann Pick type C disease; NPC1
20.  Adenovirus RID-α activates an autonomous cholesterol regulatory mechanism that rescues defects linked to Niemann-Pick disease type C 
The Journal of Cell Biology  2009;187(4):537-552.
Viral subversion of cholesterol homeostasis provides insights into sterol trafficking, autophagy, and lysosomal storage diseases.
Host–pathogen interactions are important model systems for understanding fundamental cell biological processes. In this study, we describe a cholesterol-trafficking pathway induced by the adenovirus membrane protein RID-α that also subverts the cellular autophagy pathway during early stages of an acute infection. A palmitoylation-defective RID-α mutant deregulates cholesterol homeostasis and elicits lysosomal storage abnormalities similar to mutations associated with Niemann-Pick type C (NPC) disease. Wild-type RID-α rescues lipid-sorting defects in cells from patients with this disease by a mechanism involving a class III phosphatidylinositol-3-kinase. In contrast to NPC disease gene products that are localized to late endosomes/lysosomes, RID-α induces the accumulation of autophagy-like vesicles with a unique molecular composition. Ectopic RID-α regulates intracellular cholesterol trafficking at two distinct levels: the egress from endosomes and transport to the endoplasmic reticulum necessary for homeostatic gene regulation. However, RID-α also induces a novel cellular phenotype, suggesting that it activates an autonomous cholesterol regulatory mechanism distinct from NPC disease gene products.
doi:10.1083/jcb.200903039
PMCID: PMC2779231  PMID: 19948501
21.  Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes 
The Journal of Cell Biology  2003;162(3):435-442.
Hrs and the endosomal sorting complexes required for transport, ESCRT-I, -II, and -III, are involved in the endosomal sorting of membrane proteins into multivesicular bodies and lysosomes or vacuoles. The ESCRT complexes are also required for formation of intraluminal endosomal vesicles and for budding of certain enveloped RNA viruses such as HIV. Here, we show that Hrs binds to the ESCRT-I subunit Tsg101 via a PSAP motif that is conserved in Tsg101-binding viral proteins. Depletion of Hrs causes a reduction in membrane-associated ESCRT-I subunits, a decreased number of multivesicular bodies and an increased size of late endosomes. Even though Hrs mainly localizes to early endosomes and Tsg101 to late endosomes, the two proteins colocalize on a subpopulation of endosomes that contain lyso-bisphosphatidic acid. Overexpression of Hrs causes accumulation of Tsg101 on early endosomes and prevents its localization to late endosomes. We conclude that Hrs mediates the initial recruitment of ESCRT-I to endosomes and, thereby, indirectly regulates multivesicular body formation.
doi:10.1083/jcb.200302131
PMCID: PMC2172703  PMID: 12900395
endocytosis; lysosome; membrane traffic; Tsg101; protein sorting
22.  Treatment of Human Fibroblasts Carrying NPC1 Missense Mutations with MG132 Leads to an Improvement of Intracellular Cholesterol Trafficking 
JIMD Reports  2011;2:59-69.
Niemann Pick type C (NPC) disease is an autosomal recessive disorder characterized by the lysosomal/late endosomal (LE) accumulation of unesterified cholesterol and other lipids due to a defect in the intracellular lipid trafficking. About 95% of patients present mutations in the NPC1 gene. Among the 290 mutations reported in the NPC1 gene, about 70% are missense. However, little information is available regarding the impact of missense mutations on NPC1 protein stability and function. In this study, we in vitro characterized the pathogenic effect of 7 NPC1 missense mutations. In all cases, the basal levels of mutant NPC1 expression were reduced with respect to wild type. Treatment of fibroblasts carrying NPC1 missense mutations in homo or hemizygosity, with the proteasome inhibitor MG132 or glycerol 10%, a chemical chaperone known to stabilize misfolded proteins, resulted in a significant increase of NPC1 protein levels in all cell lines, indicating that these mutants are subjected to proteasomal degradation due to protein misfolding The increment of NPC1 mutant protein induced by the proteasome inhibitor was associated with a localization of NPC1 protein within lysosomal/LE compartment. In cell lines carrying mutations p.N1156S, p.L1191F, p.V1165M, and p.I1061T, the increment of NPC1 mutant protein resulted in an improvement of the intracellular trafficking of cholesterol and GM1. These findings showed that it is possible to correct the NPC cellular phenotype by increasing the amount of endogenous NPC1 mutated protein, suggesting that at least some NPC1 mutations might be potentially rescued by small molecules-based chaperone therapy.
doi:10.1007/8904_2011_49
PMCID: PMC3509841  PMID: 23430855
23.  Ryanodine receptor antagonists adapt NPC1 proteostasis to ameliorate lipid storage in Niemann–Pick type C disease fibroblasts 
Human Molecular Genetics  2012;21(14):3205-3214.
Niemann–Pick type C disease is a lysosomal storage disorder most often caused by loss-of-function mutations in the NPC1 gene. The encoded multipass transmembrane protein is required for cholesterol efflux from late endosomes and lysosomes. Numerous missense mutations in the NPC1 gene cause disease, including the prevalent I1061T mutation that leads to protein misfolding and degradation. Here, we sought to modulate the cellular proteostasis machinery to achieve functional recovery in primary patient fibroblasts. We demonstrate that targeting endoplasmic reticulum (ER) calcium levels using ryanodine receptor (RyR) antagonists increased steady-state levels of the NPC1 I1061T protein. These compounds also promoted trafficking of mutant NPC1 to late endosomes and lysosomes and rescued the aberrant storage of cholesterol and sphingolipids that is characteristic of disease. Similar rescue was obtained using three distinct RyR antagonists in cells with missense alleles, but not with null alleles, or by over-expressing calnexin, a calcium-dependent ER chaperone. Our work highlights the utility of proteostasis regulators to remodel the protein-folding environment in the ER to recover function in the setting of disease-causing missense alleles.
doi:10.1093/hmg/dds145
PMCID: PMC3384383  PMID: 22505584
24.  Endosome-to-cytosol transport of viral nucleocapsids 
Nature Cell Biology  2005;7(7):653-664.
During viral infection, fusion of the viral envelope with endosomal membranes and nucleocapsid release were thought to be concomitant events. We show here that for the vesicular stomatitis virus, they occur sequentially, at two successive steps of the endocytic pathway. Fusion already occurs in transport intermediates between early and late endosomes, presumably releasing the nucleocapsid within the lumen of intra-endosomal vesicles, where it remains hidden. Transport to late endosomes is then required for the nucleocapsid to be delivered to the cytoplasm. The latter step, which initiates infection, depends on the late endosomal lipid lysobisphosphatidic acid (LBPA) and its putative effector Alix/AIP1 and is regulated by PI3P signaling via the PI3P-binding protein SNX16. We conclude that the nucleocapsid is exported into the cytoplasm after the back-fusion of internal vesicles with the limiting membrane of late endosomes, and that this process is controlled by the phospholipids LBPA and PI3P, and by their effectors.
doi:10.1038/ncb1269
PMCID: PMC3360589  PMID: 15951806
Animals; Biological Transport; physiology; Cattle; Cell Line; Cricetinae; Cytosol; metabolism; ultrastructure; Endosomal Sorting Complexes Required for Transport; Endosomes; metabolism; ultrastructure; Epithelial Cells; virology; Fibroblasts; virology; Hela Cells; Humans; Lysophospholipids; physiology; Membrane Fusion; drug effects; physiology; Microscopy, Electron; Microscopy, Fluorescence; Monoglycerides; Nucleocapsid; metabolism; Phosphatidylinositol Phosphates; physiology; Phosphoproteins; genetics; physiology; RNA, Viral; biosynthesis; metabolism; Signal Transduction; physiology; Sorting Nexins; Time Factors; Transport Vesicles; metabolism; ultrastructure; Vesicular Transport Proteins; genetics; physiology; Vesicular stomatitis Indiana virus; physiology; Virus Replication; genetics
25.  Lysosomal Lipid Storage Diseases 
Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids, are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes with the help of lipid binding proteins in a sequential manner. Because of a functionally impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumulate in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal system, such as lipids and proteins, causing a “traffic jam.” This can impair lysosomal function, such as delivery of nutrients through the endolysosomal system, leading to a state of cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases with significant residual catabolic activities and without brain involvement.
Mutations in lipid hydrolases and other proteins cause disorders such as Niemann-Pick type C in which accumulation of one lipid species leads to coprecipitation of other hydrophobic molecules, which blocks the endolyosomal system.
doi:10.1101/cshperspect.a004804
PMCID: PMC3098676  PMID: 21502308

Results 1-25 (440666)