Search tips
Search criteria

Results 1-25 (1229293)

Clipboard (0)

Related Articles

1.  PITX2 and FOXC1 spectrum of mutations in ocular syndromes 
European Journal of Human Genetics  2012;20(12):1224-1233.
Anterior segment dysgenesis (ASD) encompasses a broad spectrum of developmental conditions affecting anterior ocular structures and associated with an increased risk for glaucoma. Various systemic anomalies are often observed in ASD conditions such as Axenfeld-Rieger syndrome (ARS) and De Hauwere syndrome. We report DNA sequencing and copy number analysis of PITX2 and FOXC1 in 76 patients with syndromic or isolated ASD and related conditions. PITX2 mutations and deletions were found in 24 patients with dental and/or umbilical anomalies seen in all. Seven PITX2-mutant alleles were novel including c.708_730del, the most C-terminal mutation reported to date. A second case of deletion of the distant upstream but not coding region of PITX2 was identified, highlighting the importance of this recently discovered mechanism for ARS. FOXC1 deletions were observed in four cases, three of which demonstrated hearing and/or heart defects, including a patient with De Hauwere syndrome; no nucleotide mutations in FOXC1 were identified. Review of the literature identified several other patients with 6p25 deletions and features of De Hauwere syndrome. The 1.3-Mb deletion of 6p25 presented here defines the critical region for this phenotype and includes the FOXC1, FOXF2, and FOXQ1 genes. In summary, PITX2 or FOXC1 disruptions explained 63% of ARS and 6% of other ASD in our cohort; all affected patients demonstrated additional systemic defects with PITX2 mutations showing a strong association with dental and/or umbilical anomalies and FOXC1 with heart and hearing defects. FOXC1 deletion was also found to be associated with De Hauwere syndrome.
PMCID: PMC3499749  PMID: 22569110
PITX2; FOXC1; anterior segment dysgenesis; Axenfeld-Rieger syndrome; De Hauwere syndrome
2.  Chromosome 15q24 microdeletion syndrome 
Chromosome 15q24 microdeletion syndrome is a recently described rare microdeletion syndrome that has been reported in 19 individuals. It is characterized by growth retardation, intellectual disability, and distinct facial features including long face with high anterior hairline, hypertelorism, epicanthal folds, downslanting palpebral fissures, sparse and broad medial eyebrows, broad and/or depressed nasal bridge, small mouth, long smooth philtrum, and full lower lip. Other common findings include skeletal and digital abnormalities, genital abnormalities in males, hypotonia, behavior problems, recurrent infections, and eye problems. Other less frequent findings include hearing loss, growth hormone deficiency, hernias, and obesity. Congenital malformations, while rare, can be severe and include structural brain anomalies, cardiovascular malformations, congenital diaphragmatic hernia, intestinal atresia, imperforate anus, and myelomeningocele. Karyotypes are typically normal, and the deletions were detected in these individuals by array comparative genomic hybridization (aCGH). The deletions range in size from 1.7-6.1 Mb and usually result from nonallelic homologous recombination (NAHR) between paralogous low-copy repeats (LCRs). The majority of 15q24 deletions have breakpoints that localize to one of five LCR clusters labeled LCR15q24A, -B, -C, -D, and -E. The smallest region of overlap (SRO) spans a 1.2 Mb region between LCR15q24B to LCR15q24C. There are several candidate genes within the SRO, including CYP11A1, SEMA7A, CPLX3, ARID3B, STRA6, SIN3A and CSK, that may predispose to many of the clinical features observed in individuals with 15q24 deletion syndrome. The deletion occurred as a de novo event in all of the individuals when parents were available for testing. Parental aCGH and/or FISH studies are recommended to provide accurate genetic counseling and guidance regarding prognosis, recurrence risk, and reproductive options. Management involves a multi-disciplinary approach to care with the primary care physician and clinical geneticist playing a crucial role in providing appropriate screening, surveillance, and care for individuals with this syndrome. At the time of diagnosis, individuals should receive baseline echocardiograms, audiologic, ophthalmologic, and developmental assessments. Growth and feeding should be closely monitored. Other specialists that may be involved in the care of individuals with 15q24 deletion syndrome include immunology, endocrine, orthopedics, neurology, and urology. Chromosome 15q24 microdeletion syndrome should be differentiated from other genetic syndromes, particularly velo-cardio-facial syndrome (22q11.2 deletion syndrome), Prader-Willi syndrome, and Noonan syndrome. These conditions share some phenotypic similarity to 15q24 deletion syndrome yet have characteristic features specific to each of them that allows the clinician to distinguish between them. Molecular genetic testing and/or aCGH will be able to diagnose these conditions in the majority of individuals.
Disease name and synonyms
Chromosome 15q24 deletion syndrome
15q24 deletion syndrome
15q24 microdeletion syndrome
PMCID: PMC3275445  PMID: 22216833
3.  Hearing impairment in Stickler syndrome: a systematic review 
Stickler syndrome is a connective tissue disorder characterized by ocular, skeletal, orofacial and auditory defects. It is caused by mutations in different collagen genes, namely COL2A1, COL11A1 and COL11A2 (autosomal dominant inheritance), and COL9A1 and COL9A2 (autosomal recessive inheritance). The auditory phenotype in Stickler syndrome is inconsistently reported. Therefore we performed a systematic review of the literature to give an up-to-date overview of hearing loss in Stickler syndrome, and correlated it with the genotype.
English-language literature was reviewed through searches of PubMed and Web of Science, in order to find relevant articles describing auditory features in Stickler patients, along with genotype. Prevalences of hearing loss are calculated and correlated with the different affected genes and type of mutation.
313 patients (102 families) individually described in 46 articles were included. Hearing loss was found in 62.9%, mostly mild to moderate when reported. Hearing impairment was predominantly sensorineural (67.8%). Conductive (14.1%) and mixed (18.1%) hearing loss was primarily found in young patients or patients with a palatal defect. Overall, mutations in COL11A1 (82.5%) and COL11A2 (94.1%) seem to be more frequently associated with hearing impairment than mutations in COL2A1 (52.2%).
Hearing impairment in patients with Stickler syndrome is common. Sensorineural hearing loss predominates, but also conductive hearing loss, especially in children and patients with a palatal defect, may occur. The distinct disease-causing collagen genes are associated with a different prevalence of hearing impairment, but still large phenotypic variation exists. Regular auditory follow-up is strongly advised, particularly because many Stickler patients are visually impaired.
PMCID: PMC3551705  PMID: 23110709
Stickler syndrome; Arthro-ophthalmopathy; Collagen; COL2A1; Hearing loss; Cleft palate
4.  Microdeletion del(22)(q12.2) encompassing the facial development-associated gene, MN1 (meningioma 1) in a child with Pierre-Robin sequence (including cleft palate) and neurofibromatosis 2 (NF2): a case report and review of the literature 
BMC Medical Genetics  2012;13:19.
Pierre-Robin sequence (PRS) is defined by micro- and/or retrognathia, glossoptosis and cleft soft palate, either caused by deformational defect or part of a malformation syndrome. Neurofibromatosis type 2 (NF2) is an autosomal dominant syndrome caused by mutations in the NF2 gene on chromosome 22q12.2. NF2 is characterized by bilateral vestibular schwannomas, spinal cord schwannomas, meningiomas and ependymomas, and juvenile cataracts. To date, NF2 and PRS have not been described together in the same patient.
Case presentation
We report a female with PRS (micrognathia, cleft palate), microcephaly, ocular hypertelorism, mental retardation and bilateral hearing loss, who at age 15 was also diagnosed with severe NF2 (bilateral cerebellopontine schwannomas and multiple extramedullary/intradural spine tumors). This is the first published report of an individual with both diagnosed PRS and NF2. High resolution karyotype revealed 46, XX, del(22)(q12.1q12.3), FISH confirmed a deletion encompassing NF2, and chromosomal microarray identified a 3,693 kb deletion encompassing multiple genes including NF2 and MN1 (meningioma 1).
Five additional patients with craniofacial dysmorphism and deletion in chromosome 22-adjacent-to or containing NF2 were identified in PubMed and the DECIPHER clinical chromosomal database. Their shared chromosomal deletion encompassed MN1, PITPNB and TTC28. MN1, initially cloned from a patient with meningioma, is an oncogene in murine hematopoiesis and participates as a fusion gene (TEL/MN1) in human myeloid leukemias. Interestingly, Mn1-haploinsufficient mice have abnormal skull development and secondary cleft palate. Additionally, Mn1 regulates maturation and function of calvarial osteoblasts and is an upstream regulator of Tbx22, a gene associated with murine and human cleft palate. This suggests that deletion of MN1 in the six patients we describe may be causally linked to their cleft palates and/or craniofacial abnormalities.
Thus, our report describes a NF2-adjacent chromosome 22q12.2 deletion syndrome and is the first to report association of MN1 deletion with abnormal craniofacial development and/or cleft palate in humans.
PMCID: PMC3359208  PMID: 22436304
Chromosome 22q12.2; Cleft palate; MN1; NF2; Pierre-Robin sequence
5.  Novel mutations in the FOXC1 gene in Japanese patients with Axenfeld-Rieger syndrome 
Molecular Vision  2007;13:1005-1009.
Mutations in the forkhead transcription factor (FOXC1) gene have been shown to cause juvenile glaucoma associated with a variety of anterior-segment anomalies. The purpose of this study was to determine the ocular and genetic characteristics of two Japanese families with Axenfeld-Rieger syndrome (ARS).
Genomic DNA was extracted from the leukocytes of six members of two families with ARS. The DNA from one exon of the FOXC1 gene were amplified by polymerase chain reaction (PCR) and directly sequenced. The patients received standard systemic and ophthalmological examinations.
Sequence analysis of the FOXC1 gene revealed a novel Ala85Pro missense mutation in Helix1 in family 1 and a deletion of 17 nucleotides (437-453) in Wing1 and Beta2 within the forkhead domain of the FOXC1 gene in family 2. This deletion predicted a loss of the forkhead domain by a premature termination of translation. These mutations segregated with the ARS phenotype in an autosomal dominant pattern. The affected individuals in family 1 had posterior embryotoxon, iris hypoplasia, corectopia with early-onset severe glaucoma, atrial septal defect, aortic stenosis, and pulmonary stenosis. The affected members in family 2 had posterior embryotoxon and iris hypoplasia with early-onset glaucoma, and systemically they had hearing loss, hypertelorism, and telecanthus.
A novel mutation in Helix1 and a novel deletion in Wing1 and Beta2 of the forkhead domain of the FOXC1 gene have been identified in two families with ARS. FOXC1 mutations cause a variety of developmental abnormalities in the anterior segment of the eye, and they also induce an elevation in intraocular pressures and early-onset glaucoma.
PMCID: PMC2776537  PMID: 17653043
6.  Submicroscopic deletions of 11q24-25 in individuals without Jacobsen syndrome: re-examination of the critical region by high-resolution array-CGH 
Jacobsen syndrome is a rare contiguous gene disorder that results from a terminal deletion of the long arm of chromosome 11. It is typically characterized by intellectual disability, a variety of physical anomalies and a distinctive facial appearance. The 11q deletion has traditionally been identified by routine chromosome analysis. Array-based comparative genomic hybridization (array-CGH) has offered new opportunities to identify and refine chromosomal abnormalities in regions known to be associated with clinical syndromes.
Using the 1 Mb BAC array (Spectral Genomics), we screened 70 chromosomally normal children with idiopathic intellectual disability (ID) and congenital abnormalities, and identified five cases with submicroscopic abnormalities believed to contribute to their phenotypes. Here, we provide detailed molecular cytogenetic descriptions and clinical presentation of two unrelated subjects with de novo submicroscopic deletions within chromosome bands 11q24-25. In subject 1 the chromosome rearrangement consisted of a 6.18 Mb deletion (from 128.25–134.43 Mb) and an adjacent 5.04 Mb duplication (from 123.15–128.19 Mb), while in subject 2, a 4.74 Mb interstitial deletion was found (from 124.29–129.03 Mb). Higher resolution array analysis (385 K Nimblegen) was used to refine all breakpoints. Deletions of the 11q24-25 region are known to be associated with Jacobsen syndrome (JBS: OMIM 147791). However, neither of the subjects had the typical features of JBS (trigonocephaly, platelet disorder, heart abnormalities). Both subjects had ID, dysmorphic features and additional phenotypic abnormalities: subject 1 had a kidney abnormality, bilateral preauricular pits, pectus excavatum, mild to moderate conductive hearing loss and behavioral concerns; subject 2 had macrocephaly, an abnormal MRI with delayed myelination, fifth finger shortening and squaring of all fingertips, and sensorineural hearing loss.
Two individuals with ID who did not have the typical clinical features of Jacobsen syndrome were found to have deletions within the JBS region at 11q24-25. Their rearrangements facilitate the refinement of the JBS critical region and suggest that a) deletion of at least 3 of the 4 platelet function critical genes (ETS-1, FLI-1 and NFRKB and JAM3) is necessary for thrombocytopenia; b) one of the critical regions for heart abnormalities (conotruncal heart defects) may lie within 129.03 – 130.6 Mb; c) deletions of KCNJ1 and ADAMTS15 may contribute to the renal anomalies in Jacobsen Syndrome; d) the critical region for MRI abnormalities involves a region from 124.6 – 129.03 Mb. Our results reiterate the benefits of array-CGH for description of new phenotype/genotype associations and refinement of previously established ones.
PMCID: PMC2648978  PMID: 19000322
7.  Mutations of KCNQ4 Channels Associated with Nonsyndromic Progressive Sensorineural Hearing Loss 
Purpose of the review
This article provides an update on the current progress in identification of KCNQ4 mutations responsible for progressive hearing loss in DFNA2.
Recent findings
The KCNQ4 gene has been identified at DFNA2 locus on the human chromosome 1p34. DFNA2 is a subtype of autosomal dominant nonsyndromic progressive hearing loss, characterized by hearing loss starting at high frequencies in the twenties and thirties, and then progressing to more than 60 dB with middle and low frequencies often affected as well, in less than 10 years. To date, eight missense mutations and two deletions of the KCNQ4 gene have been identified in DFNA2 patients with various clinical phenotypes. In general, missense mutations are associated with younger-onset and all-frequency hearing loss, while deletion mutations are underlying later-onset and pure high-frequency hearing loss. The etiology of DFNA2 remains largely unknown at this point, even though the degeneration of cochlear outer hair cells, caused by dysfunction of KCNQ4 channels, might be one of the underlying mechanisms.
During the last decade, significant progress has been made in identifying KCNQ4 mutations in DFNA2 patients. Elucidation of the pathogenic effect of these mutations will help to gain insights to the molecular mechanisms of hearing and hearing loss, which, in turn, will facilitate informative genetic counseling, early diagnosis, and even treatment of hearing loss.
PMCID: PMC2743278  PMID: 18797286
Autosomal dominant; nonsyndromic; progressive hearing loss; voltage-gated potassium channels; mutations
8.  14q12 and severe Rett-like phenotypes: new clinical insights and physical mapping of FOXG1-regulatory elements 
European Journal of Human Genetics  2012;20(12):1216-1223.
The Forkhead box G1 (FOXG1) gene has been implicated in severe Rett-like phenotypes. It encodes the Forkhead box protein G1, a winged-helix transcriptional repressor critical for forebrain development. Recently, the core FOXG1 syndrome was defined as postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and dysgenesis of the corpus callosum. We present seven additional patients with a severe Rett-like neurodevelopment disorder associated with de novo FOXG1 point mutations (two cases) or 14q12 deletions (five cases). We expand the mutational spectrum in patients with FOXG1-related encephalopathies and precise the core FOXG1 syndrome phenotype. Dysgenesis of the corpus callosum and dyskinesia are not always present in FOXG1-mutated patients. We believe that the FOXG1 gene should be considered in severely mentally retarded patients (no speech-language) with severe acquired microcephaly (−4 to−6 SD) and few clinical features suggestive of Rett syndrome. Interestingly enough, three 14q12 deletions that do not include the FOXG1 gene are associated with phenotypes very reminiscent to that of FOXG1-mutation-positive patients. We physically mapped a putative long-range FOXG1-regulatory element in a 0.43 Mb DNA segment encompassing the PRKD1 locus. In fibroblast cells, a cis-acting regulatory sequence located more than 0.6 Mb away from FOXG1 acts as a silencer at the transcriptional level. These data are important for clinicians and for molecular biologists involved in the management of patients with severe encephalopathies compatible with a FOXG1-related phenotype.
PMCID: PMC3499785  PMID: 22739344
14q12; CNV;  FOXG1 ; Rett syndrome; cis-acting regulatory element
9.  Genetic testing for hearing loss in the United States should include deletion/duplication analysis for the deafness/infertility locus at 15q15.3 
Hearing loss is the most common birth defect and the most prevalent sensorineural disorder in developed countries. More than 50% of prelingual deafness is genetic, most often autosomal recessive and nonsyndromic, of which 50% can be attributed to the disorder DFNB1, caused by mutations in GJB2 and GJB6. Sensorineural hearing loss and male infertility (Deafness-Infertility Syndrome; DIS) is a contiguous gene deletion syndrome resulting from homozygous deletion of the CATSPER2 and STRC genes on chromosome 15q15.3. Females with DIS have only hearing loss and are fertile. Until recently this syndrome has only been described in three consanguineous families and 2 nonconsanguineous families.
We recently indentified a patient with hearing loss and macrocephaly who was found to be homozygous for this deletion. Her nonconsanguineous parents are both carriers. We examined our database of patients tested by array CGH and determined that just over 1% of our patients are heterozygous for this deletion. If this number is representative of the general population, this implies a 1% carrier frequency and prevalence of DIS of 1 in 40,000 individuals.
We propose that DIS is a greatly under-diagnosed cause of deafness and should be considered in children with hearing loss. Likewise, current molecular genetic testing panels for hearing loss in the United States should be expanded to include deletion/duplication analysis of this region.
PMCID: PMC3671142  PMID: 23648117
Deafness-Infertility Syndrome; CATSPER2; STRC; Array CGH
10.  The podosomal-adaptor protein SH3PXD2B is essential for normal postnatal development 
Podosome-type adhesions are actin based membrane protrusions involved in cell-matrix adhesion and extracellular matrix degradation. Despite growing knowledge of many proteins associated with podosome-type adhesions, much remains unknown concerning the function of podosomal proteins at the level of the whole animal. In this study, the spontaneous mouse mutant nee was used to identify a component of podosome-type adhesions that is essential for normal postnatal growth and development. Mice homozygous for the nee allele exhibited runted growth, craniofacial and skeletal abnormalities, ocular anterior segment dysgenesis, and hearing impairment. Adults also exhibited infertility and a form of lipodystrophy. Using genetic mapping and DNA sequencing, the cause of nee phenotypes was identified as a 1 bp deletion within the Sh3pxd2b gene on mouse Chromosome 11. Whereas the wild-type Sh3pxd2b gene is predicted to encode a protein with 1 PX domain and 4 SH3 domains, the nee mutation is predicted to cause a frameshift and a protein truncation altering a portion of the third SH3 domain and deleting all of the fourth SH3 domain. The SH3PXD2B protein is believed to be an important component of podosomes likely to mediate protein-protein interactions with membrane spanning metalloproteinases. Testing this directly, SH3PXD2B localized to podosomes in constitutively active Src transfected fibroblasts and through its last SH3 domain associated with a transmembrane member of a disintegrin and metalloproteinase family of proteins, ADAM15. These results identify SH3PXD2B as a podosomal-adaptor protein required for postnatal growth and development, particularly within physiologic contexts involving extracellular matrix regulation.
PMCID: PMC2759419  PMID: 19669234
11.  Characterization of deletions at 9p affecting the candidate regions for sex reversal and deletion 9p syndrome by MLPA 
European Journal of Human Genetics  2009;17(11):1439-1447.
The distal region on the short arm of chromosome 9 is of special interest for scientists interested in sex development as well as in the clinical phenotype of patients with the 9p deletion syndrome, characterized by mental retardation, trigonocephaly and other dysmorphic features. Specific genes responsible for different aspects of the phenotype have not been identified. Distal 9p deletions have also been reported in patients with 46,XY sex reversal, with or without 9p deletion syndrome. Within this region the strongest candidates for the gonadal dysgenesis phenotype are the DMRT genes; however, the genetic mechanism is not clear yet. Multiple ligation-dependent probe amplification represents a useful technique to evaluate submicroscopic interstitial or distal deletions that would help the definition of the minimal sex reversal region on 9p and could lead to the identification of gene(s) responsible of the 46,XY gonadal disorders of sex development (DSD). We designed a synthetic probe set that targets genes within the 9p23-9p24.3 region and analyzed a group of XY patients with impaired gonadal development. We characterized a deletion distal to the DMRT genes in a patient with isolated 46,XY gonadal DSD and narrowed down the breakpoint in a patient with a 46,XY del(9)(p23) karyotype with gonadal DSD and mild symptoms of 9p deletion syndrome. The results are compared with other patients described in the literature, and new aspects of sex reversal and the 9p deletion syndrome candidate regions are discussed.
PMCID: PMC2986678  PMID: 19417767
disorders of sex development (DSD); gonadal dysgenesis; sex reversal; multiple ligation-dependent probe amplification (MLPA); DMRT
12.  FoxC1 is essential for vascular basement membrane integrity and hyaloid vessel morphogenesis 
Alterations in FOXC1 dosage lead to a spectrum of highly penetrant, ocular anterior segment dysgenesis phenotypes. The most serious outcome is development of glaucoma, but this only occurs in 50–75% of patients. Therefore, the need to identify specific pathways and genes that interact with FOXC1 to promote glaucoma is great. In this study, we investigated loss of foxC1 in the zebrafish to characterize phenotypes and gene interactions that may impact glaucoma pathogenesis.
Morpholino knockdown in zebrafish, RNA and protein marker analyses, transgenic reporter lines, and angiography, along with histology and transmission electron microscopy were used to study foxC1 function and gene interactions.
Zebrafish foxC1 genes were expressed dynamically in the developing vasculature and periocular mesenchyme during development. Multiple ocular and vascular defects were found after knockdown of foxC1. Defects in the hyaloid vasculature, arterial-venous malformations, and coarctation of the aorta were observed with maximal depletion of foxC1. Partial loss of foxC1 resulted in CNS and ocular hemorrhages, defects in intersegmental vessel patterning, and increased vascular permeability. To investigate the basis for these disruptions, ultrastructure of foxC1-depleted hyaloid vascular cells was studied. These experiments, along with Laminin-111 immunoreactivity, revealed disruptions in basement membrane integrity. Finally, co-depletion of laminin alpha-1 and foxC1 uncovered a genetic interaction between these genes during development.
Genetic interactions between FOXC1 and basement membrane components influence vascular stability and may impact glaucoma development and increase stroke risk in FOXC1 patients.
PMCID: PMC3651675  PMID: 19458328
13.  Deletion of 4q28.3-31.23 in the background of multiple malformations with pulmonary hypertension 
The 4q deletion syndrome shows a broad spectrum of clinical manifestations consisting of key features comprising growth failure, developmental delay, craniofacial dysmorphism, digital anomalies, and cardiac and skeletal defects. We have identified a de novo interstitial distal deletion in a 9 month-old girl with growth failure, developmental delay, ventricular septum defect in the subaortic region, patent foramen ovale and patent ductus arteriosus, vascular malformation of the lung, dysgenesis of the corpus callosum and craniofacial dysmorphism using array-comparative genomic hybridization. This de novo deletion is located at 4q28.3-31.23 (136,127,048 - 150,690,325), its size is 14.56 Mb, and contains 8 relevant genes (PCDH18, SETD7, ELMOD2, IL15, GAB1, HHIP, SMAD1, NR3C2) with possible contributions to the phenotype. Among other functions, a role in lung morphogenesis and tubulogenesis can be attributed to the deleted genes in our patient, which may explain the unique feature of vascular malformation of the lung leading to pulmonary hypertension. With the detailed molecular characterization of our case with 4q- syndrome we hope to contribute to the elucidation of the genetic spectrum of this disorder.
PMCID: PMC4066825  PMID: 24959202
4q28.3-31.23; Array CGH; Deletion; Complex malformation syndrome; Developmental delay; Pulmonary hypertension; Face dysmorphia; Vascular malformation of the lung
14.  Molecular Analysis of the Retinoic Acid Induced 1 Gene (RAI1) in Patients with Suspected Smith-Magenis Syndrome without the 17p11.2 Deletion 
PLoS ONE  2011;6(8):e22861.
Smith-Magenis syndrome (SMS) is a complex neurobehavioral disorder characterized by multiple congenital anomalies. The syndrome is primarily ascribed to a ∼3.7 Mb de novo deletion on chromosome 17p11.2. Haploinsufficiency of multiple genes likely underlies the complex clinical phenotype. RAI1 (Retinoic Acid Induced 1) is recognized as a major gene involved in the SMS phenotype. Extensive genetic and clinical analyses of 36 patients with SMS-like features, but without the 17p11.2 microdeletion, yielded 10 patients with RAI1 variants, including 4 with de novo deleterious mutations, and 6 with novel missense variants, 5 of which were familial. Haplotype analysis showed two major RAI1 haplotypes in our primarily Caucasian cohort; the novel RAI1 variants did not occur in a preferred haplotype. RNA analysis revealed that RAI1 mRNA expression was significantly decreased in cells of patients with the common 17p11.2 deletion, as well as in those with de novo RAI1 variants. Expression levels varied in patients with familial RAI1 variants and in non-17p11.2 deleted patients without identified RAI1 defects. No correlation between SNP haplotype and RAI1 expression was found. Two clinical features, ocular abnormalities and polyembolokoilomania (object insertion), were significantly correlated with decreased RAI1 expression. While not significantly correlated, the presence of hearing loss, seizures, hoarse voice, childhood onset of obesity and specific behavioral aspects and the absence of immunologic abnormalities and cardiovascular or renal structural anomalies, appeared to be specific for the de novo RAI1 subgroup. Recognition of the combination of these features will assist in referral for RAI1 analysis of patients with SMS-like features without detectable microdeletion of 17p11.2. Moreover, RAI1 expression emerged as a genetic target for development of therapeutic interventions for SMS.
PMCID: PMC3152558  PMID: 21857958
15.  Sclerocornea Associated With the Chromosome 22q11.2 Deletion Syndrome 
Reported ocular findings in the 22q11.2 deletion syndrome (which encompasses the phenotypes of DiGeorge, velocardiofacial, and Takao (conotruncal-anomaly-face) syndromes) have included posterior embryotoxon (prominent, anteriorly displaced Schwalbe’s line at the corneal limbus or edge), retinal vascular tortuosity, eyelid hooding, strabismus, and astigmatism. We present seven 22q11.2 patients from multiple centers with sclerocornea, an eye finding previously unreported in the literature. Four boys and three girls were identified with sclerocornea, systemic DGS/VCFS findings, and fluorescence in situ hybridization (FISH)-confirmed microdeletion at chromosome 22q11.2. FISH diagnosis was perinatal in six patients but at 2 years of age in one child. Sclerocornea was bilateral in five patients. Findings included descemetocele (five eyes), microophthalmos (one eye), iridocorneal adhesions (one bilateral case), and severe anterior segment dysgenesis (one eye). Two patients underwent bilateral corneal transplantation; another two were scheduled for possible unilateral transplant. Sclerocornea is a static congenital condition in which the cornea is opaque and vascularized and resembles the sclera. The novel finding of sclerocornea suggests that a genetic locus at 22q11.2 may be involved in anterior segment embryogenesis. In most of our patients, the diagnostic process was underway, but in one patient 22q11.2 deletion was not suspected until after the child had already been undergoing treatment for sclerocornea for 2 years. Sclerocornea should be added to the clinical manifestations of the 22q11.2 deletion syndrome. Ophthalmologists diagnosing sclerocornea in children with systemic findings suggestive of 22q11.2 deletion should ensure appropriate genetic referral.
PMCID: PMC2831198  PMID: 18324686
sclerocornea; corneal opacity; chromosome 22q11.2 deletion syndrome; DiGeorge syndrome; velocardiofacial syndrome; Opitz G/BBB syndrome; Cayler cardiofacial syndrome; Catch 22
16.  Deletions of exons with regulatory activity at the DYNC1I1 locus are associated with split-hand/split-foot malformation: array CGH screening of 134 unrelated families 
A growing number of non-coding regulatory mutations are being identified in congenital disease. Very recently also some exons of protein coding genes have been identified to act as tissue specific enhancer elements and were therefore termed exonic enhancers or “eExons”.
We screened a cohort of 134 unrelated families with split-hand/split-foot malformation (SHFM) with high resolution array CGH for CNVs with regulatory potential.
In three families with an autosomal dominant non-syndromic SHFM phenotype we detected microdeletions encompassing the exonic enhancer (eExons) 15 and 17 of DYNC1I1. In a fourth family, who had hearing loss in addition to SHFM, we found a larger deletion of 510 kb including the eExons of DYNC1I1 and, in addition, the human brain enhancer hs1642. Exons 15 and 17 of DYNC1I1 are known to act as tissue specific limb enhancers of DLX5/6, two genes that have been shown to be associated with SHFM in mice. In our cohort of 134 unrelated families with SHFM, deletions of the eExons of DYNC1I1 account for approximately 3% of the cases, while 17p13.3 duplications were identified in 13% of the families, 10q24 duplications in 12%, and TP63 mutations were detected in 4%.
We reduce the minimal critical region for SHFM1 to 78 kb. Hearing loss, however, appears to be associated with deletions of a more telomeric region encompassing the brain enhancer element hs1642. Thus, SHFM1 as well as hearing loss at the same locus are caused by deletion of regulatory elements. Deletions of the exons with regulatory potential of DYNC1I1 are an example of the emerging role of exonic enhancer elements and their implications in congenital malformation syndromes.
PMCID: PMC4237947  PMID: 25231166
SHFM; DLX5/6; DYNC1I1; Regulatory Mutations; eExons
17.  HERV-Mediated Genomic Rearrangement of EYA1 in an Individual With Branchio-oto-renal Syndrome 
Branchio-oto-renal syndrome is characterized by branchial defects, hearing loss, preauricular pits, and renal anomalies. Mutations in EYA1 are the most common cause of branchio-oto-renal and branchio-otic syndromes. Large chromosomal aberrations of 8q13, including complex rearrangements occur in about 20% of these individuals. However, submicroscopic deletions and the molecular characterization of genomic rearrangements involving the EYA1 gene have rarely been reported. Using the array-comparative genomic hybridization, we identified non-recurrent genomic deletions including the EYA1 gene in three patients with branchio-oto-renal syndrome, short stature, and developmental delay. One of these deletions was mediated by two human endogenous retroviral sequence blocks, analogous to the AZFa microdeletion on Yq11, responsible for male infertility. This report describes the expanded phenotype of individuals, resulting from contiguous gene deletion involving the EYA1 gene and provides a molecular description of the genomic rearrangements involving this gene in branchio-oto-renal syndrome.
PMCID: PMC3605882  PMID: 20979191
BOR; EYA1; array-CGH; LTR/ERV1; short stature; developmental delay
18.  Congenital hereditary endothelial dystrophy with progressive sensorineural deafness (Harboyan syndrome) 
Harboyan syndrome is a degenerative corneal disorder defined as congenital hereditary endothelial dystrophy (CHED) accompanied by progressive, postlingual sensorineural hearing loss. To date, 24 cases from 11 families of various origin (Asian Indian, South American Indian, Sephardi Jewish, Brazilian Portuguese, Dutch, Gypsy, Moroccan, Dominican) have been reported. More than 50% of the reported cases have been associated with parental consanguinity. The ocular manifestations in Harboyan syndrome include diffuse bilateral corneal edema occurring with severe corneal clouding, blurred vision, visual loss and nystagmus. They are apparent at birth or within the neonatal period and are indistinguishable from those characteristic of the autosomal recessive CHED (CHED2). Hearing deficit in Harboyan is slowly progressive and typically found in patients 10–25 years old. There are no reported cases with prelinglual deafness, however, a significant hearing loss in children as young as 4 years old has been detected by audiometry, suggesting that hearing may be affected earlier, even at birth. Harboyan syndrome is caused by mutations in the SLC4A11 gene located at the CHED2 locus on chromosome 20p13-p12, indicating that CHED2 and Harboyan syndrome are allelic disorders. A total of 62 different SLC4A11 mutations have been reported in 98 families (92 CHED2 and 6 Harboyan). All reported cases have been consistent with autosomal recessive transmission. Diagnosis is based on clinical criteria, detailed ophthalmological assessment and audiometry. A molecular confirmation of the clinical diagnosis is feasible. A variety of genetic, metabolic, developmental and acquired diseases presenting with clouding of the cornea should be considered in the differential diagnosis (Peters anomaly, sclerocornea, limbal dermoids, congenital glaucoma). Audiometry must be performed to differentiate Harboyan syndrome from CHED2. Autosomal recessive types of CHED (CHED2 and Harboyan syndrome) should carefully be distinguished from the less severe autosomal dominant type CHED1. The ocular abnormalities in patients with Harboyan syndrome may be treated with topical hyperosmolar solutions. However, corneal transplantation (penetrating keratoplasty) represents definitive treatment. Corneal transplantation produces a substantial visual gain and has a relatively good surgical prognosis. Audiometric monitoring should be offered to all patients with CHED2. Hearing aids may be necessary in adolescence.
PMCID: PMC2576053  PMID: 18922146
19.  Deletion of the MBII-85 snoRNA Gene Cluster in Mice Results in Postnatal Growth Retardation 
PLoS Genetics  2007;3(12):e235.
Prader-Willi syndrome (PWS [MIM 176270]) is a neurogenetic disorder characterized by decreased fetal activity, muscular hypotonia, failure to thrive, short stature, obesity, mental retardation, and hypogonadotropic hypogonadism. It is caused by the loss of function of one or more imprinted, paternally expressed genes on the proximal long arm of chromosome 15. Several potential PWS mouse models involving the orthologous region on chromosome 7C exist. Based on the analysis of deletions in the mouse and gene expression in PWS patients with chromosomal translocations, a critical region (PWScr) for neonatal lethality, failure to thrive, and growth retardation was narrowed to the locus containing a cluster of neuronally expressed MBII-85 small nucleolar RNA (snoRNA) genes. Here, we report the deletion of PWScr. Mice carrying the maternally inherited allele (PWScrm−/p+) are indistinguishable from wild-type littermates. All those with the paternally inherited allele (PWScrm+/p−) consistently display postnatal growth retardation, with about 15% postnatal lethality in C57BL/6, but not FVB/N crosses. This is the first example in a multicellular organism of genetic deletion of a C/D box snoRNA gene resulting in a pronounced phenotype.
Author Summary
Prader-Willi syndrome, or PWS, is a complex neurogenetic disorder and the most common genetic cause of life-threatening childhood obesity. Newborns have poor muscle tone, making suckling difficult, which leads to poor weight gain. After infancy, they experience extreme hunger, leading to obesity. Other symptoms include short stature, mental retardation, and often infertility. In PWS patients, a complex set of genes on the paternal chromosome 15 (in the PWS region) is missing or unexpressed. In an attempt to understand this disorder, various protein-coding genes in this region have been deleted in mice, but none of the resulting phenotypes consistently correlated with the human disease. This region also contains a cluster of genes that encode functional non-protein-coding RNAs. We deleted specifically the MBII-85 small nucleolar RNA (snoRNA) gene cluster on the parental mouse chromosome, which did not affect expression of any of the other snoRNA or protein-coding genes in the PWS region. These mice consistently displayed postnatal growth retardation starting from day 5 to 6, low postnatal lethality only in certain genetic backgrounds (<15%), and no adolescent obesity. Thus, this mouse model, with the deletion of a small, brain-specific non-protein-coding RNA, should prove useful for teasing out the various molecular pathologies of PWS.
PMCID: PMC2323313  PMID: 18166085
20.  Multigeneration Inheritance through Fertile XX Carriers of an NR0B1 (DAX1) Locus Duplication in a Kindred of Females with Isolated XY Gonadal Dysgenesis 
A 160 kb minimal common region in Xp21 has been determined as the cause of XY gonadal dysgenesis, if duplicated. The region contains the MAGEB genes and the NR0B1 gene; this is the candidate for gonadal dysgenesis if overexpressed. Most patients present gonadal dysgenesis within a more complex phenotype. However, few independent cases have recently been described presenting with isolated XY gonadal dysgenesis caused by relatively small NR0B1 locus duplications. We have identified another NR0B1 duplication in two sisters with isolated XY gonadal dysgenesis with an X-linked inheritance pattern. We performed X-inactivation studies in three fertile female carriers of three different small NR0B1 locus duplications identified by our group. The carrier mothers did not show obvious skewing of X-chromosome inactivation, suggesting that NR0B1 overexpression does not impair ovarian function. We furthermore emphasize the importance to investigate the NR0B1 locus also in patients with isolated XY gonadal dysgenesis.
PMCID: PMC3299259  PMID: 22518125
21.  Foxf2: A Novel Locus for Anterior Segment Dysgenesis Adjacent to the Foxc1 Gene 
PLoS ONE  2011;6(10):e25489.
Anterior segment dysgenesis (ASD) is characterised by an abnormal migration of neural crest cells or an aberrant differentiation of the mesenchymal cells during the formation of the eye's anterior segment. These abnormalities result in multiple tissue defects affecting the iris, cornea and drainage structures of the iridocorneal angle including the ciliary body, trabecular meshwork and Schlemm's canal. In some cases, abnormal ASD development leads to glaucoma, which is usually associated with increased intraocular pressure. Haploinsufficiency through mutation or chromosomal deletion of the human FOXC1 transcription factor gene or duplications of the 6p25 region is associated with a spectrum of ocular abnormalities including ASD. However, mapping data and phenotype analysis of human deletions suggests that an additional locus for this condition may be present in the same chromosomal region as FOXC1. DHPLC screening of ENU mutagenised mouse archival tissue revealed five novel mouse Foxf2 mutations. Re-derivation of one of these (the Foxf2W174R mouse lineage) resulted in heterozygote mice that exhibited thinning of the iris stroma, hyperplasia of the trabecular meshwork, small or absent Schlemm's canal and a reduction in the iridocorneal angle. Homozygous E18.5 mice showed absence of ciliary body projections, demonstrating a critical role for Foxf2 in the developing eye. These data provide evidence that the Foxf2 gene, separated from Foxc1 by less than 70 kb of genomic sequence (250 kb in human DNA), may explain human abnormalities in some cases of ASD where FOXC1 has been excluded genetically.
PMCID: PMC3192754  PMID: 22022403
22.  Monosomy 1p36 
Journal of Medical Genetics  1999;36(9):657-663.
We have reviewed published reports on patients with segmental aneusomy for chromosome 1p36 to help geneticists and other health professionals in the recognition of this emerging chromosomal syndrome. Terminal deletions of the short arm of chromosome 1 are associated with hypotonia and developmental delay (usually severe), growth abnormalities (growth retardation, microcephaly, obesity), and craniofacial dysmorphism with a large anterior fontanelle, prominent forehead, deep set eyes, flat nasal bridge and midface hypoplasia, ear asymmetry, a pointed chin, and orofacial clefting. Minor cardiac malformations, cardiomyopathy, seizures, and ventricular dilatation are the more common additional findings. Sensorineural hearing loss and variable ophthalmological anomalies have also been frequently observed.
Although the deletions can be detected by high resolution cytogenetic studies, confirmation by fluorescence in situ hybridisation is required in most cases. The majority of deletions are maternally derived. Molecular characterisation of 1p36 deletions has been undertaken in several cases, and it is likely that this condition is a contiguous gene deletion syndrome.

Keywords: monosomy 1p36; contiguous gene deletion syndrome
PMCID: PMC1734434  PMID: 10507720
23.  A gene for autosomal dominant hearing impairment (DFNA14) maps to a region on chromosome 4p16.3 that does not overlap the DFNA6 locus 
Journal of Medical Genetics  1999;36(7):532-536.
Non-syndromic hearing impairment is one of the most heterogeneous hereditary conditions, with more than 40 reported gene localisations. We have identified a large Dutch family with autosomal dominant non-syndromic sensorineural hearing impairment. In most patients, the onset of hearing impairment is in the first or second decade of life, with a slow decline in the following decades, which stops short of profound deafness. The hearing loss is bilateral, symmetrical, and only affects low and mid frequencies up to 2000 Hz. In view of the phenotypic similarities of this family with an American family that has been linked to chromosome 4p16.3 (DFNA6), we investigated linkage to the DFNA6 region. Lod score calculations confirmed linkage to this region with two point lod scores above 6. However, as haplotype analysis indicated that the genetic defect in this family is located in a 5.6 cM candidate region that does not overlap the DFNA6 region, the new locus has been named DFNA14.

Keywords: non-syndromic hearing impairment; genetic linkage analysis; DFNA6; DFNA14
PMCID: PMC1734405  PMID: 10424813
24.  Microcephaly, Intellectual Impairment, Bilateral Vesicoureteral Reflux, Distichiasis and Glomuvenous Malformations Associated with a 16q24.3 Contiguous Gene Deletion and a Glomulin Mutation 
Two hereditary syndromes, lymphedema-distichiasis syndrome (LD) and blepharo-chelio-dontic (BCD) syndrome include the aberrant growth of eyelashes from the meibomian glands, known as distichiasis. LD is an autosomal dominant syndrome primarily characterized by distichiasis and the onset of lymphedema usually during puberty. Mutations in the forkhead transcription factor FOXC2 are the only known cause of LD. BCD syndrome consists of autosomal dominant abnormalities of the eyelid, lip, and teeth, and the etiology remains unknown. In this report, we describe a proband that presented with distichiasis, microcephaly, bilateral grade IV vesicoureteral reflux requiring ureteral re-implantation, mild intellectual impairment and apparent glomuvenous malformations. Distichiasis was present in three generations of the proband’s maternal side of the family. The glomuvenous malformations were severe in the proband, and maternal family members exhibited lower extremity varicosities of variable degree. A GLMN (glomulin) gene mutation was identified in the proband that accounts for the observed glomuvenous malformations; no other family member could be tested. TIE2 sequencing revealed no mutations. In the proband, an additional submicroscopic 265 kb contiguous gene deletion was identified in 16q24.3, located 609 kb distal to the FOXC2 locus, which was inherited from the proband’s mother. The deletion includes the C16ORF95, FBXO31, MAP1LC3B, and ZCCHC14 loci and 115 kb of a gene desert distal to FOXC2 and FOXL1. Thus, it is likely that the microcephaly, distichiasis, vesicoureteral and intellectual impairment in this family may be caused by the deletion of one or more of these genes and/or deletion of distant cis-regulatory elements of FOXC2 expression.
PMCID: PMC3314153  PMID: 22407726
FOXC2; FBXO31; MAP1LC3B; ZCCHC14; GLMN; distichiasis; vascular malformation; venous malformation; glomuvenous malformation
25.  3p-Syndrome Defines a Hearing Loss Locus in 3p25.3 
Hearing research  2007;224(1-2):51-60.
Deletions affecting the terminal end of chromosome 3p result in a characteristic set of clinical features termed 3p-syndrome. Bilateral, sensorineural hearing loss (SNHL) has been found in some but not all cases, suggesting the possibility that it is due to loss of a critical gene in band 3p25. To date, no genetic locus in this region has been shown to cause human hearing loss. However, the ATP2B2 gene is located in 3p25.3, and haploinsufficiency of the mouse homolog results in SNHL with similar severity. We compared auditory test results with fine deletion mapping in seven previously unreported 3p-syndrome patients and identified a 1.38 Mb region in 3p25.3 in which deletions were associated with moderate to severe, bilateral SNHL. This novel hearing loss locus contains 18 genes, including ATP2B2. ATP2B2 encodes the plasma membrane calcium pump PMCA2. We used immunohistochemistry in human cochlear sections to show that PMCA2 is located in the stereocilia of hair cells, suggesting its function in the auditory system is conserved between humans and mice. Although other genes in this region remain candidates, we conclude that haploinsufficiency of ATP2B2 is the most likely cause of SNHL in 3p-syndrome.
PMCID: PMC1995240  PMID: 17208398
3p-syndrome; Hearing loss; ATP2B2; PMCA2; deafwaddler

Results 1-25 (1229293)