Search tips
Search criteria

Results 1-25 (1111442)

Clipboard (0)

Related Articles

1.  Egg water from the amphibian Bufo arenarum induces capacitation-like changes in homologous spermatozoa 
Developmental biology  2007;306(2):516-524.
Mammalian sperm acquire fertilizing capacity after residing in the female tract, where physiological changes named capacitation take place. In animals with external fertilization as amphibians, gamete interactions are first established between sperm and molecules of the egg jelly coat released into the medium. Since dejellied oocytes are not normally fertilized, the aim of this study was to determine if the jelly coat of the toad Bufo arenarum promotes a “capacitating” activity on homologous sperm. We found that sperm incubation in diffusible substances of the jelly coat (Egg Water) for 90–180 sec is sufficient to render sperm transiently capable of fertilizing dejellied oocytes. The fertilizing state was correlated with an increase of protein tyrosine phosphorylation and a decrease of sperm cholesterol content. Inhibition of either the increase in tyrosine phosphorylation or cholesterol efflux affected the acquisition of fertilizing capacity. Phosphorylation and fertilization could be promoted with NaHCO3, and also by addition of beta cyclodextrin. Moreover, sperm could gain the ability to fertilize dejellied oocytes in the presence of these compounds. These data indicate that sperm should undergo a series of molecular changes to gain fertilizing capacity; these changes are reminiscent of mammalian sperm capacitation and take place before the acrosome reaction.
PMCID: PMC2562786  PMID: 17459363
fertilization; spermatozoa; capacitation; jelly coat; amphibia; phosphorylation
2.  The extracellular matrix of Xenopus laevis eggs: a quick-freeze, deep- etch analysis of its modification at fertilization 
The Journal of Cell Biology  1988;107(2):731-741.
Eggs of the amphibian, Xenopus laevis, were quick-frozen, deep-etched, and rotary-shadowed. The structure of the extracellular matrix surrounding these eggs, including the perivitelline space and the vitelline envelope (VE), was visualized in platinum replicas by electron microscopy. The perivitelline space contains an elaborate filamentous glycocalyx which connects microvillar tips to the plasma membrane, to adjacent microvilli, and to the overlying VE. The VE is comprised of two layers, the innermost of which is a thin network of horizontal fibrils lying on the tips of the microvilli. The outermost is a thicker layer of large, cable-like fibers which twist and turn throughout the envelope. Upon fertilization, three dramatic modifications of the matrix occur. A thin sheet of smooth material, termed the smooth layer, is deposited on the tips of the microvilli and separates the egg from the overlying envelopes. The VE above is transformed from a thick band of cable-like fibers to concentric fibrous sheets, the altered VE. Finally, an ornate band of particles, corresponding to the fertilization layer in previous studies, is deposited at the altered VE/jelly interface. The altered VE and the fertilization layer comprise the fertilization envelope, which effects the structural block to polyspermy.
PMCID: PMC2115231  PMID: 3417770
The Journal of Cell Biology  1964;23(3):609-628.
The response of unfertilised Paracentrotus lividus eggs to γ-globulin fractions of antisera against isolated homologous jelly coat substance or homologous homogenates of jellyless eggs has been studied at the ultrastructural level. The antijelly γ-globulin caused precipitation of the jelly layer, the density of precipitation varying between different eggs and being proportional to the γ-globulin concentration. Agglutination of the jelly substance of adjacent eggs, which is species specific, occurred frequently with higher γ-globulin concentrations. Antiegg γ-globulins (from antiserum against total homogenates of jelly-free eggs or the heat-stable fraction thereof) did not produce these effects. Instead, these γ-globulins caused various structural alterations mostly representing stages in parthenogenetic activation. This species-specific activation was induced by the reaction of antibodies with some heat-stable egg antigens different from those involved in jelly precipitation. Surface alterations included the formation of small papillae, membrane blisters, hyaline layer, and activation membrane, the release of material from the cell surface, and the breakdown of cortical granules. These alterations were dependent on both γ-globulin concentration and the variable reactivity among different females. Aster formation, found intracellularly, verified that the surface responses represented real parthenogenetic activation and were not the result of immune lysis. No such alterations appeared in the controls.
PMCID: PMC2106547  PMID: 14245438
4.  Royal jelly modulates oxidative stress and tissue injury in gamma irradiated male Wister Albino rats 
Royal jelly is a nutritive secretion produced by the worker bees, rich in proteins, carbohydrates, vitamins and minerals.
The present study was designed to determine the possible protective effects of royal jelly against radiation induced oxidative stress, hematological, biochemical and histological alterations in male Wister albino rats.
Materials and Methods:
Male Wister albino rats were exposed to a fractionated dose of gamma radiation (2 Gy every 3 days up to 8 Gy total doses). Royal jelly was administrated (g/Kg/day) by gavages 14 days before exposure to the 1st radiation fraction and the treatment was continued for 15 days after the 1st irradiation fraction till the end of the experiment. The rats were sacrificed 3rd, equivalent to 3rd post 2nd irradiation fraction, and equivalent to 3rd day post last irradiation fraction.
In the present study, gamma- irradiation induced hematological, biochemical and histological effects in male Wister albino rats. In royal jelly treated irradiated group, there was a noticeable decrease recorded in thiobarbituric reactive substances concentration when compared to γ-irradiated group. Also, the serum nitric oxide concentration was significantly improved. The administration of royal jelly to irradiated rats according to the current experimental design significantly ameliorates the changes induced in serum lipid profile. Moreover, in royal jelly treated irradiated group, there was a noticeable amelioration recorded in all hematological parameters along the three experimental intervals. The microscopic examination of cardiac muscle of royal jelly treated irradiated rats demonstrated structural amelioration, improved nuclei and normal features of capillaries and veins in endomysium when compared to gamma-irradiated rats.
It was suggested that the biochemical, hematological and histological amelioration observed in royal jelly (g/Kg/day) treated irradiated rats might be due to the antioxidant capacity of royal jelly active constituents.
PMCID: PMC3336918  PMID: 22540097
Royal jelly; gamma-irradiation; oxidative stress; hematology; heart
5.  Structure determination by MALDI-IRMPD mass spectrometry and exoglycosidase digestions of O-linked oligosaccharides from Xenopus borealis egg jelly 
Glycobiology  2011;21(7):877-894.
Differences in the fertilization behavior of Xenopus borealis from X. laevis and X. tropicalis suggest differences in the glycosylation of the egg jellies. To test this assumption, O-linked glycans were chemically released from the egg jelly coat glycoproteins of X. borealis. Over 50 major neutral glycans were observed, and no anionic glycans were detected from the released O-glycan pool. Preliminary structures of ∼30 neutral oligosaccharides were determined using matrix-assisted laser desorption/ionization (MALDI) infrared multiphoton dissociation tandem mass spectrometry (MS). The mass fingerprint of a group of peaks for the core-2 structure of O-glycans was conserved in the tandem mass spectra and was instrumental in rapid and efficient structure determination. Among the 29 O-glycans, 22 glycans contain the typical core-2 structure, 3 glycans have the core-1 structure and 2 glycans contained a previously unobserved core structure with hexose at the reducing end. There were seven pairs of structural isomers observed in the major O-linked oligosaccharides. To further elucidate the structures of a dozen O-linked glycans, specific and targeted exoglycosidase digestions were carried out and the products were monitored with MALDI-MS. Reported here are the elucidated structures of O-linked oligosaccharides from glycoproteins of X. borealis egg jelly coats. The structural differences in O-glycans from jelly coats of X. borealis and its close relatives may provide a better understanding of the structure–function relationships and the role of glycans in the fertilization process within Xenopodinae.
PMCID: PMC3110487  PMID: 21220250
exoglycosidase; MALDI-IRMPD mass spectrometry; O-glycan structure; tandem MS; X. borealis
The Journal of General Physiology  1949;32(3):351-366.
1. The problem of the relation of the plasma membrane to the extraneous coats and cortex of the Nereis egg is discussed in the light of the observations of Lillie, Chambers, and Novikoff. 2. Evidence obtained from experiments with the centrifuge, and by treating eggs with alkaline sodium chloride, indicates that the plasma membrane of the unfertilized egg is external to the jelly precursor granules of the cortex. 3. Experiments with alkaline sodium chloride indicate that the perivitelline space of the fertilized egg is extraovular after jelly extrusion is complete. 4. The cortical behavior (membrane elevation) of the Nereis egg in alkaline sodium chloride and the cortical response (jelly extrusion) following activation of the egg in normal fertilization or parthenogenesis are attributed largely to the properties of the jelly, and presumably, to its reactions with calcium and hydroxyl ions.
PMCID: PMC2147159  PMID: 18123313
7.  Twin Xenopus laevis embryos appearing from flattened eggs 
Remarkable progress has recently been made in molecular biology of double axis formation in Xenopus laevis. Leaving aside, for the time being, the problem of the gene expressions regulating Xenopus laevis development, here I show that pulse treatment could induce formation of a secondary axis in a fertilized Xenopus laevis egg. At 3 min after insemination, metal oxides were added to Xenopus fertilized eggs, and then twin embryos appeared. Zirconium oxide (ZrO2) was the most effective metal oxide for producing twin embryos. ZrO2 was added to the fertilized eggs, and 30 sec later, the eggs were dejellied with cysteine solution and washed within 7 min after insemination. The fertilized eggs began flattening at around 15 min after insemination. When the degree of flattening (the vertical length of the egg divided by the horizontal length) of the eggs at the 16- and 32-cell stages became less than 0.4 degrees, production of twin embryos occurred. Many flattened eggs at less than 0.4 degrees formed twin embryos. The third cleavage of eggs treated with metal oxides was meridional, while the normal third cleavage was horizontal.
PMCID: PMC4275568  PMID: 25311141
Xenopus laevis; twinning; flattened eggs; Zirconium oxide; pulse treatment
8.  Changes in the topography of the sea urchin egg after fertilization 
The Journal of Cell Biology  1976;71(1):35-48.
Changes in the topography of the sea urchin egg after fertilization were studied by scanning and transmission electron microscopy. Strongylocentrotus purpuratus eggs were treated with dithiothreitol to modify the vitelline layer and to prevent formation of a fertilization membrane. Dithiothreitol treatment caused the microvilli to become more irregular in shape, length, and diameter than those of untreated eggs. The microvilli were similarly modified by trypsin treatment. This effect did not appear to be due to disruption of cytoskeletal elements beneath the plasma membrane, for neither colchicine nor cytochalasin B altered microvillar morphology. Thus, it appears that the vitelline layer may act in the maintenance of surface form of unfertilized eggs. Since dithiothreitol-treated eggs did not elevate a fertilization membrane, scanning electron microscopy could be used to directly observe modifications in the egg plasma membrane after fertilization. The wave of cortical granule exocytosis initiated at the point of attachment of the fertilizing sperm was characterized by the appearance of pits that subsequently opened, releasing the cortical granule contents and leaving depressions upon the egg surface. The perigranular membranes inserted during exocytosis were seen as smooth patches between the microvillous patches remaining from the original egg surface. This produced a mosaic surface with more than double the amount of membrane of unfertilized eggs. The mosaic surface subsequently reorganized to accommodate the inserted membrane material by elongation of microvilli. Blebs and membranous whorls present before reorganization suggested the existence of an unstable intermediate state of plasma membrane reorganization. Exocytosis and mosaic membrane formation were not blocked by colchicine or cytochalasin B, but microvillar elongation was blocked by cytochalasin B treatment.
PMCID: PMC2109718  PMID: 988032
The Journal of General Physiology  1933;16(3):497-528.
1. The rate of oxygen consumption by eggs may not merely undergo no change at fertilization, as in the case of the starfish, but it decreases to about half in Chaetopterus and in Cumingia. 2. The absolute rate of oxygen consumption in mm.3 O2 per hour per 10 mm.3 eggs differs widely in several species of unfertilized eggs. It is very low in the sea urchin, intermediary in Nereis, and high in Chaetopterus and Cumingia. The range for these eggs is approximately 0.4 to 3.1 mm.3 O2 per hour per 10 mm.3 eggs at 21°C., in the ratio of about 1:8. 3. The absolute rates of oxygen consumption by the same fertilized eggs are much more nearly the same. They lie within the range 1.3 to 2.0 mm.3 O2 per hour per 10 mm.3 eggs at 21°C., in the ratio of approximately 1:1.5. Within this same range lie the values obtained by a number of investigators using a variety of eggs of invertebrates from several phyla. Amoeba proteus and frog skin also are within this range (see Fig. 2). 4. The changes in rate of oxygen consumption at fertilization by the different species of eggs, differing both in direction and magnitude, appear to be such as to bring the rate, when development is initiated, to about the same rate, which is also the rate of other comparable normally growing cells. 5. The direction and magnitude of the change in rate at fertilization therefore appears in the cases cited to be primarily a function of the absolute rate of oxygen consumption by the unfertilized eggs, which are characterized in their peculiar inhibited condition, among other things, by a wide range of respiratory rates. 6. It is not to be supposed that this range of rates will apply at all universally to eggs, especially to eggs of extremes in proportional content of inert materials, such as large yolky eggs. Fish and amphibian eggs for example respire at a much lower rate per unit volume. The effect on surface: volume ratios attending extremes of cell size might also be expected to shift the absolute rate. 7. The absolute rate of oxygen consumption by the eggs of the alga Fucus vesiculosus is considerably higher than the rates of the animal eggs measured. It is of the same order of magnitude as the rates of several other small-celled algae, which respire at a greater rate per unit volume than most non-motile animal cells. 8. The comparatively high rates of oxygen consumption by the inhibited (unfertilized) eggs of Chaetopterus and Cumingia are not directly associated with nuclear or morphological activity of the cell since they continue at the high rate for hours after cessation of the brief initial nuclear activity, which takes place when the eggs are placed in sea water. 9. It is concluded that the rate of oxygen consumption is not necessarily and probably not generally the limiting factor which causes inhibition of the unfertilized egg. Increase in rate of oxygen consumption is not directly related to the initiation of development, in general, nor even necessarily concomitant. It is not improbable that the low rate of oxygen consumption is an immediate part of the cause of inhibition of the unfertilized sea urchin egg, but this is a special case. 10. This thesis, that the rate of oxygen consumption is not necessarily nor ordinarily the limiting factor in the inhibition of the unfertilized egg, and conversely that increase in the rate of oxygen consumption is not usually the essential feature of fertilization, is quite in agreement with the general relations between the rate of oxygen consumption on the one hand and anesthesia, growth, and development on the other in fertilized eggs and other organisms. 11. This conclusion is opposed to Loeb's explanation of the essential feature of fertilization, as an increase in oxidation rate or more strictly to generalization of his hypothesis to include eggs other than those of the sea urchins (or of other similar special cases which may be discovered). It extends to fertilization (the initiation of development) his and Wasteney's well established conclusion that "oxidation is not the independent variable in development." 12. It is suggested that the crux of the problem of fertilization lies in the nature of the inhibition of the unfertilized egg. Certain similarities between this condition, arrived at spontaneously in the case of the egg cell, and the condition of cells in narcosis or anesthesia are pointed out. 13. Although the rate of oxygen consumption by the unfertilized eggs of Chaetopterus and Cumingia cannot be regarded as the limiting factor which causes the inhibition of the eggs, in these and other cases with different absolute rates, it appears highly probable that the rate of oxygen consumption is in some way, at present obscure, tied up with or related to the condition of inhibition. This seems probable especially in view of the sharp change in rate which in most cases immediately attends cessation of the inhibition, but the relationship may be a non-causal one, as in narcosis. 14. It must be borne in mind that oxygen consumption is not necessarily a complete measure of oxidation, and that other measures such as of heat and metabolite production are necessary before the complete amount of oxidation is known. When these are completely worked out, if free energy relations are known, it is probable that more direct and inclusive relations may be found between oxidation, growth, development, and anesthesia. Generalization of Loeb's hypothesis, using "oxidation" in the broad sense might then turn out to hold, with fertilization fitting into the general scheme, but there is no basis for it at the present time.
PMCID: PMC2141218  PMID: 19872719
The jelly surrounding the eggs of the starfish, Asterias forbesi, is insoluble in normal sea water, but rapidly swells and dissolves when the eggs are washed in a pure isotonic solution of NaCl. In the presence of a small proportion of CaCl2 this solvent and disintegrative action of the NaCl solution is entirely prevented, and in the mixed solution the jelly exhibits the same insolubility and other properties as in normal sea water. 2. This action of CaCl2 in preventing the dissolution of the jelly runs parallel with its action in preventing certain definite effects of the pure NaCl solution on the living egg (agglutination, cytolytic action, membrane formation, prevention of maturation). 3. The inference is that the essential factor in these and similar antagonistic and protective actions is the formation of solid water-insoluble colloidal salts (e.g., soaps and proteinates) of calcium (or other metal) with the structural colloids of the protoplasm. Apparently the presence of a certain proportion of such compounds is necessary to the structural stability of the living protoplasm, and especially to the water-insolubility and semipermeability of its external layer or plasma membrane. When the cell is immersed in the pure NaCl solution, water-soluble Na compounds are substituted for the insoluble Ca compounds which normally provide the necessary insolubility and coherence, and disintegration results.
PMCID: PMC2140449  PMID: 19871904
11.  Subcellular Metabolite and Lipid Analysis of Xenopus laevis Eggs by LAESI Mass Spectrometry 
PLoS ONE  2014;9(12):e115173.
Xenopus laevis eggs are used as a biological model system for studying fertilization and early embryonic development in vertebrates. Most methods used for their molecular analysis require elaborate sample preparation including separate protocols for the water soluble and lipid components. In this study, laser ablation electrospray ionization (LAESI), an ambient ionization technique, was used for direct mass spectrometric analysis of X. laevis eggs and early stage embryos up to five cleavage cycles. Single unfertilized and fertilized eggs, their animal and vegetal poles, and embryos through the 32-cell stage were analyzed. Fifty two small metabolite ions, including glutathione, GABA and amino acids, as well as numerous lipids including 14 fatty acids, 13 lysophosphatidylcholines, 36 phosphatidylcholines and 29 triacylglycerols were putatively identified. Additionally, some proteins, for example thymosin β4 (Xen), were also detected. On the subcellular level, the lipid profiles were found to differ between the animal and vegetal poles of the eggs. Radial profiling revealed profound compositional differences between the jelly coat vitelline/plasma membrane and egg cytoplasm. Changes in the metabolic profile of the egg following fertilization, e.g., the decline of polyamine content with the development of the embryo were observed using LAESI-MS. This approach enables the exploration of metabolic and lipid changes during the early stages of embryogenesis.
PMCID: PMC4266676  PMID: 25506922
12.  Effects of Rearing Systems on Performance, Egg Characteristics and Immune Response in Two Layer Hen Genotype 
White (Lohmann LSL) and Brown (ATAK-S) laying hens, were reared under organic and conventional cage rearing systems, and the effects of the rearing system on performance parameters, egg production, egg characteristics, and immune response were investigated. For this purpose, a total of 832 laying hens of two commercial hybrids, i.e., 416 white (Lohmann LSL) and 416 Brown (ATAK-S) layers, were used. The experiment lasted between 23 and 70 wk of age. In this study, the white layers yielded more eggs as compared to the brown layers in both organic and conventional production systems. Egg weight exhibited a similar pattern to that of laying performance. However, the total hen-housed egg number for the white birds in the organic system was fewer than that of white birds in the conventional cage facility; conversely, a contradictory tendency was observed for the brown birds. Livability of the white layers in the organic system was remarkably lower (14%) than that of the brown line, whereas the white line survived better (3.42%) than their brown counterparts in conventional cages. The feed conversion ratio of the white hens was markedly inferior in the organic system as compared to that of the white hens in the conventional system, whereas relatively lower deterioration was reported in brown layers when reared in an organic system. The organic production system increased egg albumen height and the Haugh unit in eggs of the brown layers. The yolk color score of organic eggs was lower than that of conventional eggs for both brown and white hens. The egg yolk ratio of eggs from white layers was found to be higher in organic eggs as compared to those obtained in the conventional system. All organic eggs had heavier shells than those produced in the conventional system. Eggs from brown layers had more protein content than eggs from white layers. Neither housing systems nor genotype influenced egg yolk cholesterol concentration. When compared to conventional eggs, n-3 fatty acid content was lower in organic eggs, and the n-6:n-3 ratio was higher in organic eggs. In conclusion, two hen genotypes showed different responses in terms of performance and egg quality to two different rearing systems. A commercial white strain produced more eggs with higher egg quality as compared to a native brown strain. The brown strain was found to have adapted well to organic production conditions when survival and total egg number was taken into consideration.
PMCID: PMC4092905  PMID: 25049597
Organic; Cage; Genotype; Laying Hen Performance; Egg Characteristics; Immune Response
13.  Unlaid Xenopus eggs degrade by apoptosis in the genital tract 
BMC Cell Biology  2013;14:11.
In several species with external fertilization, including frogs, laid unfertilized eggs were found to die by apoptosis outside of the animal body. However, there is no apparent reason for the externally laid eggs to degrade by this process, considering that apoptosis developed as a mechanism to reduce the damaging effect of individual cell death to the whole organism.
Here, we demonstrate that a number of eggs are retained in the genital tract of the African clawed frog Xenopus laevis after gonadotropin-induced ovulation. The majority of these eggs exit meiotic arrest within 24 hours of hormone administration. Subsequently, post-meiotic eggs die in the frog genital tract by a well-defined apoptotic process. The hallmarks of egg degradation include prominent morphological changes, cytochrome c release, caspase activation, increase in ADP/ATP ratio, progressive intracellular acidification, egg swelling and all-out proteolysis of egg proteins. The sustained presence of post-apoptotic eggs in the genital tract of ageing frogs evidenced age-associated worsening of apoptotic clearance.
The direct observation of egg degradation in the Xenopus genital tract provides a clue to the physiological relevance of frog egg apoptosis. It works to eliminate the mature unlaid eggs retained in the animal body after ovulation. Our findings establish egg apoptosis as a major physiological process accompanying ovulation in frogs.
PMCID: PMC3599861  PMID: 23452868
Apoptosis; Unlaid eggs; Maturation; Ovulation; Meiotic exit; Xenopus laevis; Genital tract
The Journal of General Physiology  1950;33(4):379-388.
Unfertilized eggs of the marine worm Nereis limbata subjected to electrical currents (direct or alternating) undergo remarkable changes. Certain minute granules just inside the surface of the egg absorb water and swell to more than 300 times their original size and thereby produce a mass of jelly which surrounds the egg with a zone about as wide as the original diameter of the egg. The amount of direct current is too small to produce any change of color in eggs stained with neutral red. In direct current the jelly appears first on the side toward the anode and moves toward the anode. In alternating current it appears on opposite sides facing the electrodes. It might be thought that the current changes the chemical character of the granules so that they are able to absorb very large quantities of water but this seems unlikely. If the current is shut off after 1 minute the swelling continues. This might be explained on the ground that each jelly precursor granule is covered with a waterproof film which is removed by the current. It does not seem probable that the effect is due to heat produced by the current since the exposure is so short. It seems possible that the current may strip off micelles from the waterproof covering of the granules and allow water to penetrate. The fact that alternating current is more effective than direct current might be explained on the ground that the egg may be represented as a capacity in parallel with a resistance so constituted that relatively little direct current can enter. The non-aqueous film which covers the surface of the protoplasm appears to be liquid rather than solid.
PMCID: PMC2147195  PMID: 15406375
15.  Evidence for the involvement of microtubules, ER, and kinesin in the cortical rotation of fertilized frog eggs 
The Journal of Cell Biology  1991;114(5):1017-1028.
During the first cell cycle, the vegetal cortex of the fertilized frog egg is translocated over the cytoplasm. This process of cortical rotation creates regional cytoplasmic differences important in later development, and appears to involve an array of aligned microtubules that forms transiently beneath the vegetal cortex. We have investigated how these microtubules might be involved in generating movement by analyzing isolated cortices and sections of Xenopus laevis and Rana pipiens eggs. First, the polarity of the cortical microtubules was determined using the "hook" assay. Almost all microtubules had their plus ends pointing in the direction of cortical rotation. Secondly, the association of microtubules with other cytoplasmic elements was examined. Immunofluorescence revealed that cytokeratin filaments coalign with the microtubules. The timing of their appearance and their position on the cytoplasmic side of the microtubules suggested that they are not involved directly in generating movement. ER was visualized with the dye DiIC16(3) and by immunofluorescence with anti- BiP (Bole, D. G., L. M. Hendershot, and J. F. Kearney, 1986. J. Cell Biol. 102:1558-1566). One layer of ER was found closely underlying the plasma membrane at all times. An additional, deeper layer formed in association with the microtubules of the array. Antibodies to sea urchin kinesin (Ingold, A. L., S. A. Cohn, and J. M. Scholey. 1988. J. Cell Biol. 107:2657-2667) detected antigens associated with both the ER and microtubules. On immunoblots they recognized microtubule associated polypeptide(s) of approximately 115 kD from Xenopus eggs. These observations are consistent with a role for kinesin in creating movement between the microtubules and ER, which leads in turn to the cortical rotation.
PMCID: PMC2289112  PMID: 1714912
16.  Inositol 1,4,5-trisphosphate-induced calcium release in the organelle layers of the stratified, intact egg of Xenopus laevis 
The Journal of Cell Biology  1990;110(4):1103-1110.
Using double-barreled, Ca2(+)-sensitive microelectrodes, we have examined the characteristics of the Ca2+ release by inositol 1,4,5- trisphosphate (Ins(1,4,5)P3) in the various layers of Xenopus laevis eggs in which the organelles had been stratified by centrifugation. Centrifugation of living eggs stratifies the organelles yet retains them in the normal cytoplasmic milieu. The local increase in intracellular free Ca2+ in each layer was directly measured under physiological conditions using theta-tubing, double-barreled, Ca2(+)- sensitive microelectrodes in which one barrel was filled with the Ca2+ sensor and the other was filled with Ins(1,4,5)P3 for microinjection. The two tips of these electrodes were very close to each other (3 microns apart) enabling us to measure the kinetics of both the highly localized intracellular Ca2+ release and its subsequent removal in response to Ins(1,4,5)P3 injection. Upon Ins(1,4,5)P3 injection, the ER- enriched layer exhibited the largest release of Ca2+ in a dosage- dependent manner, whereas the other layers, mitochondria, lipid, and yolk, released 10-fold less Ca2+ in a dosage-independent manner. The removal of released Ca2+ took place within approximately 1 min. The sensitivity to Ins(1,4,5)P3 and the time course of intracellular Ca2+ release in the unstratified (unactivated) egg is nearly identical to that observed in the ER layer of the stratified egg. Our data suggest that the ER is the major organelle of the Ins(1,4,5)P3-sensitive Ca2+ store in the egg of Xenopus laevis.
PMCID: PMC2116073  PMID: 2324195
The Journal of Cell Biology  1964;23(3):629-650.
The immunological properties of the surface layers of Paracentrotus lividus eggs have been studied further by using ferritin-labelled antibody to localise specific antigenic sites. In order to detect a wider spectrum of antigenic determinants, several antisera against egg and jelly substance have been employed in combination with absorption procedures using lyophilised antigen. This use of absorbed antisera was made feasible by adding ferritin label in a second antiserum layer of ferritin-anti-γ-globulin. Eggs were treated with antibody for short periods to detect antigenic sites without incurring structural changes (shown in previous paper) resulting from long antibody treatment. Unspecific ferritin uptake, found in pinocytotic vesicles and yolk granules, is considered in relation to yolk formation. The jelly layer, found to be immunologically heterogeneous, included one component interacting with antijelly γ-globulin and one with antiegg γ-globulin. The vitelline membrane proved to be rich in egg antigens (heat-stable and heat-labile). The role of this layer in specificity of fertilisation, parthenogenetic activation, and the possibility of being analogous to a basement membrane are discussed. Few antigenic sites were found on the plasma membrane with antiegg γ-globulin. This γ-globulin resulted in some specific labelling of cortical granules and its action is considered in relation to the permeability properties of the egg.
PMCID: PMC2106546  PMID: 14245439
18.  The Iron Distribution and Magnetic Properties of Schistosome Eggshells: Implications for Improved Diagnostics 
Schistosoma mansoni and Schistosoma japonicum are the most frequent causative agents of human intestinal schistosomiasis. Approximately 200 million people in the world are infected with schistosomes. Diagnosis of schistosomiasis is often difficult. High percentages of low level infections are missed in routine fecal smear analysis and current diagnostic methodologies are inadequate to monitor the progress of parasite control, especially in areas with low transmission. Improved diagnostic methods are urgently needed to evaluate the success of elimination programs. Recently, a magnetic fractionation method for isolation of parasite eggs from feces was described, which uses magnetic microspheres to form parasite egg – magnetic microsphere conjugates. This approach enables screening of larger sample volumes and thus increased diagnostic sensitivity. The mechanism of formation of the conjugates remains unexplained and may either be related to specific surface characteristics of eggs and microspheres or to their magnetic properties.
Methods/Principal Findings
Here, we investigated iron localization in parasite eggs, specifically in the eggshells. We determined the magnetic properties of the eggs, studied the motion of eggs and egg-microsphere conjugates in magnetic fields and determined species specific affinity of parasite eggs to magnetic microspheres. Our study shows that iron is predominantly localized in pores in the eggshell. Parasite eggs showed distinct paramagnetic behaviour but they did not move in a magnetic field. Magnetic microspheres spontaneously bound to parasite eggs without the presence of a magnetic field. S. japonicum eggs had a significantly higher affinity to bind microspheres than S. mansoni eggs.
Our results suggest that the interaction of magnetic microspheres and parasite eggs is unlikely to be magnetic in origin. Instead, the filamentous surface of the eggshells may be important in facilitating the binding. Modification of microsphere surface properties may therefore be a way to optimize magnetic fractionation of parasite eggs.
Author Summary
In the present study, we investigated the mechanism underlying a novel diagnostic method for Schistosoma – one of the most widespread and frequently occurring parasites infecting humans in tropical countries. In recent years, the world has seen significant reduction in the burden of Schistosoma infections in many countries due to improved control and sanitation. However, it is becoming increasingly difficult to evaluate and monitor the progress of control towards elimination. At the moment it is extremely difficult to determine whether the parasite has been eliminated from a region. This is due to the absence of a sensitive and inexpensive method to detect the parasite. A series of recent studies describes a method with vastly improved diagnostic sensitivity based on the magnetic fractionation of parasite eggs from fecal samples. However, the mechanisms of action of this new diagnostic are not currently known. To further optimize and improve this method, we studied the magnetic properties of parasite eggshells and their binding characteristics to magnetic microspheres.
PMCID: PMC3656142  PMID: 23696910
19.  Growth of etiolated barley plants in weak static and 50 Hz electromagnetic fields tuned to calcium ion cyclotron resonance 
The effects of weak magnetic and electromagnetic fields in biology have been intensively studied on animals, microorganisms and humans, but comparably less on plants. Perception mechanisms were attributed originally to ferrimagnetism, but later discoveries required additional explanations like the "radical pair mechanism" and the "Ion cyclotron resonance" (ICR), primarily considered by Liboff. The latter predicts effects by small ions involved in biological processes, that occur in definite frequency- and intensity ranges ("windows") of simultaneously impacting magnetic and electromagnetic fields related by a linear equation, which meanwhile is proven by a number of in vivo and in vitro experiments.
Barley seedlings (Hordeum vulgare, L. var. Steffi) were grown in the dark for 5 and 6 days under static magnetic and 50 Hz electromagnetic fields matching the ICR conditions of Ca2+. Control cultures were grown under normal geomagnetic conditions, not matching this ICR. Morphology, pigmentation and long-term development of the adult plants were subsequently investigated.
The shoots of plants exposed to Ca2+-ICR exposed grew 15–20% shorter compared to the controls, the plant weight was 10–12% lower, and they had longer coleoptiles that were adhering stronger to the primary leaf tissue. The total pigment contents of protochlorophyllide (PChlide) and carotenoids were significantly decreased. The rate of PChlide regeneration after light irradiation was reduced for the Ca2+-ICR exposed plants, also the Shibata shift was slightly delayed. Even a longer subsequent natural growing phase without any additional fields could only partially eliminate these effects: the plants initially exposed to Ca2+-ICR were still significantly shorter and had a lower chlorophyll (a+b) content compared to the controls. A continued cultivation and observation of the adult plants under natural conditions without any artificial electromagnetic fields showed a retardation of the originally Ca2+-ICR exposed plants compared to control cultures lasting several weeks, with an increased tendency for dehydration.
A direct influence of the applied MF and EMF is discussed affecting Ca2+ levels via the ICR mechanism. It influences the available Ca2+ and thereby regulatory processes. Theoretical considerations on molecular level focus on ionic interactions with water related to models using quantum electrodynamics.
PMCID: PMC1403775  PMID: 16457719
20.  Activators of protein kinase C trigger cortical granule exocytosis, cortical contraction, and cleavage furrow formation in Xenopus laevis oocytes and eggs 
The Journal of Cell Biology  1989;108(3):885-892.
Prophase I oocytes, free of follicle cells, and metaphase II eggs of the amphibian Xenopus laevis were subjected to transient treatments with the protein kinase C activators, phorbol 12-myristate 13-acetate (PMA), phorbol 12,13-didecanoate, and 1-olyeoyl-2-acetyl-sn-glycerol. In both oocytes and eggs, these treatments triggered early events of amphibian development: cortical granule exocytosis, cortical contraction, and cleavage furrow formation. Surprisingly, activation of oocytes occurred in the absence of meiotic resumption, resulting in cells with an oocytelike nucleus and interior cytoplasm, but with a zygotelike cortex. PMA-induced activation of oocytes and eggs did not require external calcium, a prerequisite for normal activation of eggs. PMA-induced activation of eggs was inhibited by retinoic acid, a known inhibitor of protein kinase C. In addition, pretreatment of eggs with retinoic acid prevented activation by mechanical stimulation and inhibited activation by calcium ionophore A23187. The results suggest that protein kinase C activation is an integral component of the Xenopus fertilization pathway.
PMCID: PMC2115396  PMID: 2493460
21.  Static magnetic field enhances synthesis and secretion of membrane-derived microvesicles (MVs) rich in VEGF and BMP-2 in equine adipose-derived stromal cells (EqASCs)—a new approach in veterinary regenerative medicine 
The aim of this work study was to evaluate the cytophysiological activity of equine adipose-derived stem cells (ASCs) cultured under conditions of static magnetic field. Investigated cells were exposed to a static magnetic field (MF) with the intensity of 0.5 T. In order to investigate the effects of magnetic field on stem cell signaling, the localization and density and content of microvesicles (MVs) as well as morphology, ultrastructure, and proliferation rate of equine ASCs were evaluated. Results showed that potential of equine adipose-derived mesenchymal stem cells was accelerated when magnetic field was applied. Resazurin-based assay indicated that the cells cultured in the magnetic field reached the population doubling time earlier and colony-forming potential of equine ASCs was higher when cells were cultured under magnetic field conditions. Morphological and ultrastructural examination of equine ASCs showed that the exposure to magnetic field did not cause any significant changes in cell morphology whereas the polarity of the cells was observed under the magnetic field conditions in ultrastructural examinations. Exposition to MF resulted in a considerable increase in the number of secreted MVs—we have clearly observed the differences between the numbers of MVs shed from the cells cultured under MF in comparison to the control culture and were rich in growth factors. Microvesicles derived from ASCs cultured in the MF condition might be utilized in the stem cell-based treatment of equine musculoskeletal disorders and tendon injuries.
PMCID: PMC4368852  PMID: 25428200
Magnetic field; Adipose-derived mesenchymal stem cells; Microvesicles; Equine
22.  Influence of body parameters on gastric bioelectric and biomagnetic fields in a realistic volume conductor 
Physiological Measurement  2012;33(4):545-556.
Electrogastrograms (EGG) and magnetogastrograms (MGG) provide two complementary methods for non-invasively recording electric or magnetic fields resulting from gastric electrical slow wave activity. It is known that EGG signals are relatively weak and difficult to reliably record while magnetic fields are, in theory, less attenuated by the low-conductivity fat layers present in the body. In this paper we quantified the effects of fat thickness and conductivity values on resultant magnetic and electric fields using anatomically realistic torso models and trains of dipole sources reflecting recent experimental results. The results showed that when the fat conductivity was increased there was minimal change in both potential and magnetic fields. However, when the fat conductivity was reduced the magnetic fields were largely unchanged, but electric potentials had a significant change in patterns and amplitudes. When the thickness of the fat layer was increased by 30 mm the amplitude of the magnetic fields decreased 10 % more than potentials but magnetic field patterns were changed about 4 times less than potentials. The ability to localize the underlying sources from the magnetic fields using a surface current density measure was altered by less than 2 mm when the fat layer was increased by 30 mm. In summary, results confirm that MGG provides a favourable method over EGG when there are uncertain levels of fat thickness or conductivity.
PMCID: PMC3359963  PMID: 22415019
23.  Biological effects of power frequency magnetic fields: Neurochemical and toxicological changes in developing chick embryos 
There are several reports that indicate a linkage between exposure to power frequency (50 – 60 Hz) magnetic fields with abnormalities in the early embryonic development of the chicken. The present study was designed to understand whether power frequency electromagnetic fields could act as an environmental insult and invoke any neurochemical or toxicological changes in developing chick embryo model.
Fertilized chicken eggs were subjected to continuous exposure to magnetic fields (50 Hz) of varying intensities (5, 50 or 100 μT) for a period of up to 15 days. The embryos were taken out of the eggs on day 5, day 10 and day 15. Neurochemical (norepinephrine and 5-hydroxytryptamine) and amino acid (tyrosine, glutamine and tryptophan) contents were measured, along with an assay of the enzyme glutamine synthetase in the brain. Preliminary toxicological investigations were carried out based on aminotransferases (AST and ALT) and lactate dehydrogenase activities in the whole embryo as well as in the liver.
The study revealed that there was a significant increase (p < 0.01 and p < 0.001) in the level of norepinephrine accompanied by a significant decrease (p < 0.01 and p < 0.001) in the tyrosine content in the brain on day 15 following exposure to 5, 50 and 100 μT magnetic fields. There was a significant increase (p < 0.001) in glutamine synthetase activity resulting in the significantly enhanced (p < 0.001) level of glutamine in the brain on day 15 (for 100 μT only). The possible mechanisms for these alterations are discussed. Further, magnetic fields had no effect on the levels of tryptophan and 5-hydroxytryptamine in the brain. Similarly, there was no effect on the activity of either aminotransferases or lactate dehydrogenase in the whole embryo or liver due to magnetic field exposure.
Based on these studies we conclude that magnetic field-induced changes in norepinephrine levels might help explain alterations in the circadian rhythm, observed during magnetic field stress. Also, the enhanced level of glutamine can act as a contributing factor for developmental abnormalities.
PMCID: PMC375542  PMID: 14754460
24.  Detection of Schistosoma mansoni Eggs in Feces through their Interaction with Paramagnetic Beads in a Magnetic Field 
Diagnosis of intestinal schistosomiasis in low endemic areas is a problem because often control measures have reduced egg burdens in feces to below the detection limits of classical coproparasitological methods. Evaluation of molecular methods is hindered by the absence of an established standard with maximum sensitivity and specificity. One strategy to optimize method performance, where eggs are rare events, is to examine large amounts of feces. A novel diagnostic method for isolation of Schistosoma mansoni eggs in feces, and an initial evaluation of its performance is reported here.
Methodology/Principal Findings
Known amounts of S. mansoni eggs were seeded into 30 g of normal human feces and subjected to a sequence of spontaneous sedimentation, sieving, Ritchie method, incubation and isolation through interaction with paramagnetic beads. Preliminary tests demonstrated the efficacy of lectins as ligands, but they also indicated that the paramagnetic beads alone were sufficient to isolate the eggs under a magnetic field through an unknown mechanism. Eggs were identified by microscopic inspection, with a sensitivity of 100% at 1.3 eggs per gram of feces (epg). Sensitivity gradually decreased to 25% at a concentration of 0.1 epg. In a preliminary application of the new method to the investigation of a recently established focus in southern Brazil, approximately 3 times more eggs were detected than with the thick-smear Kato-Katz method.
The novel S. mansoni detection method may significantly improve diagnosis of infections with low burdens in areas of recent introduction of the parasite, areas under successful control of transmission, or in infected travelers. It may also improve the evaluation of new treatments and vaccines.
Author Summary
Schistosomiasis mansoni is a parasitic infection that affects approximately 200 million people, mainly in the tropics. The worms live inside the veins of intestines and liver and produce eggs that are eliminated within feces. If the eggs reach water, a ciliated larva is released and enters snails to develop into a larva infective to man and other vertebrates. Most infections evolve without overt disease, but severe intestinal, hepatic, pulmonary and cerebro-medulary dysfunctions may occur after many years. Definitive diagnosis is made through the identification of eggs in stool. Classical diagnostic methods fail to detect infection when the number of eggs is low (e.g., in areas where control measures have decreased the intensity of infection or in the case of light infections in travelers who have had only brief exposure). A new and very sensitive method is reported here, in which eggs are isolated from large amounts of feces through their interaction with magnetic beads. After incubation with the fecal sediment, eggs co-migrate with the beads towards a magnet attached to the test tube. This improvement in diagnostic methodology will strengthen efforts to control schistosomiasis.
PMCID: PMC2100366  PMID: 18060086
25.  The Effects of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) on the Mortality and Growth of Two Amphibian Species (Xenopus laevis and Pseudacris triseriata) 
We observed a slight drop in the growth of Xenopus laevis and Pseudacris triseriata larvae following acute exposure (24–48 h) during egg development to three concentrations of TCDD (0.3, 3.0, 30.0 μg/l). Our exposure protocol was modeled on a previous investigation that was designed to mimic the effects of maternal deposition of TCDD. The doses selected were consistent with known rates of maternal transfer between mother and egg using actual adult body burdens from contaminated habitats. Egg and embryonic mortality immediately following exposure increased only among 48 h X. laevis treatments. Control P. triseriata and X. laevis completed metamorphosis more quickly than TCDD-treated animals. The snout-vent length of recently transformed P. triseriata did not differ between treatments although controls were heavier than high-dosed animals. Likewise, the snout-vent length and weight of transformed X. laevis did not differ between control and TCDD treatments. These findings provide additional evidence that amphibians, including P. triseriata and X. laevis are relatively insensitive to acute exposure to TCDD during egg and embryonic development. Although the concentrations selected for this study were relatively high, they were not inconsistent with our current understanding of bioaccumulation via maternal transfer.
PMCID: PMC3699996  PMID: 19151431
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD); polyhalogenated aromatic hydrocarbons (PHAHs); tadpole development

Results 1-25 (1111442)