PMCC PMCC

Search tips
Search criteria

Advanced
Results 1-25 (631762)

Clipboard (0)
None

Related Articles

1.  A Graph-Based Recovery and Decomposition of Swanson’s Hypothesis using Semantic Predications 
Journal of biomedical informatics  2012;46(2):238-251.
Objectives
This paper presents a methodology for recovering and decomposing Swanson’s Raynaud Syndrome–Fish Oil Hypothesis semi-automatically. The methodology leverages the semantics of assertions extracted from biomedical literature (called semantic predications) along with structured background knowledge and graph-based algorithms to semi-automatically capture the informative associations originally discovered manually by Swanson. Demonstrating that Swanson’s manually intensive techniques can be undertaken semi-automatically, paves the way for fully automatic semantics-based hypothesis generation from scientific literature.
Methods
Semantic predications obtained from biomedical literature allow the construction of labeled directed graphs which contain various associations among concepts from the literature. By aggregating such associations into informative subgraphs, some of the relevant details originally articulated by Swanson has been uncovered. However, by leveraging background knowledge to bridge important knowledge gaps in the literature, a methodology for semi-automatically capturing the detailed associations originally explicated in natural language by Swanson has been developed.
Results
Our methodology not only recovered the 3 associations commonly recognized as Swanson’s Hypothesis, but also decomposed them into an additional 16 detailed associations, formulated as chains of semantic predications. Altogether, 14 out of the 19 associations that can be attributed to Swanson were retrieved using our approach. To the best of our knowledge, such an in-depth recovery and decomposition of Swanson’s Hypothesis has never been attempted.
Conclusion
In this work therefore, we presented a methodology for semi- automatically recovering and decomposing Swanson’s RS-DFO Hypothesis using semantic representations and graph algorithms. Our methodology provides new insights into potential prerequisites for semantics-driven Literature-Based Discovery (LBD). These suggest that three critical aspects of LBD include: 1) the need for more expressive representations beyond Swanson’s ABC model; 2) an ability to accurately extract semantic information from text; and 3) the semantic integration of scientific literature with structured background knowledge.
doi:10.1016/j.jbi.2012.09.004
PMCID: PMC4031661  PMID: 23026233
Literature-based Discovery (LBD); Swanson’s Hypothesis; Semantic Predications; Semantic Associations; Subgraph Creation; Background Knowledge
2.  Multi-dimensional classification of biomedical text: Toward automated, practical provision of high-utility text to diverse users 
Bioinformatics  2008;24(18):2086-2093.
Motivation: Much current research in biomedical text mining is concerned with serving biologists by extracting certain information from scientific text. We note that there is no ‘average biologist’ client; different users have distinct needs. For instance, as noted in past evaluation efforts (BioCreative, TREC, KDD) database curators are often interested in sentences showing experimental evidence and methods. Conversely, lab scientists searching for known information about a protein may seek facts, typically stated with high confidence. Text-mining systems can target specific end-users and become more effective, if the system can first identify text regions rich in the type of scientific content that is of interest to the user, retrieve documents that have many such regions, and focus on fact extraction from these regions. Here, we study the ability to characterize and classify such text automatically. We have recently introduced a multi-dimensional categorization and annotation scheme, developed to be applicable to a wide variety of biomedical documents and scientific statements, while intended to support specific biomedical retrieval and extraction tasks.
Results: The annotation scheme was applied to a large corpus in a controlled effort by eight independent annotators, where three individual annotators independently tagged each sentence. We then trained and tested machine learning classifiers to automatically categorize sentence fragments based on the annotation. We discuss here the issues involved in this task, and present an overview of the results. The latter strongly suggest that automatic annotation along most of the dimensions is highly feasible, and that this new framework for scientific sentence categorization is applicable in practice.
Contact: shatkay@cs.queensu.ca
doi:10.1093/bioinformatics/btn381
PMCID: PMC2530883  PMID: 18718948
3.  Extracting semantically enriched events from biomedical literature 
BMC Bioinformatics  2012;13:108.
Background
Research into event-based text mining from the biomedical literature has been growing in popularity to facilitate the development of advanced biomedical text mining systems. Such technology permits advanced search, which goes beyond document or sentence-based retrieval. However, existing event-based systems typically ignore additional information within the textual context of events that can determine, amongst other things, whether an event represents a fact, hypothesis, experimental result or analysis of results, whether it describes new or previously reported knowledge, and whether it is speculated or negated. We refer to such contextual information as meta-knowledge. The automatic recognition of such information can permit the training of systems allowing finer-grained searching of events according to the meta-knowledge that is associated with them.
Results
Based on a corpus of 1,000 MEDLINE abstracts, fully manually annotated with both events and associated meta-knowledge, we have constructed a machine learning-based system that automatically assigns meta-knowledge information to events. This system has been integrated into EventMine, a state-of-the-art event extraction system, in order to create a more advanced system (EventMine-MK) that not only extracts events from text automatically, but also assigns five different types of meta-knowledge to these events. The meta-knowledge assignment module of EventMine-MK performs with macro-averaged F-scores in the range of 57-87% on the BioNLP’09 Shared Task corpus. EventMine-MK has been evaluated on the BioNLP’09 Shared Task subtask of detecting negated and speculated events. Our results show that EventMine-MK can outperform other state-of-the-art systems that participated in this task.
Conclusions
We have constructed the first practical system that extracts both events and associated, detailed meta-knowledge information from biomedical literature. The automatically assigned meta-knowledge information can be used to refine search systems, in order to provide an extra search layer beyond entities and assertions, dealing with phenomena such as rhetorical intent, speculations, contradictions and negations. This finer grained search functionality can assist in several important tasks, e.g., database curation (by locating new experimental knowledge) and pathway enrichment (by providing information for inference). To allow easy integration into text mining systems, EventMine-MK is provided as a UIMA component that can be used in the interoperable text mining infrastructure, U-Compare.
doi:10.1186/1471-2105-13-108
PMCID: PMC3464657  PMID: 22621266
4.  Mining connections between chemicals, proteins, and diseases extracted from Medline annotations 
Journal of biomedical informatics  2010;43(4):510-519.
The biomedical literature is an important source of information about the biological activity and effects of chemicals. We present an application that extracts terms indicating biological activity of chemicals from Medline records, associates them with chemical name and stores the terms in a repository called ChemoText. We describe the construction of ChemoText and then demonstrate its utility in drug research by employing Swanson’s ABC discovery paradigm. We reproduce Swanson’s discovery of a connection between magnesium and migraine in a novel approach that uses only proteins as the intermediate B terms. We validate our methods by using a cutoff date and evaluate them by calculating precision and recall. In addition to magnesium, we have identified valproic acid and nitric oxide as chemicals which developed links to migraine. We hypothesize, based on protein annotations, that zinc and retinoic acid may play a role in migraine. The ChemoText repository has promise as a data source for drug discovery.
doi:10.1016/j.jbi.2010.03.008
PMCID: PMC2902698  PMID: 20348023
Literature-based discovery; Drug discovery; Text mining
5.  What the papers say: Text mining for genomics and systems biology 
Human Genomics  2010;5(1):17-29.
Keeping up with the rapidly growing literature has become virtually impossible for most scientists. This can have dire consequences. First, we may waste research time and resources on reinventing the wheel simply because we can no longer maintain a reliable grasp on the published literature. Second, and perhaps more detrimental, judicious (or serendipitous) combination of knowledge from different scientific disciplines, which would require following disparate and distinct research literatures, is rapidly becoming impossible for even the most ardent readers of research publications. Text mining -- the automated extraction of information from (electronically) published sources -- could potentially fulfil an important role -- but only if we know how to harness its strengths and overcome its weaknesses. As we do not expect that the rate at which scientific results are published will decrease, text mining tools are now becoming essential in order to cope with, and derive maximum benefit from, this information explosion. In genomics, this is particularly pressing as more and more rare disease-causing variants are found and need to be understood. Not being conversant with this technology may put scientists and biomedical regulators at a severe disadvantage. In this review, we introduce the basic concepts underlying modern text mining and its applications in genomics and systems biology. We hope that this review will serve three purposes: (i) to provide a timely and useful overview of the current status of this field, including a survey of present challenges; (ii) to enable researchers to decide how and when to apply text mining tools in their own research; and (iii) to highlight how the research communities in genomics and systems biology can help to make text mining from biomedical abstracts and texts more straightforward.
doi:10.1186/1479-7364-5-1-17
PMCID: PMC3500154  PMID: 21106487
data mining; systems medicine; literature processing; hypothesis generation
6.  The BioLexicon: a large-scale terminological resource for biomedical text mining 
BMC Bioinformatics  2011;12:397.
Background
Due to the rapidly expanding body of biomedical literature, biologists require increasingly sophisticated and efficient systems to help them to search for relevant information. Such systems should account for the multiple written variants used to represent biomedical concepts, and allow the user to search for specific pieces of knowledge (or events) involving these concepts, e.g., protein-protein interactions. Such functionality requires access to detailed information about words used in the biomedical literature. Existing databases and ontologies often have a specific focus and are oriented towards human use. Consequently, biological knowledge is dispersed amongst many resources, which often do not attempt to account for the large and frequently changing set of variants that appear in the literature. Additionally, such resources typically do not provide information about how terms relate to each other in texts to describe events.
Results
This article provides an overview of the design, construction and evaluation of a large-scale lexical and conceptual resource for the biomedical domain, the BioLexicon. The resource can be exploited by text mining tools at several levels, e.g., part-of-speech tagging, recognition of biomedical entities, and the extraction of events in which they are involved. As such, the BioLexicon must account for real usage of words in biomedical texts. In particular, the BioLexicon gathers together different types of terms from several existing data resources into a single, unified repository, and augments them with new term variants automatically extracted from biomedical literature. Extraction of events is facilitated through the inclusion of biologically pertinent verbs (around which events are typically organized) together with information about typical patterns of grammatical and semantic behaviour, which are acquired from domain-specific texts. In order to foster interoperability, the BioLexicon is modelled using the Lexical Markup Framework, an ISO standard.
Conclusions
The BioLexicon contains over 2.2 M lexical entries and over 1.8 M terminological variants, as well as over 3.3 M semantic relations, including over 2 M synonymy relations. Its exploitation can benefit both application developers and users. We demonstrate some such benefits by describing integration of the resource into a number of different tools, and evaluating improvements in performance that this can bring.
doi:10.1186/1471-2105-12-397
PMCID: PMC3228855  PMID: 21992002
7.  Overview of the BioCreative III Workshop 
BMC Bioinformatics  2011;12(Suppl 8):S1.
Background
The overall goal of the BioCreative Workshops is to promote the development of text mining and text processing tools which are useful to the communities of researchers and database curators in the biological sciences. To this end BioCreative I was held in 2004, BioCreative II in 2007, and BioCreative II.5 in 2009. Each of these workshops involved humanly annotated test data for several basic tasks in text mining applied to the biomedical literature. Participants in the workshops were invited to compete in the tasks by constructing software systems to perform the tasks automatically and were given scores based on their performance. The results of these workshops have benefited the community in several ways. They have 1) provided evidence for the most effective methods currently available to solve specific problems; 2) revealed the current state of the art for performance on those problems; 3) and provided gold standard data and results on that data by which future advances can be gauged. This special issue contains overview papers for the three tasks of BioCreative III.
Results
The BioCreative III Workshop was held in September of 2010 and continued the tradition of a challenge evaluation on several tasks judged basic to effective text mining in biology, including a gene normalization (GN) task and two protein-protein interaction (PPI) tasks. In total the Workshop involved the work of twenty-three teams. Thirteen teams participated in the GN task which required the assignment of EntrezGene IDs to all named genes in full text papers without any species information being provided to a system. Ten teams participated in the PPI article classification task (ACT) requiring a system to classify and rank a PubMed® record as belonging to an article either having or not having “PPI relevant” information. Eight teams participated in the PPI interaction method task (IMT) where systems were given full text documents and were required to extract the experimental methods used to establish PPIs and a text segment supporting each such method. Gold standard data was compiled for each of these tasks and participants competed in developing systems to perform the tasks automatically.
BioCreative III also introduced a new interactive task (IAT), run as a demonstration task. The goal was to develop an interactive system to facilitate a user’s annotation of the unique database identifiers for all the genes appearing in an article. This task included ranking genes by importance (based preferably on the amount of described experimental information regarding genes). There was also an optional task to assist the user in finding the most relevant articles about a given gene. For BioCreative III, a user advisory group (UAG) was assembled and played an important role 1) in producing some of the gold standard annotations for the GN task, 2) in critiquing IAT systems, and 3) in providing guidance for a future more rigorous evaluation of IAT systems. Six teams participated in the IAT demonstration task and received feedback on their systems from the UAG group. Besides innovations in the GN and PPI tasks making them more realistic and practical and the introduction of the IAT task, discussions were begun on community data standards to promote interoperability and on user requirements and evaluation metrics to address utility and usability of systems.
Conclusions
In this paper we give a brief history of the BioCreative Workshops and how they relate to other text mining competitions in biology. This is followed by a synopsis of the three tasks GN, PPI, and IAT in BioCreative III with figures for best participant performance on the GN and PPI tasks. These results are discussed and compared with results from previous BioCreative Workshops and we conclude that the best performing systems for GN, PPI-ACT and PPI-IMT in realistic settings are not sufficient for fully automatic use. This provides evidence for the importance of interactive systems and we present our vision of how best to construct an interactive system for a GN or PPI like task in the remainder of the paper.
doi:10.1186/1471-2105-12-S8-S1
PMCID: PMC3269932  PMID: 22151647
8.  NetiNeti: discovery of scientific names from text using machine learning methods 
BMC Bioinformatics  2012;13:211.
Background
A scientific name for an organism can be associated with almost all biological data. Name identification is an important step in many text mining tasks aiming to extract useful information from biological, biomedical and biodiversity text sources. A scientific name acts as an important metadata element to link biological information.
Results
We present NetiNeti (Name Extraction from Textual Information-Name Extraction for Taxonomic Indexing), a machine learning based approach for recognition of scientific names including the discovery of new species names from text that will also handle misspellings, OCR errors and other variations in names. The system generates candidate names using rules for scientific names and applies probabilistic machine learning methods to classify names based on structural features of candidate names and features derived from their contexts. NetiNeti can also disambiguate scientific names from other names using the contextual information. We evaluated NetiNeti on legacy biodiversity texts and biomedical literature (MEDLINE). NetiNeti performs better (precision = 98.9% and recall = 70.5%) compared to a popular dictionary based approach (precision = 97.5% and recall = 54.3%) on a 600-page biodiversity book that was manually marked by an annotator. On a small set of PubMed Central’s full text articles annotated with scientific names, the precision and recall values are 98.5% and 96.2% respectively. NetiNeti found more than 190,000 unique binomial and trinomial names in more than 1,880,000 PubMed records when used on the full MEDLINE database. NetiNeti also successfully identifies almost all of the new species names mentioned within web pages.
Conclusions
We present NetiNeti, a machine learning based approach for identification and discovery of scientific names. The system implementing the approach can be accessed at http://namefinding.ubio.org.
doi:10.1186/1471-2105-13-211
PMCID: PMC3542245  PMID: 22913485
9.  Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension 
Background
Biomedical scientists need to access figures to validate research facts and to formulate or to test novel research hypotheses. However, figures are difficult to comprehend without associated text (e.g., figure legend and other reference text). We are developing automated systems to extract the relevant explanatory information along with figures extracted from full text articles. Such systems could be very useful in improving figure retrieval and in reducing the workload of biomedical scientists, who otherwise have to retrieve and read the entire full-text journal article to determine which figures are relevant to their research. As a crucial step, we studied the importance of associated text in biomedical figure comprehension.
Methods
Twenty subjects evaluated three figure-text combinations: figure+legend, figure+legend+title+abstract, and figure+full-text. Using a Likert scale, each subject scored each figure+text according to the extent to which the subject thought he/she understood the meaning of the figure and the confidence in providing the assigned score. Additionally, each subject entered a free text summary for each figure-text. We identified missing information using indicator words present within the text summaries. Both the Likert scores and the missing information were statistically analyzed for differences among the figure-text types. We also evaluated the quality of text summaries with the text-summarization evaluation method the ROUGE score.
Results
Our results showed statistically significant differences in figure comprehension when varying levels of text were provided. When the full-text article is not available, presenting just the figure+legend left biomedical researchers lacking 39–68% of the information about a figure as compared to having complete figure comprehension; adding the title and abstract improved the situation, but still left biomedical researchers missing 30% of the information. When the full-text article is available, figure comprehension increased to 86–97%; this indicates that researchers felt that only 3–14% of the necessary information for full figure comprehension was missing when full text was available to them. Clearly there is information in the abstract and in the full text that biomedical scientists deem important for understanding the figures that appear in full-text biomedical articles.
Conclusion
We conclude that the texts that appear in full-text biomedical articles are useful for understanding the meaning of a figure, and an effective figure-mining system needs to unlock the information beyond figure legend. Our work provides important guidance to the figure mining systems that extract information only from figure and figure legend.
doi:10.1186/1747-5333-4-1
PMCID: PMC2631451  PMID: 19126221
10.  Generating Hypotheses by Discovering Implicit Associations in the Literature: A Case Report of a Search for New Potential Therapeutic Uses for Thalidomide 
The availability of scientific bibliographies through online databases provides a rich source of information for scientists to support their research. However, the risk of this pervasive availability is that an individual researcher may fail to find relevant information that is outside the direct scope of interest. Following Swanson’s ABC model of disjoint but complementary structures in the biomedical literature, we have developed a discovery support tool to systematically analyze the scientific literature in order to generate novel and plausible hypotheses. In this case report, we employ the system to find potentially new target diseases for the drug thalidomide. We find solid bibliographic evidence suggesting that thalidomide might be useful for treating acute pancreatitis, chronic hepatitis C, Helicobacter pylori-induced gastritis, and myasthenia gravis. However, experimental and clinical evaluation is needed to validate these hypotheses and to assess the trade-off between therapeutic benefits and toxicities.
doi:10.1197/jamia.M1158
PMCID: PMC342048  PMID: 12626374
11.  Evaluation of BioCreAtIvE assessment of task 2 
BMC Bioinformatics  2005;6(Suppl 1):S16.
Background
Molecular Biology accumulated substantial amounts of data concerning functions of genes and proteins. Information relating to functional descriptions is generally extracted manually from textual data and stored in biological databases to build up annotations for large collections of gene products. Those annotation databases are crucial for the interpretation of large scale analysis approaches using bioinformatics or experimental techniques. Due to the growing accumulation of functional descriptions in biomedical literature the need for text mining tools to facilitate the extraction of such annotations is urgent. In order to make text mining tools useable in real world scenarios, for instance to assist database curators during annotation of protein function, comparisons and evaluations of different approaches on full text articles are needed.
Results
The Critical Assessment for Information Extraction in Biology (BioCreAtIvE) contest consists of a community wide competition aiming to evaluate different strategies for text mining tools, as applied to biomedical literature. We report on task two which addressed the automatic extraction and assignment of Gene Ontology (GO) annotations of human proteins, using full text articles. The predictions of task 2 are based on triplets of protein – GO term – article passage. The annotation-relevant text passages were returned by the participants and evaluated by expert curators of the GO annotation (GOA) team at the European Institute of Bioinformatics (EBI). Each participant could submit up to three results for each sub-task comprising task 2. In total more than 15,000 individual results were provided by the participants. The curators evaluated in addition to the annotation itself, whether the protein and the GO term were correctly predicted and traceable through the submitted text fragment.
Conclusion
Concepts provided by GO are currently the most extended set of terms used for annotating gene products, thus they were explored to assess how effectively text mining tools are able to extract those annotations automatically. Although the obtained results are promising, they are still far from reaching the required performance demanded by real world applications. Among the principal difficulties encountered to address the proposed task, were the complex nature of the GO terms and protein names (the large range of variants which are used to express proteins and especially GO terms in free text), and the lack of a standard training set. A range of very different strategies were used to tackle this task. The dataset generated in line with the BioCreative challenge is publicly available and will allow new possibilities for training information extraction methods in the domain of molecular biology.
doi:10.1186/1471-2105-6-S1-S16
PMCID: PMC1869008  PMID: 15960828
12.  MKEM: a Multi-level Knowledge Emergence Model for mining undiscovered public knowledge 
BMC Bioinformatics  2010;11(Suppl 2):S3.
Background
Since Swanson proposed the Undiscovered Public Knowledge (UPK) model, there have been many approaches to uncover UPK by mining the biomedical literature. These earlier works, however, required substantial manual intervention to reduce the number of possible connections and are mainly applied to disease-effect relation. With the advancement in biomedical science, it has become imperative to extract and combine information from multiple disjoint researches, studies and articles to infer new hypotheses and expand knowledge.
Methods
We propose MKEM, a Multi-level Knowledge Emergence Model, to discover implicit relationships using Natural Language Processing techniques such as Link Grammar and Ontologies such as Unified Medical Language System (UMLS) MetaMap. The contribution of MKEM is as follows: First, we propose a flexible knowledge emergence model to extract implicit relationships across different levels such as molecular level for gene and protein and Phenomic level for disease and treatment. Second, we employ MetaMap for tagging biological concepts. Third, we provide an empirical and systematic approach to discover novel relationships.
Results
We applied our system on 5000 abstracts downloaded from PubMed database. We performed the performance evaluation as a gold standard is not yet available. Our system performed with a good precision and recall and we generated 24 hypotheses.
Conclusions
Our experiments show that MKEM is a powerful tool to discover hidden relationships residing in extracted entities that were represented by our Substance-Effect-Process-Disease-Body Part (SEPDB) model.
doi:10.1186/1471-2105-11-S2-S3
PMCID: PMC3165192  PMID: 20406501
13.  pubmed2ensembl: A Resource for Mining the Biological Literature on Genes 
PLoS ONE  2011;6(9):e24716.
Background
The last two decades have witnessed a dramatic acceleration in the production of genomic sequence information and publication of biomedical articles. Despite the fact that genome sequence data and publications are two of the most heavily relied-upon sources of information for many biologists, very little effort has been made to systematically integrate data from genomic sequences directly with the biological literature. For a limited number of model organisms dedicated teams manually curate publications about genes; however for species with no such dedicated staff many thousands of articles are never mapped to genes or genomic regions.
Methodology/Principal Findings
To overcome the lack of integration between genomic data and biological literature, we have developed pubmed2ensembl (http://www.pubmed2ensembl.org), an extension to the BioMart system that links over 2,000,000 articles in PubMed to nearly 150,000 genes in Ensembl from 50 species. We use several sources of curated (e.g., Entrez Gene) and automatically generated (e.g., gene names extracted through text-mining on MEDLINE records) sources of gene-publication links, allowing users to filter and combine different data sources to suit their individual needs for information extraction and biological discovery. In addition to extending the Ensembl BioMart database to include published information on genes, we also implemented a scripting language for automated BioMart construction and a novel BioMart interface that allows text-based queries to be performed against PubMed and PubMed Central documents in conjunction with constraints on genomic features. Finally, we illustrate the potential of pubmed2ensembl through typical use cases that involve integrated queries across the biomedical literature and genomic data.
Conclusion/Significance
By allowing biologists to find the relevant literature on specific genomic regions or sets of functionally related genes more easily, pubmed2ensembl offers a much-needed genome informatics inspired solution to accessing the ever-increasing biomedical literature.
doi:10.1371/journal.pone.0024716
PMCID: PMC3183000  PMID: 21980353
14.  Constructing a semantic predication gold standard from the biomedical literature 
BMC Bioinformatics  2011;12:486.
Background
Semantic relations increasingly underpin biomedical text mining and knowledge discovery applications. The success of such practical applications crucially depends on the quality of extracted relations, which can be assessed against a gold standard reference. Most such references in biomedical text mining focus on narrow subdomains and adopt different semantic representations, rendering them difficult to use for benchmarking independently developed relation extraction systems. In this article, we present a multi-phase gold standard annotation study, in which we annotated 500 sentences randomly selected from MEDLINE abstracts on a wide range of biomedical topics with 1371 semantic predications. The UMLS Metathesaurus served as the main source for conceptual information and the UMLS Semantic Network for relational information. We measured interannotator agreement and analyzed the annotations closely to identify some of the challenges in annotating biomedical text with relations based on an ontology or a terminology.
Results
We obtain fair to moderate interannotator agreement in the practice phase (0.378-0.475). With improved guidelines and additional semantic equivalence criteria, the agreement increases by 12% (0.415 to 0.536) in the main annotation phase. In addition, we find that agreement increases to 0.688 when the agreement calculation is limited to those predications that are based only on the explicitly provided UMLS concepts and relations.
Conclusions
While interannotator agreement in the practice phase confirms that conceptual annotation is a challenging task, the increasing agreement in the main annotation phase points out that an acceptable level of agreement can be achieved in multiple iterations, by setting stricter guidelines and establishing semantic equivalence criteria. Mapping text to ontological concepts emerges as the main challenge in conceptual annotation. Annotating predications involving biomolecular entities and processes is particularly challenging. While the resulting gold standard is mainly intended to serve as a test collection for our semantic interpreter, we believe that the lessons learned are applicable generally.
doi:10.1186/1471-2105-12-486
PMCID: PMC3281188  PMID: 22185221
15.  GeneLibrarian: an effective gene-information summarization and visualization system 
BMC Bioinformatics  2006;7:392.
Background
Abundant information about gene products is stored in online searchable databases such as annotation or literature. To efficiently obtain and digest such information, there is a pressing need for automated information-summarization and functional-similarity clustering of genes.
Results
We have developed a novel method for semantic measurement of annotation and integrated it with a biomedical literature summarization system to establish a platform, GeneLibrarian, to provide users well-organized information about any specific group of genes (e.g. one cluster of genes from a microarray chip) they might be interested in. The GeneLibrarian generates a summarized viewgraph of candidate genes for a user based on his/her preference and delivers the desired background information effectively to the user. The summarization technique involves optimizing the text mining algorithm and Gene Ontology-based clustering method to enable the discovery of gene relations.
Conclusion
GeneLibrarian is a Java-based web application that automates the process of retrieving critical information from the literature and expanding the number of potential genes for further analysis. This study concentrates on providing well organized information to users and we believe that will be useful in their researches. GeneLibrarian is available on
doi:10.1186/1471-2105-7-392
PMCID: PMC1564044  PMID: 16939640
16.  The Role of the Toxicologic Pathologist in the Post-Genomic Era# 
Journal of Toxicologic Pathology  2013;26(2):105-110.
An era can be defined as a period in time identified by distinctive character, events, or practices. We are now in the genomic era. The pre-genomic era: There was a pre-genomic era. It started many years ago with novel and seminal animal experiments, primarily directed at studying cancer. It is marked by the development of the two-year rodent cancer bioassay and the ultimate realization that alternative approaches and short-term animal models were needed to replace this resource-intensive and time-consuming method for predicting human health risk. Many alternatives approaches and short-term animal models were proposed and tried but, to date, none have completely replaced our dependence upon the two-year rodent bioassay. However, the alternative approaches and models themselves have made tangible contributions to basic research, clinical medicine and to our understanding of cancer and they remain useful tools to address hypothesis-driven research questions. The pre-genomic era was a time when toxicologic pathologists played a major role in drug development, evaluating the cancer bioassay and the associated dose-setting toxicity studies, and exploring the utility of proposed alternative animal models. It was a time when there was shortage of qualified toxicologic pathologists. The genomic era: We are in the genomic era. It is a time when the genetic underpinnings of normal biological and pathologic processes are being discovered and documented. It is a time for sequencing entire genomes and deliberately silencing relevant segments of the mouse genome to see what each segment controls and if that silencing leads to increased susceptibility to disease. What remains to be charted in this genomic era is the complex interaction of genes, gene segments, post-translational modifications of encoded proteins, and environmental factors that affect genomic expression. In this current genomic era, the toxicologic pathologist has had to make room for a growing population of molecular biologists. In this present era newly emerging DVM and MD scientists enter the work arena with a PhD in pathology often based on some aspect of molecular biology or molecular pathology research. In molecular biology, the almost daily technological advances require one’s complete dedication to remain at the cutting edge of the science. Similarly, the practice of toxicologic pathology, like other morphological disciplines, is based largely on experience and requires dedicated daily examination of pathology material to maintain a well-trained eye capable of distilling specific information from stained tissue slides - a dedicated effort that cannot be well done as an intermezzo between other tasks. It is a rare individual that has true expertise in both molecular biology and pathology. In this genomic era, the newly emerging DVM-PhD or MD-PhD pathologist enters a marketplace without many job opportunities in contrast to the pre-genomic era. Many face an identity crisis needing to decide to become a competent pathologist or, alternatively, to become a competent molecular biologist. At the same time, more PhD molecular biologists without training in pathology are members of the research teams working in drug development and toxicology. How best can the toxicologic pathologist interact in the contemporary team approach in drug development, toxicology research and safety testing? Based on their biomedical training, toxicologic pathologists are in an ideal position to link data from the emerging technologies with their knowledge of pathobiology and toxicology. To enable this linkage and obtain the synergy it provides, the bench-level, slide-reading expert pathologist will need to have some basic understanding and appreciation of molecular biology methods and tools. On the other hand, it is not likely that the typical molecular biologist could competently evaluate and diagnose stained tissue slides from a toxicology study or a cancer bioassay. The post-genomic era: The post-genomic era will likely arrive approximately around 2050 at which time entire genomes from multiple species will exist in massive databases, data from thousands of robotic high throughput chemical screenings will exist in other databases, genetic toxicity and chemical structure-activity-relationships will reside in yet other databases. All databases will be linked and relevant information will be extracted and analyzed by appropriate algorithms following input of the latest molecular, submolecular, genetic, experimental, pathology and clinical data. Knowledge gained will permit the genetic components of many diseases to be amenable to therapeutic prevention and/or intervention. Much like computerized algorithms are currently used to forecast weather or to predict political elections, computerized sophisticated algorithms based largely on scientific data mining will categorize new drugs and chemicals relative to their health benefits versus their health risks for defined human populations and subpopulations. However, this form of a virtual toxicity study or cancer bioassay will only identify probabilities of adverse consequences from interaction of particular environmental and/or chemical/drug exposure(s) with specific genomic variables. Proof in many situations will require confirmation in intact in vivo mammalian animal models. The toxicologic pathologist in the post-genomic era will be the best suited scientist to confirm the data mining and its probability predictions for safety or adverse consequences with the actual tissue morphological features in test species that define specific test agent pathobiology and human health risk.
doi:10.1293/tox.26.105
PMCID: PMC3695332  PMID: 23914052
genomic era; history of toxicologic pathology; molecular biology
17.  An evaluation of GO annotation retrieval for BioCreAtIvE and GOA 
BMC Bioinformatics  2005;6(Suppl 1):S17.
Background
The Gene Ontology Annotation (GOA) database aims to provide high-quality supplementary GO annotation to proteins in the UniProt Knowledgebase. Like many other biological databases, GOA gathers much of its content from the careful manual curation of literature. However, as both the volume of literature and of proteins requiring characterization increases, the manual processing capability can become overloaded.
Consequently, semi-automated aids are often employed to expedite the curation process. Traditionally, electronic techniques in GOA depend largely on exploiting the knowledge in existing resources such as InterPro. However, in recent years, text mining has been hailed as a potentially useful tool to aid the curation process.
To encourage the development of such tools, the GOA team at EBI agreed to take part in the functional annotation task of the BioCreAtIvE (Critical Assessment of Information Extraction systems in Biology) challenge.
BioCreAtIvE task 2 was an experiment to test if automatically derived classification using information retrieval and extraction could assist expert biologists in the annotation of the GO vocabulary to the proteins in the UniProt Knowledgebase.
GOA provided the training corpus of over 9000 manual GO annotations extracted from the literature. For the test set, we provided a corpus of 200 new Journal of Biological Chemistry articles used to annotate 286 human proteins with GO terms. A team of experts manually evaluated the results of 9 participating groups, each of which provided highlighted sentences to support their GO and protein annotation predictions. Here, we give a biological perspective on the evaluation, explain how we annotate GO using literature and offer some suggestions to improve the precision of future text-retrieval and extraction techniques. Finally, we provide the results of the first inter-annotator agreement study for manual GO curation, as well as an assessment of our current electronic GO annotation strategies.
Results
The GOA database currently extracts GO annotation from the literature with 91 to 100% precision, and at least 72% recall. This creates a particularly high threshold for text mining systems which in BioCreAtIvE task 2 (GO annotation extraction and retrieval) initial results precisely predicted GO terms only 10 to 20% of the time.
Conclusion
Improvements in the performance and accuracy of text mining for GO terms should be expected in the next BioCreAtIvE challenge. In the meantime the manual and electronic GO annotation strategies already employed by GOA will provide high quality annotations.
doi:10.1186/1471-2105-6-S1-S17
PMCID: PMC1869009  PMID: 15960829
18.  Text Mining for Literature Review and Knowledge Discovery in Cancer Risk Assessment and Research 
PLoS ONE  2012;7(4):e33427.
Research in biomedical text mining is starting to produce technology which can make information in biomedical literature more accessible for bio-scientists. One of the current challenges is to integrate and refine this technology to support real-life scientific tasks in biomedicine, and to evaluate its usefulness in the context of such tasks. We describe CRAB – a fully integrated text mining tool designed to support chemical health risk assessment. This task is complex and time-consuming, requiring a thorough review of existing scientific data on a particular chemical. Covering human, animal, cellular and other mechanistic data from various fields of biomedicine, this is highly varied and therefore difficult to harvest from literature databases via manual means. Our tool automates the process by extracting relevant scientific data in published literature and classifying it according to multiple qualitative dimensions. Developed in close collaboration with risk assessors, the tool allows navigating the classified dataset in various ways and sharing the data with other users. We present a direct and user-based evaluation which shows that the technology integrated in the tool is highly accurate, and report a number of case studies which demonstrate how the tool can be used to support scientific discovery in cancer risk assessment and research. Our work demonstrates the usefulness of a text mining pipeline in facilitating complex research tasks in biomedicine. We discuss further development and application of our technology to other types of chemical risk assessment in the future.
doi:10.1371/journal.pone.0033427
PMCID: PMC3325219  PMID: 22511921
19.  Integrating text mining into the MGI biocuration workflow 
A major challenge for functional and comparative genomics resource development is the extraction of data from the biomedical literature. Although text mining for biological data is an active research field, few applications have been integrated into production literature curation systems such as those of the model organism databases (MODs). Not only are most available biological natural language (bioNLP) and information retrieval and extraction solutions difficult to adapt to existing MOD curation workflows, but many also have high error rates or are unable to process documents available in those formats preferred by scientific journals.
In September 2008, Mouse Genome Informatics (MGI) at The Jackson Laboratory initiated a search for dictionary-based text mining tools that we could integrate into our biocuration workflow. MGI has rigorous document triage and annotation procedures designed to identify appropriate articles about mouse genetics and genome biology. We currently screen ∼1000 journal articles a month for Gene Ontology terms, gene mapping, gene expression, phenotype data and other key biological information. Although we do not foresee that curation tasks will ever be fully automated, we are eager to implement named entity recognition (NER) tools for gene tagging that can help streamline our curation workflow and simplify gene indexing tasks within the MGI system. Gene indexing is an MGI-specific curation function that involves identifying which mouse genes are being studied in an article, then associating the appropriate gene symbols with the article reference number in the MGI database.
Here, we discuss our search process, performance metrics and success criteria, and how we identified a short list of potential text mining tools for further evaluation. We provide an overview of our pilot projects with NCBO's Open Biomedical Annotator and Fraunhofer SCAI's ProMiner. In doing so, we prove the potential for the further incorporation of semi-automated processes into the curation of the biomedical literature.
doi:10.1093/database/bap019
PMCID: PMC2797454  PMID: 20157492
20.  An overview of the BioCreative 2012 Workshop Track III: interactive text mining task 
In many databases, biocuration primarily involves literature curation, which usually involves retrieving relevant articles, extracting information that will translate into annotations and identifying new incoming literature. As the volume of biological literature increases, the use of text mining to assist in biocuration becomes increasingly relevant. A number of groups have developed tools for text mining from a computer science/linguistics perspective, and there are many initiatives to curate some aspect of biology from the literature. Some biocuration efforts already make use of a text mining tool, but there have not been many broad-based systematic efforts to study which aspects of a text mining tool contribute to its usefulness for a curation task. Here, we report on an effort to bring together text mining tool developers and database biocurators to test the utility and usability of tools. Six text mining systems presenting diverse biocuration tasks participated in a formal evaluation, and appropriate biocurators were recruited for testing. The performance results from this evaluation indicate that some of the systems were able to improve efficiency of curation by speeding up the curation task significantly (∼1.7- to 2.5-fold) over manual curation. In addition, some of the systems were able to improve annotation accuracy when compared with the performance on the manually curated set. In terms of inter-annotator agreement, the factors that contributed to significant differences for some of the systems included the expertise of the biocurator on the given curation task, the inherent difficulty of the curation and attention to annotation guidelines. After the task, annotators were asked to complete a survey to help identify strengths and weaknesses of the various systems. The analysis of this survey highlights how important task completion is to the biocurators’ overall experience of a system, regardless of the system’s high score on design, learnability and usability. In addition, strategies to refine the annotation guidelines and systems documentation, to adapt the tools to the needs and query types the end user might have and to evaluate performance in terms of efficiency, user interface, result export and traditional evaluation metrics have been analyzed during this task. This analysis will help to plan for a more intense study in BioCreative IV.
doi:10.1093/database/bas056
PMCID: PMC3625048  PMID: 23327936
21.  How to link ontologies and protein–protein interactions to literature: text-mining approaches and the BioCreative experience 
There is an increasing interest in developing ontologies and controlled vocabularies to improve the efficiency and consistency of manual literature curation, to enable more formal biocuration workflow results and ultimately to improve analysis of biological data. Two ontologies that have been successfully used for this purpose are the Gene Ontology (GO) for annotating aspects of gene products and the Molecular Interaction ontology (PSI-MI) used by databases that archive protein–protein interactions. The examination of protein interactions has proven to be extremely promising for the understanding of cellular processes. Manual mapping of information from the biomedical literature to bio-ontology terms is one of the most challenging components in the curation pipeline. It requires that expert curators interpret the natural language descriptions contained in articles and infer their semantic equivalents in the ontology (controlled vocabulary). Since manual curation is a time-consuming process, there is strong motivation to implement text-mining techniques to automatically extract annotations from free text. A range of text mining strategies has been devised to assist in the automated extraction of biological data. These strategies either recognize technical terms used recurrently in the literature and propose them as candidates for inclusion in ontologies, or retrieve passages that serve as evidential support for annotating an ontology term, e.g. from the PSI-MI or GO controlled vocabularies. Here, we provide a general overview of current text-mining methods to automatically extract annotations of GO and PSI-MI ontology terms in the context of the BioCreative (Critical Assessment of Information Extraction Systems in Biology) challenge. Special emphasis is given to protein–protein interaction data and PSI-MI terms referring to interaction detection methods.
doi:10.1093/database/bas017
PMCID: PMC3309177  PMID: 22438567
22.  RES6/466: Toward a Discovery Support System Based on Medical and Health Unifying Principles to Formulate Recombinant Hypotheses through Internet Online Databases 
Introduction
Since the 17-century, scientists have been enquiring for the logical scientific principles of medicine and informatics, among other disciplines, encouraged by the instance of Newtonian physics. In the 20-century, the main principles of informatics were found making possible the development of present computers & Internet. However, very little research has been done seeking medical & health scientific principles, allowing among other functions, assistance in scientific hypotheses formation beside empirical data. One important effort on hypothesis formulation, has been the running of the Arrowsmith system of software and database search strategies at http://kiwi.uchicago.edu (Swanson & Smalheiser, 1997), which evokes hypothesis using the relational structure of the NCBI PubMed Internet on-line database (1966-). Nevertheless, although it uses a powerful logical mathematical method, it does not include any logical scientific principle from experimental or clinical medicine, & public health sciences. The aim of this paper is to give an outline of the design & rationale of an international collaborative research, complementary to Arrowsmith system, whose outcomes would be the logical basis of content seeking a more rational discovery support system.
Methods
Crucial fragmented information of multiple specialities and cognitive levels, synthesised by an international cross-disciplinary team or teams of experts, through a complex inductive method using Internet research facilities.
Expected Results:
Medical & health unifying principles that would perfect Arrowsmith target search strategies or other formal discovery computer-assisted systems to formulate recombinant hypotheses, using PubMed on-line database, and even in the future, the NCBI E-Biomed Internet on-line database proposed at http://www.nih.gov/welcome/director/ebiomed/ebiomed.htm (Varmus, Lipman & Brown, 1999). The perfected system will complete then, the premises to receive the benefits of Artificial Intelligence concepts & tools, to continue its improving.
doi:10.2196/jmir.1.suppl1.e81
PMCID: PMC1761764
Unifying Principles; Inductive Method; Hypothesis Formulation; Internet; Discover Support System
23.  A sentence sliding window approach to extract protein annotations from biomedical articles 
BMC Bioinformatics  2005;6(Suppl 1):S19.
Background
Within the emerging field of text mining and statistical natural language processing (NLP) applied to biomedical articles, a broad variety of techniques have been developed during the past years. Nevertheless, there is still a great ned of comparative assessment of the performance of the proposed methods and the development of common evaluation criteria. This issue was addressed by the Critical Assessment of Text Mining Methods in Molecular Biology (BioCreative) contest. The aim of this contest was to assess the performance of text mining systems applied to biomedical texts including tools which recognize named entities such as genes and proteins, and tools which automatically extract protein annotations.
Results
The "sentence sliding window" approach proposed here was found to efficiently extract text fragments from full text articles containing annotations on proteins, providing the highest number of correctly predicted annotations. Moreover, the number of correct extractions of individual entities (i.e. proteins and GO terms) involved in the relationships used for the annotations was significantly higher than the correct extractions of the complete annotations (protein-function relations).
Conclusion
We explored the use of averaging sentence sliding windows for information extraction, especially in a context where conventional training data is unavailable. The combination of our approach with more refined statistical estimators and machine learning techniques might be a way to improve annotation extraction for future biomedical text mining applications.
doi:10.1186/1471-2105-6-S1-S19
PMCID: PMC1869011  PMID: 15960831
24.  Linking genes to literature: text mining, information extraction, and retrieval applications for biology 
Genome Biology  2008;9(Suppl 2):S8.
Efficient access to information contained in online scientific literature collections is essential for life science research, playing a crucial role from the initial stage of experiment planning to the final interpretation and communication of the results. The biological literature also constitutes the main information source for manual literature curation used by expert-curated databases. Following the increasing popularity of web-based applications for analyzing biological data, new text-mining and information extraction strategies are being implemented. These systems exploit existing regularities in natural language to extract biologically relevant information from electronic texts automatically. The aim of the BioCreative challenge is to promote the development of such tools and to provide insight into their performance. This review presents a general introduction to the main characteristics and applications of currently available text-mining systems for life sciences in terms of the following: the type of biological information demands being addressed; the level of information granularity of both user queries and results; and the features and methods commonly exploited by these applications. The current trend in biomedical text mining points toward an increasing diversification in terms of application types and techniques, together with integration of domain-specific resources such as ontologies. Additional descriptions of some of the systems discussed here are available on the internet .
doi:10.1186/gb-2008-9-s2-s8
PMCID: PMC2559992  PMID: 18834499
25.  Text mining for the biocuration workflow 
Molecular biology has become heavily dependent on biological knowledge encoded in expert curated biological databases. As the volume of biological literature increases, biocurators need help in keeping up with the literature; (semi-) automated aids for biocuration would seem to be an ideal application for natural language processing and text mining. However, to date, there have been few documented successes for improving biocuration throughput using text mining. Our initial investigations took place for the workshop on ‘Text Mining for the BioCuration Workflow’ at the third International Biocuration Conference (Berlin, 2009). We interviewed biocurators to obtain workflows from eight biological databases. This initial study revealed high-level commonalities, including (i) selection of documents for curation; (ii) indexing of documents with biologically relevant entities (e.g. genes); and (iii) detailed curation of specific relations (e.g. interactions); however, the detailed workflows also showed many variabilities. Following the workshop, we conducted a survey of biocurators. The survey identified biocurator priorities, including the handling of full text indexed with biological entities and support for the identification and prioritization of documents for curation. It also indicated that two-thirds of the biocuration teams had experimented with text mining and almost half were using text mining at that time. Analysis of our interviews and survey provide a set of requirements for the integration of text mining into the biocuration workflow. These can guide the identification of common needs across curated databases and encourage joint experimentation involving biocurators, text mining developers and the larger biomedical research community.
doi:10.1093/database/bas020
PMCID: PMC3328793  PMID: 22513129

Results 1-25 (631762)