Search tips
Search criteria

Results 1-25 (1020411)

Clipboard (0)

Related Articles

1.  Application of the multicellular tumour spheroid model to screen PET tracers for analysis of early response of chemotherapy in breast cancer 
Positron emission tomography (PET) is suggested for early monitoring of treatment response, assuming that effective anticancer treatment induces metabolic changes that precede morphology alterations and changes in growth. The aim of this study was to introduce multicellular tumour spheroids (MTS) to study the effect of anticancer drugs and suggest an appropriate PET tracer for further studies.
MTS of the breast cancer cell line MCF7 were exposed to doxorubicin, paclitaxel, docetaxel, tamoxifen or imatinib for 7 days for growth pattern studies and for 3 or 5 days for PET tracer studies. The effect on growth was computed using the semi-automated size determination method (SASDM). The effect on the uptake of PET tracers [18F]3'-deoxy-3'-fluorothymidine (FLT), [1-11C]acetate (ACE), [11C]choline (CHO), [11C]methionine (MET), and 2-[18F]fluoro-2-deoxyglucose (FDG) was calculated in form of uptake/viable volume of the MTS at the end of the drug exposures, and finally the uptake was related to effects on growth rate.
The drugs paclitaxel, docetaxel and doxorubicin gave severe growth inhibition, which correlated well with inhibition of the FLT uptake. FLT had, compared with ACE, CHO, MET and FDG, higher sensitivity in monitoring the therapy effects.
SASDM provides an effective, user-friendly, time-saving and accurate method to record the growth pattern of the MTS, and also to calculate the effect of the drug on PET tracer uptake. This study demonstrate the use of MTS and SASDM in combination with PET tracers as a promising approach to probe and select PET tracer for treatment monitoring of anticancer drugs and that can hopefully be applied for optimisation in breast cancer treatment.
PMCID: PMC2206720  PMID: 17659092
2.  Monitoring tumour response during chemo-radiotherapy: a parametric method using FDG-PET/CT images in patients with oesophageal cancer 
EJNMMI Research  2014;4:12.
The objective of this study is to investigate the feasibility and the additional interest of a parametric imaging (PI) method to monitor the early tumour metabolic response in a prospective series of oesophageal cancer patients who underwent positron emission tomography with fluoro-2-deoxy-d-glucose (FDG-PET/CT) before and during curative-intent chemo-radiotherapy.
Fifty-seven patients with squamous cell carcinoma (SCC) of the oesophagus prospectively underwent FDG-PET/CT before chemo-radiotherapy (CRT) (PET1) and at 21 ± 3 days after the beginning of CRT (PET2). The outcome was assessed at 3 months and 1 year after the completion of CRT (clinical examination, CT scan or FDG-PET/CT, biopsy). For each patient, PET1 and PET2 were registered using CT images. The 2 PET image sets were subtracted, so the voxels with significant changes in FDG uptake were identified. A model-based analysis of this graph was used to identify the tumour voxels in which significant changes occurred between the two scans and yielded indices characterising these changes (green and red clusters). Quantitative parameters were compared with clinical outcome at 3 months and at 1 year.
The baseline tumour FDG uptake decreased significantly at PET2 (p < 0.0001). The tumour volume significantly decreased between PET1 and PET2 (p < 0.02). The initial functional volume of the lesion (TV1) was significantly lower (p < 0.02) in patients in clinical response (CR) at 3 months and 1 year. The volume of the lesion during the treatment (TV2) was significantly lower in patients identified as in CR at 3 months (p < 0.03), but did not predict the outcome at 1 year. Multivariate analyses of outcome at 3 months showed that the risk of failure/death increased with younger age (p = 0.001), larger metabolic volume on PET1 (p = 0.009) and larger volume with decreased FDG uptake (p = 0.047). As for outcome at 1 year, the risk of failure/death increased with younger age (p = 0.006), nodal involvement (p = 0.08) and larger volumes with increased uptake (p = 0.03).
A parametric method to assess tumour response on serial FDG-PET performed during chemo-radiotherapy was evaluated. Early metabolic changes, i.e. variations in FDG uptake, provided additional prognostic information in multivariate analyses NCT 00934505.
Trial registration
Current Controlled Trials ISRCTN7824458
PMCID: PMC3973855  PMID: 24602385
Positron emission tomography; Fluoro-deoxy-d-glucose; Oesophageal cancer; Chemo-radiotherapy; Parametric imaging
3.  18F-Alfatide II and 18F-FDG Dual Tracer Dynamic PET for Parametric, Early Prediction of Tumor Response to Therapy 
A single dynamic PET acquisition using multiple tracers administered closely in time could provide valuable complementary information about a tumor’s status under quasi-constant conditions. This study aims to investigate the utility of dual-tracer dynamic PET imaging with 18F-Alfatide II (18F-AlF-NOTA-E[PEG4-c(RGDfk)]2) and 18F-FDG for parametric monitoring of tumor responses to therapy.
We administered doxorubicin to one group of athymic nude mice with U87MG tumors and Abraxane to another group of mice with MDA-MB-435 tumors. To monitor therapeutic responses, we performed dual-tracer dynamic imaging, in sessions that lasted 90 min, starting by injecting the mice via tail vein catheters with 18F-Alfatide II, followed 40 minutes later by 18F-FDG. To achieve signal separation of the two tracers, we fit a three-compartment reversible model to the time activity curve (TAC) of 18F-Alfatide II for the 40 min prior to 18F-FDG injection, and then extrapolated to 90 min. The 18F-FDG tumor TAC was isolated from the 90 min dual tracer tumor TAC by subtracting the fitted 18F-Alfatide II tumor TAC. With separated tumor TACs, the 18F-Alfatide II binding potential (Bp=k3/k4) and volume of distribution (VD), and 18F-FDG influx rate ((K1×k3)/(k2 + k3)) based on the Patlak method were calculated to validate the signal recovery in a comparison with 60-min single tracer imaging and to monitor therapeutic response.
The transport and binding rate parameters K1-k3 of 18F-Alfatide II, calculated from the first 40 min of dual tracer dynamic scan, as well as Bp and VD, correlated well with the parameters from the 60 min single tracer scan (R2 > 0.95). Compared with the results of single tracer PET imaging, FDG tumor uptake and influx were recovered well from dual tracer imaging. Upon doxorubicin treatment, while no significant changes in static tracer uptake values of 18F-Alfatide II or 18F-FDG were observed, both 18F-Alfatide II Bp and 18F-FDG influx from kinetic analysis in tumors showed significant decreases. For Abraxane therapy of MDA-MB-435 tumors, significant decrease was only observed with 18F-Alfatide II Bp value from kinetic analysis but not 18F-FDG influx.
The parameters fitted with compartmental modeling from the dual tracer dynamic imaging are consistent with those from single tracer imaging, substantiating the feasibility of this methodology. Even though no significant differences in tumor size were found until 5 days after doxorubicin treatment started, at day 3 there were already substantial differences in 18F-Alfatide II Bp and 18F-FDG influx rate. Dual tracer imaging can measure 18F-Alfatide II Bp value and 18F-FDG influx simultaneously to evaluate tumor angiogenesis and metabolism. Such changes are known to precede anatomical changes, and thus parametric imaging may offer the promise of early prediction of therapy response.
PMCID: PMC4209961  PMID: 24232871
dual-tracer dynamic PET; parametric imaging; 18F-Alfatide II; 18F-FDG; therapy response
4.  Dual time point imaging fluorine-18 flourodeoxyglucose positron emission tomography for evaluation of large loco-regional recurrences of breast cancer treated with electrochemotherapy 
Radiology and Oncology  2013;47(4):358-365.
Electrochemotherapy is a local anticancer treatment very efficient for treatment of small cutaneous metastases. The method is now being investigated for large cutaneous recurrences of breast cancer that are often confluent masses of malignant tumour with various degrees of inflammation. To this end 18-Flourine-Flourodeoxyglucose-Positron Emission Tomography/Computed Tomography (FDG-PET/CT) could be a method for response evaluation. However, a standard FDG-PET/CT scan cannot differentiate inflammatory tissue from malignant tissue. Dual point time imaging (DTPI) FDG-PET has the potential of doing so. The purpose of this study was to investigate if DTPI FDG-PET/CT could assess response to electrochemotherapy and to assess the optimal timing of imaging.
Patients and methods
Within a phase II clinical trial 11 patients with cutaneous recurrences had FDG-PET/CT scans at three time points: 60 min, 120 min and 180 min after FDG injection. The scans were performed before and 3 weeks after electrochemotherapy.
A significant reduction in maximum standard uptake value at 60 min post injection was seen after treatment. Furthermore a change in the FDG uptake pattern was observed; from increasing uptake in up to 180 min post injection before treatment to stabilization of FDG uptake at 120 min post injection after treatment. The change in FDG uptake pattern over time lead to change of response in three target lesions; two lesions changed from stable metabolic disease to partial metabolic response and one lesion changed from partial metabolic response to stable metabolic disease. To ensure detection of the change in uptake pattern, scanning 60 and 180 min post injection seems optimal.
The present study shows that FDG-PET/CT 60 and 180 min after tracer injection is a promising tool for response evaluation of cutaneous recurrences of breast cancer treated with electrochemotherapy.
PMCID: PMC3814280  PMID: 24294180
dual time point FDG PET; breast cancer; electrochemotherapy; response assessment; cutaneous metastases
5.  HER2-overexpressing breast cancer: FDG uptake after two cycles of chemotherapy predicts the outcome of neoadjuvant treatment 
British Journal of Cancer  2013;109(5):1157-1164.
Pathologic complete response (pCR) to neoadjuvant treatment (NAT) is associated with improved survival of patients with HER2+ breast cancer. We investigated the ability of interim positron emission tomography (PET) regarding early prediction of pathology outcomes.
During 61 months, consecutive patients with locally advanced or large HER2+ breast cancer patients without distant metastases were included. All patients received NAT with four cycles of epirubicin+cyclophosphamide, followed by four cycles of docetaxel+trastuzumab. 18F-fluorodeoxyglucose (18F-FDG)-PET/computed tomography (CT) was performed at baseline (PET1) and after two cycles of chemotherapy (PET2). Maximum standardised uptake values were measured in the primary tumour as well as in the axillary lymph nodes. The correlation between pathologic response and SUV parameters (SUVmax at PET1, PET2 and ΔSUVmax) was examined with the t-test. The predictive performance regarding the identification of non-responders was evaluated using receiver operating characteristics (ROC) analysis.
Thirty women were prospectively included and 60 PET/CT examination performed. At baseline, 22 patients had PET+ axilla and in nine of them 18F-FDG uptake was higher than in the primary tumour. At surgery, 14 patients (47%) showed residual tumour (non-pCR), whereas 16 (53%) reached pCR. Best prediction was obtained when considering the absolute residual SUVmax value at PET2 (AUC=0.91) vs 0.67 for SUVmax at PET1 and 0.86 for ΔSUVmax. The risk of non-pCR was 92.3% in patients with any site of residual uptake >3 at PET2, no matter whether in breast or axilla, vs 11.8% in patients with uptake ⩽3 (P=0.0001). The sensitivity, specificity, PPV, NPV and overall accuracy of this cutoff were, respectively: 85.7%, 93.8%, 92.3%, 88.2% and 90%.
The level of residual 18F-FDG uptake after two cycles of chemotherapy predicts residual disease at completion of NAT with chemotherapy+trastuzumab with high accuracy. Because many innovative therapeutic strategies are now available (e.g., addition of a second HER2-directed therapy or an antiangiogenic), early prediction of poor response is critical.
PMCID: PMC3778311  PMID: 23942075
18F-FDG-PET/CT; breast cancer; HER2; neoadjuvant chemotherapy; metabolic response; pathologic complete response
6.  Molecular imaging for early prediction of response to Sorafenib treatment in sarcoma 
The role of [18F]fluorodeoxyglucose ([18F]FDG) PET in staging of sarcoma is well established. The aim of this preclinical study was to compare [18F]fluorothymidine ([18F]FLT) PET to [18F]FDG PET regarding early metabolic changes of sarcoma in the course of targeted cancer therapy. SCID mice bearing sarcoma A673 xenotransplants were used for investigation of tumor response after treatment with the multikinase inhibitor Sorafenib. [18F]FLT and/or [18F]FDG-PET were performed prior to and early after initiation of treatment. Tumoral uptake (% Injected Dose per gram (%ID/g) of [18F]FLT-PET was compared to [18F]FDG-PET. Results were correlated with histopathology and in vitro data including cellular uptake, cell cycle-related protein expression, cell cycle distribution and apoptosis. In vitro experiments showed that A673 cells were sensitive to Sorafenib. In vivo, tumor growth was inhibited in comparison to a 4-fold increase of the tumor volume in control mice. Using [18F]FDG as tracer, a moderate reduction in tracer uptake (n=15, mean relative %ID/g 74%, range 35%-121%, p=0.03) was observed. The decrease in %ID/g using [18F]FLT-PET was significantly higher (p=0.003). The mean relative %ID/g in [18F]FLT uptake on day + 5 was significantly reduced to 54% compared to baseline (n=15, range 24%-125%, SD=29%). The PET analysis 24 hr after therapy showed a significant reduction of the mean [18F]FLT-%ID/g (p=0.04). The reduction of %ID/g on day + 1 in [18F]FDG-PET was not statistically significant (p=0.99). In conclusion, both [18F]FDG- and [18F]FLT-PET were able to predict response to Sorafenib treatment. In contrast to [18F]FDG-PET, [18F]FLT-PET was more predictive for very early response to treatment.
PMCID: PMC3867731  PMID: 24380047
Molecular imaging; sarcoma; PET; proliferation; [18F]FLT; [18F]FDG
7.  Automated computer quantification of breast cancer in small-animal models using PET-guided MR image co-segmentation 
EJNMMI Research  2013;3:49.
Care providers use complementary information from multiple imaging modalities to identify and characterize metastatic tumors in early stages and perform surveillance for cancer recurrence. These tasks require volume quantification of tumor measurements using computed tomography (CT) or magnetic resonance imaging (MRI) and functional characterization through positron emission tomography (PET) imaging. In vivo volume quantification is conducted through image segmentation, which may require both anatomical and functional images available for precise tumor boundary delineation. Although integrating multiple image modalities into the segmentation process may improve the delineation accuracy and efficiency, due to variable visibility on image modalities, complex shape of metastatic lesions, and diverse visual features in functional and anatomical images, a precise and efficient segmentation of metastatic breast cancer remains a challenging goal even for advanced image segmentation methods. In response to these challenges, we present here a computer-assisted volume quantification method for PET/MRI dual modality images using PET-guided MRI co-segmentation. Our aims in this study were (1) to determine anatomical tumor volumes automatically from MRI accurately and efficiently, (2) to evaluate and compare the accuracy of the proposed method with different radiotracers (18F-Z HER2-Affibody and 18F-flourodeoxyglucose (18F-FDG)), and (3) to confirm the proposed method’s determinations from PET/MRI scans in comparison with PET/CT scans.
After the Institutional Administrative Panel on Laboratory Animal Care approval was obtained, 30 female nude mice were used to construct a small-animal breast cancer model. All mice were injected with human breast cancer cells and HER2-overexpressing MDA-MB-231HER2-Luc cells intravenously. Eight of them were selected for imaging studies, and selected mice were imaged with MRI, CT, and 18F-FDG-PET at weeks 9 and 10 and then imaged with 18F-Z HER2-Affibody-PET 2 days after the scheduled structural imaging (MRI and CT). After CT and MR images were co-registered with corresponding PET images, all images were quantitatively analyzed by the proposed segmentation technique.
Automatically determined anatomical tumor volumes were compared to radiologist-derived reference truths. Observer agreements were presented through Bland-Altman and linear regression analyses. Segmentation evaluations were conducted using true-positive (TP) and false-positive (FP) volume fractions of delineated tissue samples, as complied with the state-of-the-art evaluation techniques for image segmentation. Moreover, the PET images, obtained using different radiotracers, were examined and compared using the complex wavelet-based structural similarity index (CWSSI). (continued on the next page) (continued from the previous page)
PET/MR dual modality imaging using the 18F-Z HER2-Affibody imaging agent provided diagnostic image quality in all mice with excellent tumor delineations by the proposed method. The 18F-FDG radiotracer did not show accurate identification of the tumor regions. Structural similarity index (CWSSI) between PET images using 18F-FDG and 18F-Z HER2-Affibody agents was found to be 0.7838. MR showed higher diagnostic image quality when compared to CT because of its better soft tissue contrast. Significant correlations regarding the anatomical tumor volumes were obtained between both PET-guided MRI co-segmentation and reference truth (R2=0.92, p<0.001 for PET/MR, and R2=0.84, p<0.001, for PET/CT). TP and FP volume fractions using the automated co-segmentation method in PET/MR and PET/CT were found to be (TP 97.3%, FP 9.8%) and (TP 92.3%, FP 17.2%), respectively.
The proposed PET-guided MR image co-segmentation algorithm provided an automated and efficient way of assessing anatomical tumor volumes and their spatial extent. We showed that although the 18F-Z HER2-Affibody radiotracer in PET imaging is often used for characterization of tumors rather than detection, sensitivity and specificity of the localized radiotracer in the tumor region were informative enough; therefore, roughly determined tumor regions from PET images guided the delineation process well in the anatomical image domain for extracting accurate tumor volume information. Furthermore, the use of 18F-FDG radiotracer was not as successful as the 18F-Z HER2-Affibody in guiding the delineation process due to false-positive uptake regions in the neighborhood of tumor regions; hence, the accuracy of the fully automated segmentation method changed dramatically. Last, we qualitatively showed that MRI yields superior identification of tumor boundaries when compared to conventional CT imaging.
PMCID: PMC3708745  PMID: 23829944
Image segmentation; Computer quantification; FDG-PET; MRI/PET; Breast cancer; Small-animal models; Co-segmentation; Volume quantification; Random walk
8.  Role of FDG-PET scans in staging, response assessment, and follow-up care for non-small cell lung cancer 
Frontiers in Oncology  2013;2:208.
The integral role of positron-emission tomography (PET) using the glucose analog tracer fluorine-18 fluorodeoxyglucose (FDG) in the staging of non-small cell lung cancer (NSCLC) is well established. Evidence is emerging for the role of PET in response assessment to neoadjuvant therapy, combined-modality therapy, and early detection of recurrence. Here, we review the current literature on these aspects of PET in the management of NSCLC. FDG-PET, particularly integrated 18F-FDG-PET/CT, scans have become a standard test in the staging of local tumor extent, mediastinal lymph node involvement, and distant metastatic disease in NSCLC. 18F-FDG-PET sensitivity is generally superior to computed tomography (CT) scans alone. Local tumor extent and T stage can be more accurately determined with FDG-PET in certain cases, especially in areas of post-obstructive atelectasis or low CT density variation. FDG-PET sensitivity is decreased in tumors <1 cm, at least in part due to respiratory motion. False-negative results can occur in areas of low tumor burden, e.g., small lymph nodes or ground-glass opacities. 18F-FDG-PET-CT nodal staging is more accurate than CT alone, as hilar and mediastinal involvement is often detected first on 18F-FDG-PET scan when CT criteria for malignant involvement are not met. 18F-FDG-PET scans have widely replaced bone scintography for assessing distant metastases, except for the brain, which still warrants dedicated brain imaging. 18F-FDG uptake has also been shown to vary between histologies, with adenocarcinomas generally being less FDG avid than squamous cell carcinomas. 18F-FDG-PET scans are useful to detect recurrences, but are currently not recommended for routine follow-up. Typically, patients are followed with chest CT scans every 3–6 months, using 18F-FDG-PET to evaluate equivocal CT findings. As high 18F-FDG uptake can occur in infectious, inflammatory, and other non-neoplastic conditions, 18F-FDG-PET-positive findings require pathological confirmation in most cases. There is increased interest in the prognostic and predictive role of FDG-PET scans. Studies show that absence of metabolic response to neoadjuvant therapy correlates with poor pathologic response, and a favorable 18F-FDG-PET response appears to be associated with improved survival. Further work is underway to identify subsets of patients that might benefit individualized management based on FDG-PET.
PMCID: PMC3539654  PMID: 23316478
PET; non-small cell lung cancer; staging; response assessment; follow-up
9.  FDG–PET in the prediction of survival of patients with cancer of the pancreas: a pilot study 
British Journal of Cancer  2000;83(3):287-293.
Carcinoma of the pancreas is an aggressive tumour with an extremely poor prognosis. Recent studies have shown that chemotherapy can improve survival as well as quality of life. Since the prognosis is generally poor, the identification of early responders to chemotherapy is important to avoid unnecessary toxicity in patients who are not responding. Response assessment by conventional radiographic methods is problematical because treatment induces fibrosis and makes tumour measurements difficult. The aim of this pilot study was to assess 18-fluoro-deoxy-glucose positron emission tomography (FDG-PET) as an early marker of the benefit of chemotherapy. Eleven patients with histologically proven adenocarcinoma of the pancreas were treated with protracted venous infusional 5-fluorouracil (PVI 5-FU) alone or PVI 5-FU and mitomycin C (MMC). FDG-PET scans were performed prior to and at 1 month following the commencement of chemotherapy. FDG uptake was compared with the tumour dimensions measured on a computer tomographic (CT) scan. Patients were followed up for relapse, death and symptomatic response. Three of the 11 patients had no measurable FDG uptake prior to chemotherapy. Of the eight patients who had measurable uptake prior to treatment, seven had a reduction in uptake at 1 month. Six out of the 11 patients had no measurable FDG uptake at 1 month. The overall survival (OS) in these patients ranged from 124 to 1460 days, with a median of 318.5 days. This was superior in comparison to patients who had residual FDG uptake at 1 month (median survival 318.5 days vs 139 days;P = 0.034) and there was a trend to improved symptoms (84% [5/6] vs 20% [1/5];P = 0.13). There was no statistically significant correlation between best CT response and FDG uptake at 1 month. These results suggest that the absence of FDG uptake at 1 month following chemotherapy for carcinoma of the pancreas is an indicator of improved overall survival. This suggests that FDG-PET may be superior to response assessment by conventional radiographic methods and FDG-PET may have the potential to help make difficult treatment decisions in the management of pancreatic cancer. Larger prospective studies are required to confirm this finding. © 2000 Cancer Research Campaign
PMCID: PMC2374572  PMID: 10917540
10.  Sequential FDG-PET and induction chemotherapy in locally advanced adenocarcinoma of the Oesophago-gastric junction (AEG): The Heidelberg Imaging program in Cancer of the oesophago-gastric junction during Neoadjuvant treatment: HICON trial 
BMC Cancer  2011;11:266.
18-Fluorodeoxyglucose-PET (18F-FDG-PET) can be used for early response assessment in patients with locally advanced adenocarcinomas of the oesophagogastric junction (AEG) undergoing neoadjuvant chemotherapy. It has been recently shown in the MUNICON trials that response-guided treatment algorithms based on early changes of the FDG tumor uptake detected by PET are feasible and that they can be implemented into clinical practice.
Only 40%-50% of the patients respond metabolically to therapy. As metabolic non-response is known to be associated with a dismal prognosis, metabolic non-responders are increasingly treated with alternative neoadjuvant chemotherapies or chemoradiation in order to improve their clinical outcome. We plan to investigate whether PET can be used as response assessment during radiochemotherapy given as salvage treatment in early metabolic non-responders to standard chemotherapy.
The HICON trial is a prospective, non-randomized, explorative imaging study evaluating the value of PET as a predictor of histopathological response in metabolic non-responders. Patients with resectable AEG type I and II according to Siewerts classification, staged cT3/4 and/or cN+ and cM0 by endoscopic ultrasound, spiral CT or MRI and FDG-PET are eligible. Tumors must be potentially R0 resectable and must have a sufficient FDG-baseline uptake. Only metabolic non-responders, showing a < 35% decrease of SUV two weeks after the start of neoadjuvant chemotherapy are eligible for the study and are taken to intensified taxane-based RCT (chemoradiotherapy (45 Gy) before surgery. 18FDG-PET scans will be performed before ( = Baseline) and after 14 days of standard neoadjuvant therapy as well as after the first cycle of salvage docetaxel/cisplatin chemotherapy (PET 1) and at the end of radiochemotherapy (PET2). Tracer uptake will be assessed semiquantitatively using standardized uptake values (SUV). The percentage difference ΔSUV = 100 (SUVBaseline - SUV PET1)/SUVBaseline will be calculated and assessed as an early predictor of histopathological response. In a secondary analysis, the association between the difference SUVPET1 - SUVPET2 and histopathological response will be evaluated.
The aim of this study is to investigate the potential of sequential 18FDG-PET in predicting histopathological response in AEG tumors to salvage neoadjuvant radiochemotherapy in patients who do not show metabolic response to standard neoadjuvant chemotherapy.
Trial Registration
Clinical trial identifier NCT01271322
PMCID: PMC3149600  PMID: 21702914
11.  Predictive and prognostic value of FDG-PET 
Cancer Imaging  2008;8(1):70-80.
The predictive and prognostic value of fluorodeoxyglucose (FDG)-positron emission tomography (PET) in non-small-cell lung carcinoma, colorectal carcinoma and lymphoma is discussed. The degree of FDG uptake is of prognostic value at initial presentation, after induction treatment prior to resection and in the case of relapse of non-small cell lung cancer (NSCLC). In locally advanced and advanced stages of NSCLC, FDG-PET has been shown to be predictive for clinical outcome at an early stage of treatment. In colorectal carcinoma, limited studies are available on the prognostic value of FDG-PET, however, the technique appears to have great potential in monitoring the success of local ablative therapies soon after intervention and in the prediction and evaluation of response to radiotherapy, systemic therapy, and combinations thereof. The prognostic value of end-of treatment FDG-PET for FDG-avid lymphomas has been established, and the next step is to define how to use this information to optimize patient outcome. In Hodgkin's lymphoma, FDG-PET has a high negative predictive value, however, histological confirmation of positive findings should be sought where possible. For non-Hodgkin's lymphoma, the opposite applies. The newly published standardized guidelines for interpretation formulates specific criteria for visual interpretation and for defining PET positivity in the liver, spleen, lung, bone marrow and small residual lesions. The introduction of these guidelines should reduce variability among studies. Interim PET offers a reliable method for early prediction of long-term remission, however it should only be performed in prospective randomized controlled trials. Many of the diagnostic and management questions considered in this review are relevant to other tumour types. Further research in this field is of great importance, since it may lead to a change in the therapeutic concept of cancer. The preliminary findings call for systematic inclusion of FDG-PET in therapeutic trials to adequately position FDG-PET in treatment time lines.
PMCID: PMC2324370  PMID: 18390390
FDG-PET; prediction; prognosis; response monitoring; therapy monitoring; SUV; non-small-cell lung cancer; colorectal cancer; lymphoma
12.  Utility of 18F-fluoro-deoxyglucose emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in combination with ultrasonography for axillary staging in primary breast cancer 
BMC Cancer  2008;8:165.
Accurate evaluation of axillary lymph node (ALN) involvement is mandatory before treatment of primary breast cancer. The aim of this study is to compare preoperative diagnostic accuracy between positron emission tomography/computed tomography with 18F-fluorodeoxyglucose (18F-FDG PET/CT) and axillary ultrasonography (AUS) for detecting ALN metastasis in patients having operable breast cancer, and to assess the clinical management of axillary 18F-FDG PET/CT for therapeutic indication of sentinel node biopsy (SNB) and preoperative systemic chemotherapy (PSC).
One hundred eighty-three patients with primary operable breast cancer were recruited. All patients underwent 18F-FDG PET/CT and AUS followed by SNB and/or ALN dissection (ALND). Using 18F-FDG PET/CT, we studied both a visual assessment of 18F-FDG uptake and standardized uptake value (SUV) for axillary staging.
In a visual assessment of 18F-FDG PET/CT, the diagnostic accuracy of ALN metastasis was 83% with 58% in sensitivity and 95% in specificity, and when cut-off point of SUV was set at 1.8, sensitivity, specificity, and accuracy were 36, 100, and 79%, respectively. On the other hand, the diagnostic accuracy of AUS was 85% with 54% in sensitivity and 99% in specificity. By the combination of 18F-FDG PET/CT and AUS to the axilla, the sensitivity, specificity, and accuracy were 64, 94, and 85%, respectively. If either 18F-FDG PET uptake or AUS was positive in allixa, the probability of axillary metastasis was high; 50% (6 of 12) in 18F-FDG PET uptake only, 80% (4 of 5) in AUS positive only, and 100% (28 of 28) in dual positive. By the combination of AUS and 18F-FDG PET/CT, candidates of SNB were more appropriately selected. The axillary 18F-FDG uptake was correlated with the maximum size and nuclear grade of metastatic foci (p = 0.006 and p = 0.03).
The diagnostic accuracy of 18F-FDG PET/CT was shown to be nearly equal to ultrasound, and considering their limited sensitivities, the high radiation exposure by 18F-FDG PET/CT and also costs of the examination, it is likely that AUS will be more cost-effective in detecting massive axillary tumor burden. However, when we cannot judge the axillary staging using AUS alone, metabolic approach of 18F-FDG PET/CT for axillary staging would enable us a much more confident diagnosis.
PMCID: PMC2430574  PMID: 18541009
13.  The role of chemotherapeutic drugs in the evaluation of breast tumour response to chemotherapy using serial FDG-PET 
The aims of this study were to investigate whether drug sequence (docetaxel followed by anthracyclines or the drugs in reverse order) affects changes in the maximal standard uptake volume (SUVmax) on [18F]flourodeoxyglucose positron emission tomography (FDG-PET) during neoadjuvant chemotherapy in women with locally advanced breast cancer.
Women were randomly assigned to receive either drug sequence, and FDG-PET scans were taken at baseline, after four cycles and after eight cycles of chemotherapy. Tumour response to chemotherapy was evaluated based on histology from a surgical specimen collected upon completion of chemotherapy.
Sixty women were enrolled into the study. Thirty-one received docetaxel followed by anthracyclines (Arm A) and 29 received drugs in the reverse order (Arm B). Most women (83%) had ductal carcinoma and 10 women (17%) had lobular or lobular/ductal carcinoma. All but one tumour were downstaged during therapy. Overall, there was no significant difference in response between the two drug regimens. However, women in Arm B who achieved complete pathological response had mean FDG-PET SUVmax reduction of 87.7% after four cycles, in contrast to those who had no or minor pathological response. These women recorded mean SUVmax reductions of only 27% (P < 0.01). Women in Arm A showed no significant difference in SUVmax response according to pathological response. Sensitivity, specificity, accuracy and positive and negative predictive values were highest in women in Arm B.
Our results show that SUVmax uptake by breast tumours during chemotherapy can be dependent on the drugs used. Care must be taken when interpreting FDG-PET in settings where patients receive varied drug protocols.
PMCID: PMC2917032  PMID: 20565953
14.  Monitoring Response to Radiotherapy in Human Squamous Cell Cancer Bearing Nude Mice: Comparison of 2′-deoxy-2′-[18F]fluoro-d-glucose (FDG) and 3′-[18F]fluoro-3′-deoxythymidine (FLT) 
Molecular Imaging and Biology  2007;9(6):340-347.
The uptake of 3′-[18F]fluoro-3′-deoxythymidine (FLT), a proliferation marker, was measured before and during fractionated radiotherapy to evaluate the potential of FLT-positron emission tomography (PET) imaging as an indicator of tumor response compared to 2′-deoxy-2′-[18F]fluoro-d-glucose (FDG).
Materials and Methods
Nude mice bearing established human head and neck xenografts (HNX-OE; nu/nu mice) were locally irradiated (three fractions/week; 22 Gy) using a 150-kVp unit. Multiple FDG- and FLT-PET scans were acquired during treatment. Tumor volume was determined regularly, and tissue was analyzed for biomarkers involved in tracer uptake.
Both groups revealed a significant decline in tumor volume (P < 0.01) compared to untreated tumors. For FDG as well as for FLT, a significant decline in retention was observed at day 4. For FLT, most significant decline in retention was observed at day 12; whereas, for FDG, this was already noted at day 4. Maximum decline in tumor-to-nontumor ratios (T/NT) for FDG and FLT was 42 ± 18% and 49 ± 16% (mean ± SD), respectively. FLT uptake was higher then that of FDG. For FLT, statistical significant correlations were found for both tumor volume at baseline and at day 29 with T/NT and ΔT/NT. All tumors demonstrated expression of glucose transporter-1, thymidine kinase-1, and hexokinase II. No differences were found for amount of tumor cells and necrosis at the end of treatment.
This new experimental in vivo model supports the promise of using FLT-PET, as with FDG-PET, to monitor response to external radiotherapy. This warrants further clinical studies to compare these two tracers especially in cancers treated with radiotherapy.
PMCID: PMC2040178  PMID: 17643202
FDG; FLT; PET; Radiotherapy; Response monitoring; Head and neck xenograft model
15.  [18F]Fluoro-2-Deoxy-D-Glucose Incorporation by MCF-7 Breast Tumour Cells In Vitro Is Modulated by Treatment with Tamoxifen, Doxorubicin, and Docetaxel: Relationship to Chemotherapy-Induced Changes in ATP Content, Hexokinase Activity, and Glucose Transport 
Breast tumours responding to chemotherapy exhibit decreased [18F]fluoro-2-deoxy-D-glucose ([18F]FDG) incorporation. Underlying mechanisms of these changes is poorly understood. Here, in MCF-7 cells, responding to chemotherapy drugs commonly utilised in the treatment of breast cancer, [18F]FDG incorporation and several pivotal factors associated with [18F]FDG incorporation investigated. Methods. IC50 and subclinical doxorubicin, docetaxel, and tamoxifen doses determined using MTT assay. [18F]FDG incorporation by cells treated with IC50 drug doses for 48 hours and 72 hours were determined and FDG dephosphorylation estimated by measuring loss of 18F from [18F]FDG-preincubated cells (pulse-chase). Glucose transport determined by measuring initial uptake rate of non-metabolised glucose analogue omethylglucose; hexokinase activity and ATP content measured in cell homogenates; Cell cycle distribution determined using flow cytometry of propidium iodide stained nuclei. Results. [18F]FDG incorporation and ATP content decreased in cells after 72 hours treatment with IC50 doses of tamoxifen, doxorubicin, and docetaxel compared with untreated controls. Decreased glucose transport and/or hexokinase activity accompanied decreased [18F]FDG incorporation by MCF-7 cells treated with tamoxifen or doxorubicin but not docetaxel. Conclusions. Tumour cell [18F]FDG incorporation along with ATP content decreased by treatment with tamoxifen, doxorubicin and docetaxel paralleling clinical observations for solid tumours. Effect of each treatment on glucose transport and hexokinase activity was chemotherapy-drug dependent.
PMCID: PMC3065808  PMID: 21490735
16.  [18F] FDG uptake: pay attention to candies 
[18F]Fluorodeoxyglucose ([18F]FDG) is a positron emission radiotracer whose biodistribution is similar to glucose. The similar biodistribution of [18F]FDG and glucose in the human body requires a fasting condition for at least six hours prior to performing a [18F]FDG positron emission tomography ([18F]FDG PET) study.
In human studies, FDG PET images, in either the fasting state or the glucose-loaded state, have demonstrated that [18F]FDG uptake is decreased in the tumour, and thus the PET image quality is impaired, when plasma glucose levels are increased. All these results suggest that patients should fast before FDG PET studies, and their plasma glucose concentration needs to be considered when assessing tumour glucose metabolism. However, for lymphomatous disease, the data are contradictory and there are reports that insulin does not induce major changes in glucose uptake of lymphomatous tissue.
Here, we report two cases of lymphoma in which [18F]FDG PET/computed tomography ([18F]FDG PET/CT) was used for chemotherapy response evaluation. In both cases, initial [18F]FDG PET/CT scans were negative for neoplastic lesions but showed increased and diffuse FDG uptake in muscles. This led us to investigate better the importance of a fasting condition. A second [18F]FDG PET/CT performed 3–4 days later revealed pathological uptake in the lymphomatous lesions in both cases.
We demonstrate the importance of a euglycemic state before [18F]FDG administration, and that a fasting period of at least six hours is required prior to administration.
PMCID: PMC3223976  PMID: 22275952
17.  FDG-PET Parameters as Prognostic Factor in Esophageal Cancer Patients: A Review 
Annals of Surgical Oncology  2011;18(12):3338-3352.
18F-fluorodeoxyglucose positron emission tomography (FDG-PET) has been used extensively to explore whether FDG Uptake can be used to provide prognostic information for esophageal cancer patients. The aim of the present review is to evaluate the literature available to date concerning the potential prognostic value of FDG uptake in esophageal cancer patients, in terms of absolute pretreatment values and of decrease in FDG uptake during or after neoadjuvant therapy.
A computer-aided search of the English language literature concerning esophageal cancer and standardized uptake values was performed. This search focused on clinical studies evaluating the prognostic value of FDG uptake as an absolute value or the decrease in FDG uptake and using overall mortality and/or disease-related mortality as an end point.
In total, 31 studies met the predefined criteria. Two main groups were identified based on the tested prognostic parameter: (1) FDG uptake and (2) decrease in FDG uptake. Most studies showed that pretreatment FDG uptake and postneoadjuvant treatment FDG uptake, as absolute values, are predictors for survival in univariate analysis. Moreover, early decrease in FDG uptake during neoadjuvant therapy is predictive for response and survival in most studies described. However, late decrease in FDG uptake after completion of neoadjuvant therapy was predictive for pathological response and survival in only 2 of 6 studies.
Measuring decrease in FDG uptake early during neoadjuvant therapy is most appealing, moreover because the observed range of values expressed as relative decrease to discriminate responding from nonresponding patients is very small. At present inter-institutional comparison of results is difficult because several different normalization factors for FDG uptake are in use. Therefore, more research focusing on standardization of protocols and inter-institutional differences should be performed, before a PET-guided algorithm can be universally advocated.
PMCID: PMC3192273  PMID: 21537872
18.  The impact of systemic chemotherapy on testicular FDG activity in young men with Hodgkin’s lymphoma 
Based on prior reports suggesting a positive correlation between fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET)/CT and total sperm count and concentration, we sought to identify changes in testicular FDG uptake over the course of chemotherapy in young men with Hodgkin’s lymphoma.
Fifty-two patients with a mean age of 24.2 years (range 15.5–44.4) at diagnosis monitored with FDG PET/CT to assess treatment response for Hodgkin’s lymphoma were selected for this retrospective analysis under an Institutional Review Board waiver. Of the patients, 26 were treated with a chemotherapy regimen known to cause prolonged and sometimes permanent azoospermia (BEACOPP—bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisolone) and 26 with a regimen known to have a much milder effect on gonadal function (ABVD—doxorubicin, bleomycin, vincristine, and dacarbazine). Each patient underwent one FDG PET/CT before treatment and at least one FDG PET/CT after start of chemotherapy. In all examinations, FDG activity was measured in the testes with different quantification metrics: maximum standardized uptake value (SUVmax), SUVmean, functional volume (FV) and total testicular glycolysis (TTG), and blood pool activity determined (SUVmean).
Testicular FDG uptake (SUVmax) was significantly associated with blood pool activity (p<0.001). Furthermore, testicular FDG uptake metrics incorporating volume (e.g., FV and TTG) were associated with age. There was no significant change in SUVmax, SUVmean, FV, and TTG from the PET/CT at baseline to the PET/CTs over the course of chemotherapy either for patients treated with BEACOPP or for patients treated with ABVD.
For patients undergoing chemotherapy for Hodgkin’s lymphoma, there is a significant association between testicular FDG uptake and blood pool activity, but no significant changes in FDG uptake over the course of chemotherapy. Therefore, FDG uptake may not be a feasible surrogate marker for fertility monitoring in patients with Hodgkin’s lymphoma undergoing chemotherapy.
PMCID: PMC4004336  PMID: 23389428
Fertility; Chemotherapy; Lymphoma; BEACOPP; ABVD; FDG; PET/CT
19.  Feasibility of FDG PET/CT to monitor the response of axillary lymph node metastases to neoadjuvant chemotherapy in breast cancer patients 
The aim of this study was to assess the accuracy of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT to visualize lymph node metastases before the start of neoadjuvant chemotherapy and to determine how often the visualization is sufficiently prominent to allow monitoring of the axillary response.
Thirty-eight patients with invasive breast cancer of >3 cm and/or lymph node metastasis underwent FDG PET/CT before neoadjuvant chemotherapy. The results of the FDG PET/CT were compared with those from ultrasonography with fine-needle aspiration (FNA) cytology or sentinel node biopsy. Patients suitable for response monitoring of the axilla were defined as having either a maximum standardized uptake value (SUVmax) ≥ 2.5 or a tumour to background ratio ≥5 in the most intense lymph node.
The sensitivity and specificity of FDG PET/CT in detecting axillary involvement were 97 and 100%, respectively. No difference existed between the SUVmax of the primary tumour and that from the related most intense lymph node metastasis. Moreover, the mean tumour to background ratio was 90% higher in the lymph nodes compared to the primary tumour (p = 0.006). Ninety-three per cent of the patients had sufficient uptake in the lymph nodes to qualify for subsequent response monitoring of the axilla. A considerable distinction in metabolic activity was observed between the different subtypes of breast cancer. The mean SUVmax in lymph node metastases of oestrogen receptor (ER)-positive, triple-negative and human epidermal growth factor receptor 2 (HER2)-positive tumours was 6.6, 11.6 and 6.6, respectively.
The high accuracy in visualizing lymph node metastases and the sufficiently high SUVmax and tumour to background ratio at baseline suggest that it is feasible to monitor the axillary response with FDG PET/CT, especially in triple-negative tumours.
PMCID: PMC2869017  PMID: 20130860
Breast cancer; Axillary lymph node metastasis; FDG-PET/CT; Neoadjuvant chemotherapy
20.  A comparison of PET imaging agents for the assessment of therapy efficacy in a rodent model of glioma 
The aim of the current study was to assess the ability of PET imaging agents to detect early response to therapy in an orthotopic experimental rodent model of glioma. Clinically, MRI and [18F]FDG PET are routinely used but their ability to assess early therapeutic response can be limited. In this study, nude rats were implanted with U87-MG tumors orthotopically and imaged with either [18F]FDG or [18F]FLT to determine which tracer acts as the most sensitive biomarker for evaluation of treatment response in animals undergoing anti-angiogenic therapy with sunitinib, a receptor tyrosine kinase (RTK) inhibitor. Of the radiopharmaceuticals tested, [18F]FLT proved to be the most sensitive biomarker in the proliferating glioma, based on tumour-to-normal tissue radiotracer uptake (TNR ~17) in comparison to [18F]FDG (TNR ~1.7). Furthermore, [18F]FLT displayed earlier assessment of therapy efficacy, than either tumour volume measured by MRI or [18F]FDG PET imaging. Overall, longitudinal molecular imaging with [18F]FLT provides earlier detection of therapy response than either of the commonly used clinical imaging modalities potentially improving patient management.
PMCID: PMC3784803  PMID: 24116348
PET; glioma; sunitinib; [18F]FLT; [18F]FDG; angiogenesis; orthotopic
21.  In vivo imaging of cellular proliferation in colorectal cancer using positron emission tomography 
Gut  2003;52(11):1602-1606.
Background and aims: Positron emission tomography (PET) using 18F labelled 2-fluoro-2-deoxy-D-glucose (18FDG) is an established imaging tool, although the recent development of a biologically stable thymidine analogue [18F] 3′-deoxy-3-fluorothymidine (18FLT) has allowed PET to image cellular proliferation by utilising the salvage pathway of DNA synthesis. In this study, we have compared uptake of 18FLT and 18FDG with MIB-1 immunohistochemistry to evaluate the role of PET in quantifying in vivo cellular proliferation in colorectal cancer (CRC).
Patients and methods: Patients with resectable, primary, or recurrent CRC were prospectively studied. Thirteen lesions from 10 patients (five males, five females), median age 68 years (range 54–87), were evaluated. Patients underwent 18FDG and 18FLT PET scanning. Tracer uptake within lesions was quantified using standardised uptake values (SUVs). Histopathological examination and MIB-1 immunohistochemistry were performed on all lesions, and proliferation quantified by calculating a labelling index (% of MIB-1 positively stained nuclei within 1500 tumour cells).
Results: Histology confirmed adenocarcinoma in 12 of 13 lesions; the remaining lesion was reactive. All eight extrahepatic lesions were visualised using both 18FLT and 18FDG. Three of the five resected liver metastases were also avid for 18FLT and showed high proliferation, while the remaining two lesions which demonstrated no uptake of 18FLT had correspondingly very low proliferation. There was a statistically significant positive correlation (r =0.8, p<0.01) between SUVs of the tumours visualised with 18FLT and the corresponding MIB-1 labelling indices. No such correlation was demonstrated with 18FDG avid lesions (r =0.4).
Conclusions: 18FLT PET correlates with cellular proliferation markers in both primary and metastatic CRC. This technique could provide a mechanism for in vivo grading of malignancy and early prediction of response to adjuvant chemotherapy.
PMCID: PMC1773856  PMID: 14570730
cellular proliferation; colorectal cancer; positron emission tomography; imaging
22.  Early metabolic response using FDG PET/CT and molecular phenotypes of breast cancer treated with neoadjuvant chemotherapy 
BMC Cancer  2011;11:452.
This study was aimed 1) to investigate the predictive value of FDG PET/CT (fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography) for histopathologic response and 2) to explore the results of FDG PET/CT by molecular phenotypes of breast cancer patients who received neoadjuvant chemotherapy.
Seventy-eight stage II or III breast cancer patients who received neoadjuvant docetaxel/doxorubicin chemotherapy were enrolled in this study. FDG PET/CTs were acquired before chemotherapy and after the first cycle of chemotherapy for evaluating early metabolic response.
The mean pre- and post-chemotherapy standard uptake value (SUV) were 7.5 and 3.9, respectively. The early metabolic response provided by FDG PET/CT after one cycle of neoadjuvant chemotherapy was correlated with the histopathologic response after completion of neoadjuvant chemotherapy (P = 0.002). Sensitivity and negative predictive value were 85.7% and 95.1%, respectively. The estrogen receptor negative phenotype had a higher pre-chemotherapy SUV (8.6 vs. 6.4, P = 0.047) and percent change in SUV (48% vs. 30%, P = 0.038). In triple negative breast cancer (TNBC), the pre-chemotherapy SUV was higher than in non-TNBC (9.8 vs. 6.4, P = 0.008).
The early metabolic response using FDG PET/CT could have a predictive value for the assessment of histopathologic non-response of stage II/III breast cancer treated with neoadjuvant chemotherapy. Our findings suggest that the initial SUV and the decline in SUV differed based on the molecular phenotype.
Trial Registration NCT01396655
PMCID: PMC3224348  PMID: 22011459
FDG PET; breast cancer; neoadjuvant chemotherapy; molecular phenotype
23.  [18 F]FDG-PET imaging is an early non-invasive pharmacodynamic biomarker for a first-in-class dual MEK/Raf inhibitor, RO5126766 (CH5126766), in preclinical xenograft models 
EJNMMI Research  2013;3:67.
Positron emission tomography (PET) with [2-18 F]-2-fluoro-2-deoxy-D-glucose ([18 F]FDG-PET) was acquired at multiple time-points a) to monitor the early response to RO5126766 (CH5126766) in xenograft models b) to evaluate non-invasive small animal [18 F]FDG-PET imaging as a biomarker for MEK inhibitors for translation into dose-finding studies in cancer patients and c) to explore the underlying mechanism related to FDG uptake in tumors treated with RO5126766.
[18 F]FDG uptake was studied in HCT116 (K-ras), COLO205 (B-raf) mutants and COLO320DM (wild type) xenografts from day 0 to 3 of RO5126766 treatment using a microPET Focus 120 and complemented with in vitro incubations, ex-vivo phosphor imaging and immunohistochemical (IHC) analyses.
In the HCT116 (K-ras) and COLO205 (B-raf) mutant xenografts, significant decreases in [18 F]FDG uptake were detected in vivo on day 1 with 0.3 mg/kg and ex vivo on day 3 with 0.1 mg/kg RO5126766. [18 F]FDG changes correlated with decreases in tumor cells proliferation (Ki-67) and with changes in expression levels of GLUT1. No effects were observed in drug resistant COLO320DM cells. The cellular fractionation and Western blotting analyses suggested that the change of [18 F]FDG uptake associated with RO5126766 is due to translocation of GLUT1 from membrane to cytosol, similar to the results reported in the literature with EGFR tyrosine kinase inhibitors, which also target the MAPK pathway.
RO5126766 inhibition resulted in a rapid time - and dose - dependent decline in [18 F]FDG uptake in both mutant xenografts. These results strongly resemble the clinical observations obtained with MEK/Raf inhibitors support the use of preclinical [18 F]FDG-PET as a translational tool for decision support in preclinical and early clinical development of MEK inhibitors.
PMCID: PMC3848680  PMID: 24041012
Positron emission tomography; RO5126766; MEK inhibitor; Translational imaging
24.  Imaging of Treatment Response to the Combination of Carboplatin and Paclitaxel in Human Ovarian Cancer Xenograft Tumors in Mice Using FDG and FLT PET 
PLoS ONE  2013;8(12):e85126.
A combination of carboplatin and paclitaxel is often used as first line chemotherapy for treatment of ovarian cancer. Therefore the use of imaging biomarkers early after initiation of treatment to determine treatment sensitivity would be valuable in order to identify responders from non-responders. In this study we describe the non-invasive PET imaging of glucose uptake and cell proliferation using 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and 3’-deoxy-3’-[18F]fluorothymidine (FLT) for early assessment of treatment response in a pre-clinical mouse model of human ovarian cancer treated with carboplatin and paclitaxel.
In vivo uptake of FLT and FDG in human ovarian cancer xenografts in mice (A2780) was determined before treatment with carboplatin and paclitaxel (CaP) and repeatedday 1, 4 and 8 after treatment start. Tracer uptake was quantified using small animal PET/CT. Tracer uptake was compared with gene expression of Ki67, TK1, GLUT1, HK1 and HK2.
Tumors in the CaP group was significantly smaller than in the control group (p=0.03) on day 8. On day 4 FDG SUVmax ratio was significantly lower in the CaP group compared to the control group (105±4% vs 138±9%; p=0.002) and on day 8 the FDG SUVmax ratio was lower in the CaP compared to the control group (125±13% vs 167±13%; p=0.05). On day 1 the uptake of FLT SUVmax ratio was 89±9% in the CaP group and 109±6% in the control group; however the difference was not statistically significant (p=0.08).
Our data suggest that both FDG and FLT PET may be used for the assessment of anti-tumor effects of a combination of carboplatin and paclitaxel in the treatment of ovarian cancer. FLT provides an early and transient signal and FDG a later and more prolonged response. This underscores the importance of optimal timing between treatment and FLT or FDG imaging since treatment response may otherwise be overlooked.
PMCID: PMC3873431  PMID: 24386456
25.  Positron Emission Tomography for the Assessment of Myocardial Viability 
Executive Summary
In July 2009, the Medical Advisory Secretariat (MAS) began work on Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability, an evidence-based review of the literature surrounding different cardiac imaging modalities to ensure that appropriate technologies are accessed by patients undergoing viability assessment. This project came about when the Health Services Branch at the Ministry of Health and Long-Term Care asked MAS to provide an evidentiary platform on effectiveness and cost-effectiveness of non-invasive cardiac imaging modalities.
After an initial review of the strategy and consultation with experts, MAS identified five key non-invasive cardiac imaging technologies that can be used for the assessment of myocardial viability: positron emission tomography, cardiac magnetic resonance imaging, dobutamine echocardiography, and dobutamine echocardiography with contrast, and single photon emission computed tomography.
A 2005 review conducted by MAS determined that positron emission tomography was more sensitivity than dobutamine echocardiography and single photon emission tomography and dominated the other imaging modalities from a cost-effective standpoint. However, there was inadequate evidence to compare positron emission tomography and cardiac magnetic resonance imaging. Thus, this report focuses on this comparison only. For both technologies, an economic analysis was also completed.
The Non-Invasive Cardiac Imaging Technologies for the Assessment of Myocardial Viability is made up of the following reports, which can be publicly accessed at the MAS website at: or at
Positron Emission Tomography for the Assessment of Myocardial Viability: An Evidence-Based Analysis
Magnetic Resonance Imaging for the Assessment of Myocardial Viability: An Evidence-Based Analysis
The objective of this analysis is to assess the effectiveness and safety of positron emission tomography (PET) imaging using F-18-fluorodeoxyglucose (FDG) for the assessment of myocardial viability. To evaluate the effectiveness of FDG PET viability imaging, the following outcomes are examined:
the diagnostic accuracy of FDG PET for predicting functional recovery;
the impact of PET viability imaging on prognosis (mortality and other patient outcomes); and
the contribution of PET viability imaging to treatment decision making and subsequent patient outcomes.
Clinical Need: Condition and Target Population
Left Ventricular Systolic Dysfunction and Heart Failure
Heart failure is a complex syndrome characterized by the heart’s inability to maintain adequate blood circulation through the body leading to multiorgan abnormalities and, eventually, death. Patients with heart failure experience poor functional capacity, decreased quality of life, and increased risk of morbidity and mortality.
In 2005, more than 71,000 Canadians died from cardiovascular disease, of which, 54% were due to ischemic heart disease. Left ventricular (LV) systolic dysfunction due to coronary artery disease (CAD)1 is the primary cause of heart failure accounting for more than 70% of cases. The prevalence of heart failure was estimated at one percent of the Canadian population in 1989. Since then, the increase in the older population has undoubtedly resulted in a substantial increase in cases. Heart failure is associated with a poor prognosis: one-year mortality rates were 32.9% and 31.1% for men and women, respectively in Ontario between 1996 and 1997.
Treatment Options
In general, there are three options for the treatment of heart failure: medical treatment, heart transplantation, and revascularization for those with CAD as the underlying cause. Concerning medical treatment, despite recent advances, mortality remains high among treated patients, while, heart transplantation is affected by the limited availability of donor hearts and consequently has long waiting lists. The third option, revascularization, is used to restore the flow of blood to the heart via coronary artery bypass grafting (CABG) or through minimally invasive percutaneous coronary interventions (balloon angioplasty and stenting). Both methods, however, are associated with important perioperative risks including mortality, so it is essential to properly select patients for this procedure.
Myocardial Viability
Left ventricular dysfunction may be permanent if a myocardial scar is formed, or it may be reversible after revascularization. Reversible LV dysfunction occurs when the myocardium is viable but dysfunctional (reduced contractility). Since only patients with dysfunctional but viable myocardium benefit from revascularization, the identification and quantification of the extent of myocardial viability is an important part of the work-up of patients with heart failure when determining the most appropriate treatment path. Various non-invasive cardiac imaging modalities can be used to assess patients in whom determination of viability is an important clinical issue, specifically:
dobutamine echocardiography (echo),
stress echo with contrast,
SPECT using either technetium or thallium,
cardiac magnetic resonance imaging (cardiac MRI), and
positron emission tomography (PET).
Dobutamine Echocardiography
Stress echocardiography can be used to detect viable myocardium. During the infusion of low dose dobutamine (5 – 10 μg/kg/min), an improvement of contractility in hypokinetic and akentic segments is indicative of the presence of viable myocardium. Alternatively, a low-high dose dobutamine protocol can be used in which a biphasic response characterized by improved contractile function during the low-dose infusion followed by a deterioration in contractility due to stress induced ischemia during the high dose dobutamine infusion (dobutamine dose up to 40 ug/kg/min) represents viable tissue. Newer techniques including echocardiography using contrast agents, harmonic imaging, and power doppler imaging may help to improve the diagnostic accuracy of echocardiographic assessment of myocardial viability.
Stress Echocardiography with Contrast
Intravenous contrast agents, which are high molecular weight inert gas microbubbles that act like red blood cells in the vascular space, can be used during echocardiography to assess myocardial viability. These agents allow for the assessment of myocardial blood flow (perfusion) and contractile function (as described above), as well as the simultaneous assessment of perfusion to make it possible to distinguish between stunned and hibernating myocardium.
SPECT can be performed using thallium-201 (Tl-201), a potassium analogue, or technetium-99 m labelled tracers. When Tl-201 is injected intravenously into a patient, it is taken up by the myocardial cells through regional perfusion, and Tl-201 is retained in the cell due to sodium/potassium ATPase pumps in the myocyte membrane. The stress-redistribution-reinjection protocol involves three sets of images. The first two image sets (taken immediately after stress and then three to four hours after stress) identify perfusion defects that may represent scar tissue or viable tissue that is severely hypoperfused. The third set of images is taken a few minutes after the re-injection of Tl-201 and after the second set of images is completed. These re-injection images identify viable tissue if the defects exhibit significant fill-in (> 10% increase in tracer uptake) on the re-injection images.
The other common Tl-201 viability imaging protocol, rest-redistribution, involves SPECT imaging performed at rest five minutes after Tl-201 is injected and again three to four hours later. Viable tissue is identified if the delayed images exhibit significant fill-in of defects identified in the initial scans (> 10% increase in uptake) or if defects are fixed but the tracer activity is greater than 50%.
There are two technetium-99 m tracers: sestamibi (MIBI) and tetrofosmin. The uptake and retention of these tracers is dependent on regional perfusion and the integrity of cellular membranes. Viability is assessed using one set of images at rest and is defined by segments with tracer activity greater than 50%.
Cardiac Magnetic Resonance Imaging
Cardiac magnetic resonance imaging (cardiac MRI) is a non-invasive, x-ray free technique that uses a powerful magnetic field, radio frequency pulses, and a computer to produce detailed images of the structure and function of the heart. Two types of cardiac MRI are used to assess myocardial viability: dobutamine stress magnetic resonance imaging (DSMR) and delayed contrast-enhanced cardiac MRI (DE-MRI). DE-MRI, the most commonly used technique in Ontario, uses gadolinium-based contrast agents to define the transmural extent of scar, which can be visualized based on the intensity of the image. Hyper-enhanced regions correspond to irreversibly damaged myocardium. As the extent of hyper-enhancement increases, the amount of scar increases, so there is a lower the likelihood of functional recovery.
Cardiac Positron Emission Tomography
Positron emission tomography (PET) is a nuclear medicine technique used to image tissues based on the distinct ways in which normal and abnormal tissues metabolize positron-emitting radionuclides. Radionuclides are radioactive analogs of common physiological substrates such as sugars, amino acids, and free fatty acids that are used by the body. The only licensed radionuclide used in PET imaging for viability assessment is F-18 fluorodeoxyglucose (FDG).
During a PET scan, the radionuclides are injected into the body and as they decay, they emit positively charged particles (positrons) that travel several millimetres into tissue and collide with orbiting electrons. This collision results in annihilation where the combined mass of the positron and electron is converted into energy in the form of two 511 keV gamma rays, which are then emitted in opposite directions (180 degrees) and captured by an external array of detector elements in the PET gantry. Computer software is then used to convert the radiation emission into images. The system is set up so that it only detects coincident gamma rays that arrive at the detectors within a predefined temporal window, while single photons arriving without a pair or outside the temporal window do not active the detector. This allows for increased spatial and contrast resolution.
Evidence-Based Analysis
Research Questions
What is the diagnostic accuracy of PET for detecting myocardial viability?
What is the prognostic value of PET viability imaging (mortality and other clinical outcomes)?
What is the contribution of PET viability imaging to treatment decision making?
What is the safety of PET viability imaging?
Literature Search
A literature search was performed on July 17, 2009 using OVID MEDLINE, MEDLINE In-Process and Other Non-Indexed Citations, EMBASE, the Cochrane Library, and the International Agency for Health Technology Assessment (INAHTA) for studies published from January 1, 2004 to July 16, 2009. Abstracts were reviewed by a single reviewer and, for those studies meeting the eligibility criteria, full-text articles were obtained. In addition, published systematic reviews and health technology assessments were reviewed for relevant studies published before 2004. Reference lists of included studies were also examined for any additional relevant studies not already identified. The quality of the body of evidence was assessed as high, moderate, low or very low according to GRADE methodology.
Inclusion Criteria
Criteria applying to diagnostic accuracy studies, prognosis studies, and physician decision-making studies:
English language full-reports
Health technology assessments, systematic reviews, meta-analyses, randomized controlled trials (RCTs), and observational studies
Patients with chronic, known CAD
PET imaging using FDG for the purpose of detecting viable myocardium
Criteria applying to diagnostic accuracy studies:
Assessment of functional recovery ≥3 months after revascularization
Raw data available to calculate sensitivity and specificity
Gold standard: prediction of global or regional functional recovery
Criteria applying to prognosis studies:
Mortality studies that compare revascularized patients with non-revascularized patients and patients with viable and non-viable myocardium
Exclusion Criteria
Criteria applying to diagnostic accuracy studies, prognosis studies, and physician decision-making studies:
PET perfusion imaging
< 20 patients
< 18 years of age
Patients with non-ischemic heart disease
Animal or phantom studies
Studies focusing on the technical aspects of PET
Studies conducted exclusively in patients with acute myocardial infarction (MI)
Duplicate publications
Criteria applying to diagnostic accuracy studies
Gold standard other than functional recovery (e.g., PET or cardiac MRI)
Assessment of functional recovery occurs before patients are revascularized
Outcomes of Interest
Diagnostic accuracy studies
Sensitivity and specificity
Positive and negative predictive values (PPV and NPV)
Positive and negative likelihood ratios
Diagnostic accuracy
Adverse events
Prognosis studies
Mortality rate
Functional status
Exercise capacity
Quality of Life
Influence on PET viability imaging on physician decision making
Statistical Methods
Pooled estimates of sensitivity and specificity were calculated using a bivariate, binomial generalized linear mixed model. Statistical significance was defined by P values less than 0.05, where “false discovery rate” adjustments were made for multiple hypothesis testing. Using the bivariate model parameters, summary receiver operating characteristic (sROC) curves were produced. The area under the sROC curve was estimated by numerical integration with a cubic spline (default option). Finally, pooled estimates of mortality rates were calculated using weighted means.
Quality of Evidence
The quality of evidence assigned to individual diagnostic studies was determined using the QUADAS tool, a list of 14 questions that address internal and external validity, bias, and generalizibility of diagnostic accuracy studies. Each question is scored as “yes”, “no”, or “unclear”. The quality of the body of evidence was then assessed as high, moderate, low, or very low according to the GRADE Working Group criteria. The following definitions of quality were used in grading the quality of the evidence:
Summary of Findings
A total of 40 studies met the inclusion criteria and were included in this review: one health technology assessment, two systematic reviews, 22 observational diagnostic accuracy studies, and 16 prognosis studies. The available PET viability imaging literature addresses two questions: 1) what is the diagnostic accuracy of PET imaging for the assessment; and 2) what is the prognostic value of PET viability imaging. The diagnostic accuracy studies use regional or global functional recovery as the reference standard to determine the sensitivity and specificity of the technology. While regional functional recovery was most commonly used in the studies, global functional recovery is more important clinically. Due to differences in reporting and thresholds, however, it was not possible to pool global functional recovery.
Functional recovery, however, is a surrogate reference standard for viability and consequently, the diagnostic accuracy results may underestimate the specificity of PET viability imaging. For example, regional functional recovery may take up to a year after revascularization depending on whether it is stunned or hibernating tissue, while many of the studies looked at regional functional recovery 3 to 6 months after revascularization. In addition, viable tissue may not recover function after revascularization due to graft patency or re-stenosis. Both issues may lead to false positives and underestimate specificity. Given these limitations, the prognostic value of PET viability imaging provides the most direct and clinically useful information. This body of literature provides evidence on the comparative effectiveness of revascularization and medical therapy in patients with viable myocardium and patients without viable myocardium. In addition, the literature compares the impact of PET-guided treatment decision making with SPECT-guided or standard care treatment decision making on survival and cardiac events (including cardiac mortality, MI, hospital stays, unintended revascularization, etc).
The main findings from the diagnostic accuracy and prognosis evidence are:
Based on the available very low quality evidence, PET is a useful imaging modality for the detection of viable myocardium. The pooled estimates of sensitivity and specificity for the prediction of regional functional recovery as a surrogate for viable myocardium are 91.5% (95% CI, 88.2% – 94.9%) and 67.8% (95% CI, 55.8% – 79.7%), respectively.
Based the available very low quality of evidence, an indirect comparison of pooled estimates of sensitivity and specificity showed no statistically significant difference in the diagnostic accuracy of PET viability imaging for regional functional recovery using perfusion/metabolism mismatch with FDG PET plus either a PET or SPECT perfusion tracer compared with metabolism imaging with FDG PET alone.
FDG PET + PET perfusion metabolism mismatch: sensitivity, 89.9% (83.5% – 96.4%); specificity, 78.3% (66.3% – 90.2%);
FDG PET + SPECT perfusion metabolism mismatch: sensitivity, 87.2% (78.0% – 96.4%); specificity, 67.1% (48.3% – 85.9%);
FDG PET metabolism: sensitivity, 94.5% (91.0% – 98.0%); specificity, 66.8% (53.2% – 80.3%).
Given these findings, further higher quality studies are required to determine the comparative effectiveness and clinical utility of metabolism and perfusion/metabolism mismatch viability imaging with PET.
Based on very low quality of evidence, patients with viable myocardium who are revascularized have a lower mortality rate than those who are treated with medical therapy. Given the quality of evidence, however, this estimate of effect is uncertain so further higher quality studies in this area should be undertaken to determine the presence and magnitude of the effect.
While revascularization may reduce mortality in patients with viable myocardium, current moderate quality RCT evidence suggests that PET-guided treatment decisions do not result in statistically significant reductions in mortality compared with treatment decisions based on SPECT or standard care protocols. The PARR II trial by Beanlands et al. found a significant reduction in cardiac events (a composite outcome that includes cardiac deaths, MI, or hospital stay for cardiac cause) between the adherence to PET recommendations subgroup and the standard care group (hazard ratio, .62; 95% confidence intervals, 0.42 – 0.93; P = .019); however, this post-hoc sub-group analysis is hypothesis generating and higher quality studies are required to substantiate these findings.
The use of FDG PET plus SPECT to determine perfusion/metabolism mismatch to assess myocardial viability increases the radiation exposure compared with FDG PET imaging alone or FDG PET combined with PET perfusion imaging (total-body effective dose: FDG PET, 7 mSv; FDG PET plus PET perfusion tracer, 7.6 – 7.7 mSV; FDG PET plus SPECT perfusion tracer, 16 – 25 mSv). While the precise risk attributed to this increased exposure is unknown, there is increasing concern regarding lifetime multiple exposures to radiation-based imaging modalities, although the incremental lifetime risk for patients who are older or have a poor prognosis may not be as great as for healthy individuals.
PMCID: PMC3377573  PMID: 23074393

Results 1-25 (1020411)